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APPROXIMATIONS TO OPTIMAL STOPPING RULES FOR
EXPONENTIAL RANDOM VARIABLES!

By ApAM T. MARTINSEK

University of Illinois at Urbana-Champaign

For X, Xs, - -- ii.d. with finite mean and Y, = max(X,, ---, X,) — ¢n,
¢ positive, a number of authors have considered the problem of determining
an optimal stopping rule for the reward sequence Y,. The optimal stopping
rule can be given explicitly in this case; however, in general its use requires
complete knowledge of the distribution of the X;. This paper examines the
problem of approximating the optimal expected reward when only partial
information about the distribution is available. Specifically, if the X; are
known to be exponentially distributed with unknown mean, stopping rules
designed to approximate the optimal rule (which can be used only when the
mean is known) are proposed. Under certain conditions the difference between
the expected reward using the proposed stopping rules and the optimal
expected reward vanishes as ¢ approaches zero.

1. Introduction. The following problem and variations on it have been
considered by MacQueen and Miller (1960), Derman and Sacks (1960), Sakaguchi
(1961), Chow and Robbins (1961, 1963), Yahav (1966), Cohn (1967), and DeGroot
(1968). Let X;, X,, --- be independent and identically distributed (i.i.d.) with
E| X;| <oo. For n = 1, define the reward sequence

(1.1) Y, = maxi<i<n Xi —cn, ¢>0;

the problem is to find a stopping rule which maximizes the expected reward.
The optimal stopping rule for this problem, i.e., the rule which maximizes
E(Y,) over all stopping rules 7 with E(Y;) < o, is

(1.2) t¥=infln=1: X, = v},

where E(X; — v)" = ¢ (for a proof of this result, see Chow, Robbins and Siegmund
1971, pages 56-58). However, in order to use the stopping rule 7¥ it is necessary
to know «, which in turn requires knowledge of the distribution of the X;. If only
partial information about the distribution is available, it may not be possible to
compute v, and in such cases it would be desirable to approximate the optimal
rule 7¢ and (one hopes) the optimal reward E(Y.:) as well. The purpose of the
present paper is to consider this approximation problem for the special case of
the exponential distribution with unknown mean, and to prove a result which
suggests that a certain approximation to the optimal rule performs well, at least
asymptotically. .
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Assume throughout the rest of this section and the next that the distribu-
tion of the X; is exponential with mean u. An easy computation shows that
v = —u log(c/u), and this suggests that when p is unknown (but the distribution
of the X; is known to be exponential), the stopping rule

(1.3) 7. = inf{n = 1: X, = —X,log(c/X,)},
or more generally A
(1.4) 7. = inf{n = n.: X, = —X,log(c/X,)},

where X, = n7'S, = n7! Y7 X;, and n, is a positive integer depending on ¢, may
approximate the optimal rule 7} in the sense that E(Y;) is close to E(Y;:). In
the next section it is proved that if 6c™* < n. = o(c™") as ¢ — 0, for some 6 > 0
and 0 < @ <1, then E(Y,:) — E(Y;) > 0asc—0.

This type of approximation problem has been considered previously by Bram-
blett (1965), who showed that for certain cases involving unknown location
parameters, the ratio of the expected reward using an approximating stopping
rule to the optimal expected reward approaches one as ¢ goes to zero. In other
words, he showed that certain approximating stopping rules are asymptotically
optimal in the sense of Kiefer and Sacks (1963) and Bickel and Yahav (1967,
1968). Bramblett also obtained asymptotic optimality of a truncated version of
the present stopping time for exponential X;, but he was unable to get results
about the vanishing of the difference in expected rewards as c approaches zero,
for this case or any other (although he describes this property as being very
desirable).

2. Performance of 7.. Unlike 7%, the stopping-rule 7. defined by (1.4) is
not a geometric random variable. However, the key to proving the theorem below
is to approximate 7. by appropriate geometrically distributed random variables,
as in the proof of Lemma 1.

