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RUNS IN m-DEPENDENT SEQUENCES

BY SVANTE JANSON

Uppsala University

Consider a stationary m-dependent sequence of random indicator vari-
ables. If m > 1, assume further that any two nonzero values are separated by
at least m — 1 zeros. '

This paper studies the sequence of the lengths of the successive intervals
between the nonzero values of the original sequence, and it is shown that,
provided a technical condition holds, these lengths converge in distribution
(and their moments converge exponentially fast) in all cases but one.

1. Introduction. Let m be a positive integer, fixed throughout this paper,

and consider a stationary sequence of random variables {I;}§ with the following

properties (I will denote a generic element of {,}).

I; are indicator variables, i.e. I, = 0 or 1. To avoid trivial complications we

assume that 0 < P(I=1)<1.
{I;} is m-dependent, i.e. {I;}¢ and I,.+1 are independent for every n.

{I;} is m-separated, i.e. [,]p4,=0if k=1, ---, m — L

Note that the last condition is void when m = 1. We define, with m as above,

(1.1) S.=>nl;, n=0,1, ---,

(1.2) N, =min{n: S, =%}, k=0,1, ---,
(the corresponding renewal process) and

(1.3) L,=N,—Np,, k=12, .--.

Note that, by this definition, S, = 0 for n < m — 1. Thus Ny, = 0 and L,
N, = m. Further, the assumption that {I;} be m-separated is equivalent to L,
m for k = 2. Thus L, = m for every k.

=

The purpose of this paper is to study the distributions of L, and, in particular,

to prove convergence theorems.
To obtain complete results we will impose one further condition.

(*) There exists a sequence {£;} of i.i.d. random variables and a measurable

function « such that I; = a(§i—pm, - -, &).

Obviously, any sequence {I;} satisfying (*) is m-dependeht. It seems to be
unknown whether the converse holds, i.e. whéther every m-dependent stationary

sequence may be thus represented. Hence it is conceivable that this condition
redundant. .
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806 SVANTE JANSON

We will prove that if (*) holds, then L, converges in distribution, except in
one exceptional case.

THEOREM. Suppose that {I;}5 is an m-dependent, m-separated stationary
sequence of indicator variables such that (*) holds. Then, unless {I;}¢ has the
distribution given in Example 1 of Section 17,

(14) Lk -4 L. as k— o,

where the distribution of L. equals the conditional distribution of L, given that
I, = 1. Furthermore, in this case there exists R > 1 such that

(1.5) ELy=ELL+ OR™*) for #=1,2, -

The theorem is proved in the following sections together with various formulae
for moments and generating functions. Examples, including applications to runs
in very long permutations, are given in Section 7.

2. Preliminary lemmas.

LEMMA 1. There exists C < oo, such that for all kand 7 = 1,

(2.1) EL, < 7!C~.

PrOOF. Fix k and n. Since I(Nr—; = n) and I,4m+1, In+2(m+1), -+ - are inde-
pendent,

P(Ly>j(m + 1)|Neei = n) < P(pemer = 0, -+, Lnwjimeny = 0| Np—y = 1)
= P(I = 0)’.

Hence
(2.2) P(Ly,>j(m + 1)) = P(I = 0)’
and (2.1) follows by elementary computations.

We define
(2.3) we = EL
and introduce the probability generating functions
(2.4) g(2) = E(2"), |z| =1

LEMMA 2. Let g denote the probability generating functwn of the conditional
distribution of L, given that Iy = 1. Then

(2.5) £(z) = 1.— (1 — 2)(ED)7'27"g:(2)
and
(2.6) E(L,|I,=1)=g'(1) = 1/EL
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PRrROOF. Since {I;} is stationary and m-separated, for every n = m,
P(Iy=1)-P(Ly=n|ly=1)
=P(ly=1,1,=0,---,1,,=0,1,=1)
=P(I,=1,5L=0,---,1,.,=0,1,=1)
=P(L=0,---,1,.,=0,1,=1)
- PIy=0,,=0, -+, [,.1=0,1,=1)
=PUn=0, -, Insma =0, L1 = 1)
—P(I,=0, -, Lism1=0,L1sm =1)
=P(Li=n+m-—1)—P(Ly=n+ m).