LEMMA 1. Define 7. by (1.4) with n, = O(c™") as ¢ — 0. Then for every a €
(0,1)and 0< B < a/2,asc— 0,

2.1) E#. < [¢/(1 + A" + n. + 0(c™).
Furthermore, if ¢~ < n, for some 6 > 0, then as ¢ — 0,
(2.2) Ei. = [¢/(1 — Al + o(c™9) for all g>0.

ProOOF. To prove (2.1), define
L.g=sup{n = 1: | S, — nu| = c’nu},

where sup(¢) = 0. For x > 0, put g(x) = —x log(c/x). Then g’(x) = —log(c/x) + 1
is positive if and only if x > ce™". Choose ¢, small enough so that (1 — chu >
coeY, i.e., g is increasing on ((1 — cf)u, »). Let

rr=infln = 1: X, = —(1 + ¢)p loglc/(1 + cP)ul}.
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Then for K sufficiently large, Kc™! > 2n, for all ¢, and we have for ¢ < ¢,

Pl7. > Kc¢™] < P[L.s > Kc™'/2] + P[L.s < Kc'/2, 7. > Kc™']
< P[L.s > Kc™'/2] + P[r = Kc™'/2].

It is easily checked that

(2.3)

{erd)?: ¢ < co}

is uniformly integrable for all p > 0, and by Theorem 7 of Chow and Lai (1975)
the same is true of

{(c®L.g)": ¢ < co}.

In particular, for every p > 0

(2.4) E(L2,) = O(c™®) as ¢— 0.
Hence by (2.3), since 28 < 1,
(2.5) {(c7.)": ¢ = co} is uniformly integrable for all r > 0.

Let n! = max(n., ¢™*) and
7. =inf{n = n}: X, = —X,log(c/X,)}.

Then from (2.4) with p > (a/2 —8)7}, (2.5) with r = 2, and the usual expression
for the expectation of a geometric random variable, for ¢ < ¢,

E(7.) = E(7clL, <ny) + E(7{1L >n))
< EV2(72)PV3(L.5 = n!)
+ E(inf{n = nl: X, = —(1 + c®)u log[c/(1 + cP)ul})
(2.6) < EV¥72)(nl)™?EA(L2g) + (ni — 1) + E(r)
= O(c™'#**2) + (n! — 1) + E(s)
< 0(1) + ne + ¢ + [¢/(1 + ¢P)u] 1+
= [¢/(1 + Au]"* + n, + O(c™®),

as ¢ — 0. This proves (2.1).
To prove (2.2), note that

(2.7 E(7.) = E[r: 1L, s<nyl,

where
7. =inf{n = 1: X, = —(1 — ¢®)u logc/(1 — cP)u]}

and L.z is defined as above. Now
E(r7) = [P(X, =2 —(1 — c¢P)u loge/(1 — cP)uD]™?
= [c/(1 = cH)u]"~",

and from Hoélder’s inequality, the expression for the second moment of 7., and

(2.8)
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(2.4) with p > (g + 1)/(a/2 — B),

Elri Iy ong] < EV(r0)YPY3(Ley = 1) < O(c™)e™20(c™)
2.9
(29) = O(c71P/2 ) = o(c?) as ¢ —0.

(2.2) now follows from (2.7), (2.8), and (2.9).

LEMMA 2. If n. = 6c™ for some 6 > 0 and 0 < a <1, then for every 3 €
(0, a/2),
Yiene EIXiLsjuizjctu] — 0,
asc— 0.
PROOF. Choosing p in (2.4) large enough so that 8 < a(p — 2)/2p, we have
3% e ELX I iutzictut] < Ten, EVHXDPYA(Le = J)
< O(1) S, JPPEVALE,) = O(1) $, j /%7

= O(cu(p/2—1)—/3p) = o(1).

THEOREM. Define 7. by (1.4). If 5¢™* < n. = o(c™") as ¢ — 0, for some 6 >0
and 0 < a <1, then asc— 0,

E(Y,)) — E(Y:) = 0.