(2.7)

Hence, since P(L, =n) =P([,=1) form < n<2m,
P(I=1§(z) =Yn PU=1)P(Li=n|ly=1)2"
=¥Yr (P(Ly=n+m—1)— P(Li=n+ m))2"
=¥ (P(Li=n+m-1) — P(Li =n+ m))z"
=2'""gi(2) — 27"g1(2) + P(I, = 1).

(2.5) is an immediate consequence. (2.6) follows by differentiation.
3. The basic lemma and its consequences.

LEMMA 3. Let f be an arbitrary function. If f = 0, or if E| f(L,)| < o, then
fork=1,2,..-,

(3.1) we-Ef(Ly) = E(TRH7F() + 287" f(Liar + 1))

PROOF. Define, for i, n = 0, I\ = I,,,. Since {I,} is stationary, {I (M= is a
sequence with the same distribution as {I,}5. By (1.2) and (1.3), _
(3.2) Li=N; =min{n: S, =1} = min{i = m: I, = 1}

and we imitate this and define

(3.3) Ly =-min{i =m:I” =1 =min{jzm+n:I;=1 —n.

Since I; = 1 if and only if j equals some N,, we see that if Ny-y =n < N, —m,
then L™ = N, — n, and if N, — m < n < N,, then L{” = Ny41 — n.
Consequently, if we fix & = 1 and define

(3.4) Z = Y1 I(Spy = k — DF(LY),
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then, since S, =k — lif and only if Np,-; = n — 1 < N,,
Z= 2N,,_1+1 f(LYl)) = 211211:__1’:1 f(N.. —n) + in—m+l f(Nps1 — n)

(3.5) = ST () + 287 f(Nkar — N+ )

=T fU) + X8 f(Ln + )

However, since L{® depends on {I;}% only, I(S,-, = k — 1) and f(L{™) are
independent. Furthermore, L{™ and L, are equidistributed, whence Ef(L{") =
Ef(L,). Thus,

EZ = Y7o P(Sp-1 = k — )Ef(L{™) = Ef(L1) X531 P(Spi = k= 1)
= Ef(Ly)E ¥7-1 I(Sp-1 = k — 1) = Ef(L1) EL.

Combining (3.6) and (3.5), we obtain (3.1).
In the first application of Lemma 3 we choose f(j) = j. By (3.1),

pr-pr = E(TEj+ 387 (Lpn + 7)) = E(X¢" j + mLys)
= E(Li(Lx — 1)/2) + mpp+1.

This relation enables us to compute the second moment of L, if we know the
first moments ui, ux, prs1. Conversely, we may express ug+1 in moments of L,
and Lk.

More generally, we let # = 1, 2, - - -, and choose f(j) = (4). Since

K j m— Lk+ +j
ZI,;,I(J/)"'Eol( 1/ )

(i )-m)-r)-()
()-m)a() 2-)- ()
() (5 )

(3.1) then yields

Ly s m Ly
o slt)-sl ) s, 3 )e()
which we rearrange as )
Ly — L) _ . m Li+
oo () e (Z)-xn ()5 ()

Using (3.8), we may recursively express moments EL% in terms of moments
of L.

(3.6)

(3.7
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Finally, we choose f(j) = 2/, where | z| < 1. Then

Zm =zl -z"
+zk+l,
1—-2z2 1—-2z

SHTFG) + 28T f(Lem + ) =

and (3.1) yields, for k=1, 2, - --

wrgi(2) = — (2" = g(2) + (1 = 2M)gkn(2)

1-
(3.10)

= (- ) - (1= 2 = gn().

Alternatively, (3.8) may be obtained by differentiating (3.10), or (3.10) may be
obtained by (3.8) and summation of power series.
Another form of (3.10) is

(8.11) grn(2) = (1 —2™)7Ugr(2) — 2" + (1 — Dgi(2)), k=1,2, ---.

This recursion formula yields g, g3, - - -, provided g; is known.

4. Convergence. We introduce the generating function
(4.1) U(z) = X7 m2*, |z| <1

(By Lemma 1, this power series converges.)
Multiplying (3.10) by (1 — z)(1 — z™)* and summing, we obtain, if |z| <1
and|1-—-2"| <1,

1-2)UQ1 - z2™)gi(2)
=37 (1 — 2)us(l — 2™)*g1(2)

(4.2)
=37 ((1 — 2™ 1 — gx(2)) — (1 — 2™ (1 — grn(2))
=(1-2")1 - gu(2)
and thus
ua-zv_ 1 (1
(4.3) = S 1 <g1(z) 1).

Denote the right-hand side of (4.3) by h(z). Thus h is a meromorphic function
in the unit disc, and if @™ = 1 then, by (4.3), h(wz) = h(z) e.g. for 0 <z < 1, and
hence for any z. Consequently, h(z/™) is a single-valued meromorphic function
in the unit disc and, if | z|, |1 —z| <1, U1 — 2) = (1 — 2)h(2"/™) and

(4.4) Uz) = zh((1 — 2)Y™).
When m = 1, this simplifies to
(4.5) U()=1/g.(1 —2) — 1.
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PROOF OF THE THEOREM. We invoke the condition (*) through two lemmas
whose proofs are postponed to Section 6.

LEMMA 4. If (*) holds, then g, may be extended to a meromorphic function in
the entire complex plane. :

In the following, g; denotes this (unique) extension. .

LEMMA 5. If (*) holds, then g,(z) # 0 for every z # 0 with | 1 — 2™ | =1, unless
m =1 and {I;}$ has the distribution given in Example 1 in Section 7.

By Lemma 4, h(z) defined above is a meromorphic function in the complex
plane with poles at the zeroes of g1(z). Hence (4.4) defines U(z) as a meromorphic
function in the complex plane with the set of poles {1 — z™: g1(z) = 0}. Thus, an
equivalent formulation of Lemma 5 is as follows.

LEMMA 5. If (*) holds, then U(z) has no poles on {z: |z| = 1 and z # 1},
except in the exceptional case of Example 1.

(Recall that U(z) is analytic for | z| <1.)
Since g1(z) = P(Ly=m)z™+ ---,and P(Ly=m) = P(I, = 1), (4.3) yields

. m my — 13 1___im 2" — ) =1h 2" = 1
lim, o2"U (L = 27) = limao 777 (gl(z) j )‘ me—o 0@ = PU=1)
whence
- (48) lim,,(1 — 2)U(2) = 1/P(I = 1) = 1/EL

Thus U(z) has a simple pole at z = 1 with residue —1/EI.

Let R be any positive number and let {z;}} be the set of poles of U in {z: ] 2|
< R}. The principal part of U at the pole 2; is a polynomial, Séici(z — )7, in
(z — z:)"" of degree d;, the multiplicity of the pole. Hence its Taylor coefficients
are {p;(k)z7*}5, where p; is a polynomial of degree d; —1. If we subtract these
principal parts from U, the remainder is analytic in {z: | 2| = R} whence its
Taylor coefficients are O(R~*). Consequently,

(4.7) pe = Y pi(R)zi* + O(R™).

By Lemma 5’ we may choose R > 1 such that the only pole in the disc of
radius R is 1. Hence (4.7) yields

(4.8) te = pe + O(R™%),

where p. = 1/EI because of (4.6). By (3.9), (4.8) and induction on /, E(%*)
converges exponentially fast as & — o for every /. Hence all moments of Ly
converge. The method of moments, which is applicable because of Lemma 1,
yields the existence of some L. such that (1.4) and (1.5) holds.
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Let g..(2) denote E(z%=). Since gr(z) — g«(2) for | z| <1, (3.10) yields

hetf(2) = T (27 = gu(2) + (1= 2")gul@)) = T (1 = (),

whence _
(4.9) 8x(2) =1 — (1 — 2)(EI)"'27"g1(2).

A comparison with Lemma 2 completes the proof of the theorem.
5. Miscellaneous remarks.

1. Itis (as reme’trked in the introduction) not known whether there exists
any sequence {I;} that does not satisfy (*). However, if such a sequence exists,
then the proof above shows that the conclusion of the theorem holds, provided
g1 is meromorphic in a sufficiently large region of the complex plane and g,(z) #
Owhen |1 —2"|=1,2#0.

2. The largest allowed R in (1.5) is minf| 1 — 2™ |: g1(2) = 0, z # 0}, provided
the corresponding zeroes of g, are simple. When the zeroes are multiple, any
smaller R will do.