That is, the expected loss due to not knowing u and using the (suboptimal)
approximating rule 7. vanishes as ¢ — 0.

PROOF. Because 7¥ is optimal and E(Y,:) = —pu log(c/u) (see Chow, Robbins
and Siegmund, 1971, page 57),

(210) 0 =< E(Y,:) — E(Y;) < —u log(c) + u log(p) — E(X;) + cEr..

By Lemma 2, for 0 < 8 < /2 and ¢ small enough so that (1 — ¢®)u > ce”!, by
independence of the X;,

E(X;) = X5n, ElXiLiimp] 2 Y5en, EIXi1ii 15 iuisictul]
= Sien, ELXLi: 2,18, -iul <icPu Xz~ +Hulogie/ +eul]
(2.11) = Y% 0 E[Xil; 2j,x2-+ePmtogie/a+etyy] + 0(1)
= Y5 P(7e = J)E[XiIix,2-a+cutogic/a+eun] + o(1)

= {(—(1 + ¢®)u logle/(1 + cPullc/(1 + cP)u]*+”
+ ule/(1 + Al YET) + o(1).

From (2.10), (2.11), and (2.1), (2.2) of Lemma 1, since c/(1 + cPu <1 for ¢



880 ADAM T. MARTINSEK

sufficiently small, as ¢ — 0,
0 < E(Y.;) - E(Y3)
< —u log(c) + u log(u)
— (E7){—(1 + c?)u logle/(1 + cP)ulle/(L + cP)u]™” + ule/(1 + cF)u]**)
+ ¢ + ¢P)u]** + o(1)
—u log(c) + [¢/(1—c/)u] 37" (1 + cP)pu log(e)[c/(1 + cPu] O+
+ u log(p) — u(1 + cMlogl(1 + c?ulle/( + c?)u]*[c/(1 — cFu]~ 0"
— ule/(1 + ) e/(1 = A)ul™7 + ¢~[(1 + A)u] " + o(1)
= —p log(e)[1 — (1 + ¢#)~"(1 — /)~ %"]
+ p log(p){l — log[(1 + ¢pule®*'n=*"(1 + ¢/)~(1 — ¢/ = /log(u)}

— u[e®’ (A + P21 — ) A= — =1 + F) ] + 0(1) = o(1)

I\

by repeated application of I’'Hopital’s Rule, proving the theorem.

3. Further remarks. The discussion above suggests that for any distri-
bution of the X;, if E(X; — v)* = fs(y), where 8 is an unknown parameter (or
perhaps a vector of parameters), and f; (v,) = ¢, where 6, is an estimator of 6
based on the first n observations, a stopping rule of the form

7. = inf{n = n.: X, = 4.}

might be used to approximate the optimal rule 7¥. One would like to know
something about the performance of such stopping rules (in particular, whether
E(Y:)/E(Y.:) > lor E(Y.:) — E(Y;) — 0 as ¢ — 0) for more general distributions
than the exponential, or at least in certain other specific cases of interest, e.g.,
Poisson, normal, and general gamma distributions.

Unfortunately, the function f;(v) is in general quite complicated, and it is not
possible to give closed-form expressions for v and v,. Therefore, results about
the performance of 7, depend on obtaining nice approximations to v and v, (and
ultimately to E(7.) and E(X; )), based on the properties of f5(y).

As mentioned in Section 1, Bramblett (1965) was able to show asymptotic
optimality of the approximating stopping times for certain cases involving
unknown location parameters. However, results analogous to the theorem above
have yet to be derived for those cases (or for any case other than the exponential).

Finally, it should be mentioned that many optimal stopping problems have
solutions whose form is not given as explicitly as in (1.2), even when the relevant
distributions are known. In such cases the methods of the present paper presum-
ably cannot be used to approximate optimal expected rewards using only partial
information, although the question of how well one can do in such situations is
still an interesting one.
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