3. More detailed information is obtained by (4.7) for larger R. In particular,
note that if there is a unique element with minimal modulus of {z # 1: z is a pole
of U} and that element is positive, then {u,} is ultimately monotone, while {xu.}
oscillates if the element with minimal modulus is negative or if the elements with
minimal modulus are two complex conjugates.

4. We may introduce generating functions U,(z) = Y7 E(%*)z*, obtain a
recursion formula from (3.9) and conclude that each U,is a meromorphic
function with (at most) the same poles as U. More detailed information on higher
moments of L, is obtained as above.

5. The definition of L, depends only on {I,} .. Further, we may more generally
assume that {I;}i+, is stationary, while I, may have a different distribution. If
we let {I.}% denote such a sequence with {I:}2+1 and {I;}%+: equidistributed, and
let L etc. have the obvious meanings, a simple modification of Lemma 3 (with
fix, L1, Ly and Li+1) holds, and the same proof as above shows that L, — Le. The
most important case is when {I;} has the conditional distribution of {I;} given
that I, = 0. In that case §; = g.. by Lemma 2. A modification of (3.10) shows that
this is stationary, i.e. all L are identically distributed..

6. Another generalization of Lemma 3 is
(5.1)  wEf(Ly, Lo) = E(ZH" f(J, Lins) + 287" f(Lger + J, Lis2))

and corresponding formulae for functions of more than two variables. The proof
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is similar to the one given, using (in obvious notation) L{™, L{”, . ... This yields
a recursion formula for mixed moments E(/*)(5). ... generalizing (3.9). It
follows that if u, converges, then all mixed moments converge, whence the joint
distribution of {L+,} -0 converges as k — .

We note the particular case f (i, j) = j of (5.1)

(5.2) prpe = ELy Ly — mppir + Mppys,
and its generalization obtained with f(Ly, - -+, L +1) = L 41,
(5~3) MHeM +1 = ELkLk+/ = Mpps,+ Mppspp1, £ =1, 2, Tt

Furthermore, generating functions such as Ez{1z%2 may be expressed in g; using
(5.1).appropriately. Moments and generating functions of N, may be obtained
by these methods.

7. That EN, = k/EI + O(1) follows also from more general m-dependent
renewal theory, cf. Janson (1983), Theorem 3.1. However, Example 1 is an
example where EL;, and hence EN, — k/EI, does not converge. Thus, the lattice
case of Blackwell’s renewal theorem does not extend to m-dependent variables.
(Berbee (1979), Corollary 6.3.3 shows that the nonlattice case extends to even
more general situations.)

6. The consequences of (*). We denote the m-tuple (¢, - - -, Ejmem—1) DY

" X;. Thus X, X, - - - is a sequence of i.i.d. random variables and we let » denote
their common distribution (v thus is the product of m copies of the distribution
of %; (*), there exist functions a;, i =0, - --, m — 1 such that
(6.1) Limsi = al(Xj, Xj), 1=0,---,m—1, j=1,2, ...

We define, for k=0, ---, m — 1,
(6.2) Bz, y) = TI§ (1 = ailx, »)) = 1 — T ailx, y),

where the last equality holds since {I,} is m—separated and thus a;a; = 0 when
i #j. Let 8 = 8n-1. Thus

(6-3) ﬂ(Xj—ly Xj) =1 @ Ijm, Tty Ijm+m—1 = 0.

PROOF OF LEMMA 4. Ifj=1land0<k=m-—1,
Li=im+kel,=0, -, [ipp1=0 and [ =1
©1,=0,--, i1 =0 and Ijp=1
& B(Xo, X)) =1, -+, B(Xjo, Xjm) = 1
 and a(Xj, X)) = L.
Hence
(6.4) P(Lyi=jm+ k) =EB(Xo, X1): ... B(Xjg, Xj-1)ar(Xj-1, X).
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Let T denote the integral operator with kernel 8 on L” (dv), i.e.

Tf(x) = f B(x, y)f (v) dv(y) = EB(x, X;)f(X;),

and put a,(x) = Eax(x, X;). Then (6.4) may be written
(6.5) P(L; = jm + k) = ET"'an(Xo) = (T ax, 1).
Consequently, if | z]| <1, A
g1(2) = Yjiom P(Ly = n)z" = 3P Tj 2™*P(Ly = jm + k)
= S 2k ¥R 2Ty, 1) = SR 2 (1 = 2T) a, 1).

Since T, being a Hilbert-Schmidt operator, is compact, its resolvent (A — 1is
meromorphic for A # 0, cf. Dunford and Schwartz (1958), Theorem VII.4.5, and
the right-hand side of (6.6) defines a meromorphic function in the complex plane.

(6.6)

PROOF OF LEMMA 5. We will prove the equivalent Lemma 5’. Since S, = 0
for0<n<Ly,S,=1for L, <n<L,+ Ly, etc., it follows that

(6.7) Yo 25t = 37 Lz, |z| <1
Hence, if | 2] <1,
(6.8) U(z) = E Y7 Lyz* = Ez Y5 25 = 2 35 Ez5~.

Consequently, if | {| =1,
69) ¢ isapoleof U(z) & | X5 E5| - as z— ¢, |z| <L
By (6.1) and (6.2),ifj=1and0<k=m—1,
Sjmer = AT L+ TRt I
=3 (1 = B(Ximy, X)) + 1 = Br(Xj, X))
Since 38 assumes the values 0 and 1, 2'™® = z + (1 — 2) 8 and hence
(6.11) 2Sm = [[{7" (2 + (1 — 2)B(Xim1, X))+ (2 + (1 — 2) Bu( X1, X))

Consequently, if T, denotes the integral operator with kernel K.(x, y) =
z+ (1 — 2)B(x, ) and Bi(x) = EBi(x, X)),

(6.12) EzSm = (T5z + (1= 2)Bi), 1)
and, since |z + (1 — 2)8x| < max(|z], 1),
613)  |EzSm+| < TS lz+ (- 2Bl = | TS, 2l <L

Now, suppose that | {| = 1 and that the spectral radius of T is strietly less
than 1. Since z — T, is continuous, it follows that there exist ¢ > 0, R < 1

and C < « such that
(6.14) |Ti <CR/ if |z—¢|<e and j=0,1,.--.

(6.10)
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Hence, using (6.13), if |z — {| <eand | 2| < 1, then
(6.15) |£5 E2%| < 3§ | Ez*| < 3§ CR"" < o,

Consequently, by (6.9), { is a regular point of U.

For the rest of the proof we suppose, on the contrary, that ¢ # 1 is a pole of U
with | {| = 1. By the argument above, T has spectral radius at least 1. Thus,
there exists an eigenvalue \ with | A\ | = 1 and an eigenfunction ¥ € L? (dv) with
| # | = 1 such that T = AP. Choose an orthonormal basis {#;}7 in L? (dv) with
¥, = ¢. For the Hilbert-Schmidt norm of T, we have the two expressions

(6.16) Tt = | [ 1Ktm )12 doia) o) = 1
and
(6.17) I Telts = T I TePill? = IN12 + X5 || Te%: 1%

Hence, |A| = 1 and T\¥Y; = 0 when i # 1. Consequently, Ty = AP (Y, )
for ¢ belonging to the basis, and thus for every ¢ € L? (dv). Thus, T (x) =
AP(x) [Y(¥)P(y) du(y) = [ NP (x)P(y)¥(y) dv(y), whence

(6.18) Ki(x, y) = A\P(x)P(y) as.

By definition, K; assumes only the values 1 and {. Thus, the product of the two
independent random variables ¥(X;) and A¥P(X;) assumes only two different
values, both nonzero, whence ¥(X,) is a discrete random variable assuming at
most two different values.

There are two cases:

(i) (X)) is a.s. constant. By (6.18), K(x, ¥) is a.s. constant, i.e. 8(x, y) is a.s.
constant. We have two subcases: 3 =0 and 8 = 1. If 8 = 1, then by (6.3), I;, =0
a.s., which is a contradiction. If 8 = 0, (6.3) yields Xim*™* I; = 1 a.s. Since {I;}
is stationary, also Yimi7" I; = 1 a.s. Consequently, I; = Ijm+m, Whence I, = Iopm
= I3m, which is a contradiction because I,, and I3, are independent. Thus, both
subcases lead to contradictions and we turn to the second case.

(ii) ¥ assumes two values v; and v, with positive probabilities. By (6.18),
|P(X1) | P(X2)| = | K((Xi, X5)| =1 as., whence | v1| = | v2| = 1. Replacing ¢
by ¥:¥ we may assume that vy; = 1. (6.18) yields

(6.19a) A=X1.1=1 or ¢,
(619b) )\72 = )\")/2'1 =1 or §‘,
(6.19¢) Mz=A1l4,=1 or ¢

Thus, at least two of the three values A, Ay; and Ay, coincide. Since A # 0 and
v2 # v1 = 1, the only possibility is y2 = v2, whence v, = —1. (Thus ¢(x) = + 1.)
Hence both A and —\ equal 1 or {, and we conclude that { = -1 and A =+ 1. It
follows from (6.18) and the definition of K,that

(6.20") If x=1, B(xy =I1¢x) =9¢)
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(6.20”) If x=-1, B(x,y) = I(¥(x) # PX)).

Recall that X, = (£o, - - -, £m—1) and put Po(£o) = E(P(Xo) | £0) and E = {£{: —1<
®o(£0) < 1}. Suppose that P(E) > 0. If &, - - -, £n are given with & € E, we may
choose £m41, - - -, E2m—1 such that @(£n, - - -, £2m-1) is any of the two possible
values +1. In particular, we may by (6.20) choose them such that 8((&, ---,
gm—l), (Em, Sty £2m—1)) =1 By (6'3)’ a(EO’ R} Em) = Ijm =0. Hence:

(6.21) If {,€E, then alfy, ---,&mn) =0.

Now, let X; = (£m, - - -, £2m—1) be such that each &msx € E,0 < k<= m — 1. For
any X, (6.21) implies that

Ijm = a(EO’ Tty Em) = O, Ijm+1 = a(gb Sty £m+1) = O, Tty Ijm+m—1 =0. Thus,
by (6.3), 8(Xo, X1) = 1 for any X,. This contradicts (6.20) and we are forced to
conclude that P(E) = 0, i.e. Po({o) = *1 a.s. This proves that ¥(X,) = Po($o)
a.s., i.e. P(&o, - -*, £m-1) depénds only on the first coordinate.

A mirror image of the argument above shows that ?(&, -+, £m-1) depends
only on the last coordinate &,—.. If m = 2, this yields a contradiction. Thus
m = 1, which implies that X; = £; and, by (6.3), I; = 1 — B(£;-1, ;). By (6.20),
either I; = I(P(£-1) # (&) or I; = I(P(§) = P(E))) Replacing &; by
(1 + ©(£;)), we see that these are exactly Examples 1 and 2 in the next section.
We will show, by explicit computations, that, in fact, —1 is a regular point of U
in Example 2. Thus, the only remaining possibility is Example 1, and the proof
is completed.

7. Examples. All examples that follow satisfy (*). We begin with the
exceptional case, in which the non-zero I; occur in pairs.

. 1. Let {£} be iid. Bernoulli distributed variables with P({; = 1) = p and

P(t;=0)=1—p=gq,where0<p<1,andlet I;=I(§ #§&). Thusm=1 If
p = Y%, {I;} has the same distribution as {£;} and L, are i.i.d. geometrical random
variables. We exclude this case in the sequel.

P(Li=n)=P(,=&=---= (1 # £2) =P"q + q"D,
whence
_ pgz pgz_ _ 2-z
gl(z)_l—pz+1 - qz pgz (1-p2)1—gqz)’
Thus g:(2) = 0. By (4.5),
_ 1 . _2/pg = 2) + 22°
(7.1) U(z) = g——1(1 2 = 1= .

Hence, por— = 1/pg — 2 and pgp = 2, k=1, 2, - - -. Repeated use of (3.11) shows
that '

1 —2pg — (1 — 3pq)z
(1 = p2)(1 — gz)

and gs(2) = g1(2), g4(2) = g2(2), etc. Hence, {Lap-1}7 and {L,,}7 are two sets of

(7.2) g2(2) = z
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identically distributed random variables, but the two distributions differ. Con-
sequently, L, does not converge.

Another way to see this is to note that the conditional distribution of Ly,
given £, is geometric with parameter P(¢ = £,,). However, S, is even & £, = &;
hence P(¢,, = 1) = p when k is even but ¢ when % is odd. Note also that
E(-1)%=P(¢,=&) — P(£, # &) = (p — q)2> 0, i.e. S, is even more often than
odd.

2. Let {£;] be as in Example 1 but let instead I; = I(¢£,-; = &;). Again m = 1.
Then P(L,=n) = P({o# -+ # {n_1 = ), whence
P(Ll = 2k) = k+1qk +pk k+1 (pq)k
P(L1 = 2k — 1) = pk+1qk—1 + pk—l R+l (pq)k 1(1 — 2PQ),
and
2(1 — 2pq) + pqz
1 — pgz?

Thus g1(2) =0 e 2=00rz2=2 — 1/pg < —2 (for p # ). Hence U is regular on
{z:]12| =1,z# 1} and L, —4 L... By (4.5),

(7.3) &1(2) =

z 1 (1 — 4pq)pq
7.4 =
(7.4 vz 1—2pq<l—z+l—pq—pq2’
whence

1 1—4pg (1 )"’
75 = ——1) .
(7.5) K 1—2pq+1—2pq<pq

3. Let {£;} be iid. U(0, 1) random variables and let I; = I(£;_; > &;). Thus
m = 1. L, may be interpreted as the length of the kth run in a random very long
permutation.

This has been studied by several authors, cf. for instance Barton and Mallows
(1965), giving inter alia the recursion formula (3.11), and Pittel (1980, 1981) and
Esseen (1982). The last two references prove convergence results by different
methods. ‘

Our theorem immediately yields convergence in distribution and of moments.
Explicit results are obtained from the easily verified relations, cf. the references
given above,

(7.6) P(Li=n)=P(< -+ < £py1 > &) = nf(n + 1)),
(1.7) gl = ENEEL |

and, by (4.5), '

(7.8) Uz) = z(l — : -2

The poles of U(z), apart from z = 1, closest to the origin are z ~ 3.09 + 7.46i,
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with | z| =~ 8.08. Hence, using EI = %, u, = 2 + 0(87*), and, since the poles are
complex, the means pu;, oscillate about 2. See Knuth (1973), page 39-46 for further

details.
For higher moments we e.g. obtain from (3.7) and (5.2)

(7.9) EL% = 2(pppr — prer) + pr = 41 — 2 + 0(87%),
(7.10) ELyLy1 = prps + prer — prez = 2p2 + 0(875%),
whence, as k — o,
(7.11) Var L, —» 4y, — 6 = 4e — 10 = 0.873
(7.12) Cov(Lg, Lps1) = 2ps — 4 = 2¢®> — 4e — 4 = — 0.095.
4. Let {£;} be as in Example 3 and let I; = I(§;—2 < §;-1 > &;). Thus m = 2.
{L:} is the process of wavelengths between successive peaks in a random per-
mutation. Esseen (1982, 1983) has proved convergence theorems using Markov

chain methods. Our theorem furnishes an alternative proof.
In this case, see Esseen (1983) for details,

1+2—(1-2)e*

(7.13) g1(z) = %2

It follows that g;(z) = 0 < tanh z = 2, whence the set of poles of U is
{1 — 2% g1(z) = 0} = {1 + x% tan x = x}. Thus, the poles are positive and the
smallest one, after 1, is = 21.19. Furthermore, the residues are negative whence
wr decreases monotonically to 1/EI = 3. By (4.4),

2
(7.14) Uz = Vi—zcothvi—z-1

5. Let m =1, let {£;} be as in Example 3 and let
Li=I1(¢im<-- <E&E-1> &)

(Thus Examples 3 and 4 are the cases m = 1 and 2.) The variables L, are the
distances between the ends of the increasing runs of length at least m in a
random permutation. The theorem shows that L, —, L. and

EL, > EL.=1/EI=(m+ 1)!/m=(m+ 1)-(m — 1)!

6. Let {¢)beiid andlet I; = I(§;,-1 + £; < A), where A is a fixed number.
Thus m = 1. Again, the theorem shows that {L,} converges. As an application,
consider a Poisson process with constant intensity \ on {¢: t = 0} and let {£,} be
the intervals between the points of the process. Then £; are independent and
exponentially distributed, and I; = 1 as soon as three points are clustered within
an interval of length A. Thus L, counts the number of observed points between
such clusters. We obtain EL, — EI ' = (1 — e — Nde™4)7L.
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