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EQUILIBRIUM FLUCTUATIONS OF STOCHASTIC PARTICLE
SYSTEMS: THE ROLE OF CONSERVED QUANTITIES?

By TH. BRox AND H. RosT
Universitit Heidelberg

In the particular model of a zero range jump process in equilibrium, the
asymptotic covariances of the—spatially and temporally rescaled—particle
number field are computed. The main tool in that computation is a general
theorem, whose validity is established for the given class of processes, which
states that the asymptotic behaviour of the covariances of any field corre-
sponding to a local function is determined by a suitable projection of that
field on the linear (here one-dimensional) space spanned by the fields of
conserved quantities (here: the particle number).

1. Introduction. One of the goals in studying stochastic particle systems
is to derive rigorously typical features of hydrodynamic behaviour, in particular
to establish macroscopic laws for those systems. Before, however, entering into
the difficulties of nonequilibrium theory, one may first try to understand how
small deviations from equilibrium, which occur at random (“fluctuations”), spread
out in space and time. It has been believed by physicists for a long time (see e.g.
[1]), that nonequilibrium transport properties can be recognized already from
the characteristics of the fluctuation process at different equilibria.

In this paper we will analyze a special particle jump process on Z¢1i.e. a process
without creation or annihilation of particles. We consider it in equilibrium at a
given density p; it will be stationary in time, even reversible, and invariant under
spatial shifts. One expects that an additional mass (particles) added at the origin
at time O spreads out on a large scale like Brownian motion; the problem is to
prove this fact and to identify the diffusion constant, usually called bulk diffusion
coefficient ([2]). In more precise terms: if we denote by X(j, t) the number of
particles present at site j at time ¢, we want to study the behaviour of the time
delayed covariances

(1.1) A(j, t): = £ (X(j, t) — p)(X(0, 0) — p),

as ¢ tends to infinity, j - t7/2 to a fixed limit. The correct formulation in Fourier
analytic terms is the following: we prove that

(1.2) lim,o 3; A(J, t)exp(yj - ¢ - t74?) = x . exp(—(%)kd?)

for all 9 € RY with some constants x and x. We will say that (1.2) expresses
diffusive behaviour of additional mass and will call' ¥ the corresponding bulk
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STOCHASTIC PARTICLE SYSTEMS 743

diffusion coefficient, which, of course, depends on p, the chosen equilibrium state.
(The symmetry inherent to our specific model gives an isotropic diffusive behav-
iour; otherwise one could also imagine an arbitrary positive quadratic form in ¢
at the r.h.s. of (1.2).)

In the special case of the so-called symmetric simple exclusion process ([3]),
due to the algebraic structure of the system and the method of duality one knows
the covariances explicitly:

(1.3) A(j, t) = p(1 = p)p(¢; j),

with p(t; -) being the transition probability of a symmetric random walk on Z.
So, there, diffusive behaviour follows from the classical central limit theorem. In
the present paper, we will instead consider a different type of evolution, which
might be qualified as the simplest interacting particle model which is not
explicitly solvable: the zero range symmetric jump process ([4]; for precise
definitions see Section 2 below).

To arrive at (1.2) a certain calculus of what we call local functions and formal
Hamiltonians has been proven useful. We present it in detail in Section 3 and
the Appendix. The main result there is Theorem 1 which underlines the role of
the conserved quantity (here particle number) in equilibrium processes. Its
content may be stated as follows: consider a local function f, i.e. a cylindrical
function on the state space, of expectation zero; denote by S.f the function f
shifted by a vector k € Z°. Then there exists an « € R such that for each local g
one has

(1.4) lime. Tp Zg(X(0)) - Spf(X(t)) = a X £8(X(0)) - (X(k, 0) = p).

In that sense the time evolution semigroup acts on f asymptotically like a
projection onto the one-dimensional space spanned by fo(x) = x — p, the
“conserved quantity”. We remark that scalar products of the form (1.4) occur
also in the renormalization of certain spin-flip processes ([11]).

In Section 4 one applies Theorem 1 to compute the asymptotics of A(j, t) and
to establish (1.2). The method is Fourier analytical: scalar products

(1.5) 2 #8(X(0) - Spf(X(t)) - exp(id) - k)

and analyzed for ¢ large and ¢ small.

In Section 5 one translates the Fourier analytic statements into the language
of fluctuation fields: these are &/’-valued processes N°(f), associated to a
centered local function f and a scale parameter ¢ > 0,

(1.6) Ne(f; @, 5) = ¢ Y, 5;,f(X(se7?)) - Plgj), PE ¥ s=0.

The theory developed in Section 3 not only allows then to compute time delayed
covariances of N°(fo), for fo(x) = xo — p, in the limit ¢ — 0, but also to show that
the time averages

s
1.7 St J; N(f — afs; @, s) ds

converge in L2-norm to zero for « chosen as in (1.4), as soon as the observation
time length S is large compared to the “microscopic time unit” ¢? (Theorem 3).
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This last result is in close analogy to a classical principle in hyrodynamics: if
f is local, not necessarily centered, one believes that even in a nonequilibrium
process, at any fixed time ¢ the r.v.

(1.8) e - 3 Sif(X(@) - Ple)

is close to the deterministic quantity

(1.9) [t 000 - e,

where p(r, t) is the particle density at the macroscopic position r and (f), the
mean of f under the equilibrium state with density p. That means that (1.8) is in
principle known, if one knows the function p(-, £). In our approximation we use
a finer scale to measure the deviation from (1.8) to (1.9), at least in the equilibrium
situation of constant p. Theorem 3 then says that the fluctuations corresponding
to f can be expressed in a linear way by the fluctuations corresponding to the
conserved quantity fo. It is easily verified, in our class of models, that the
coefficient « in (1.4) and (1.7), which relates N°(f) to N*(fo) for ¢ small, satisfies
the identity

(1.10) a = (d/dp)(f),.

It should be noted, however, that the linear approximation of N°(f) by N(f) is
not valid at a fixed instant ¢, but only in the sense of (1.7). (For more details see

[5].)

2. Preliminaries and notations. The example to be analyzed in this paper
- is the so-called zero range symmetric jump process. We mention some facts about
it which will be needed later (see [4], [6]).

The process X = X(t), t = 0, has as its state space a suitable subset ¥ of NZ*;
we denote an element of X by x, its coordinates by x;, j € Z% and the coordinates
of the process at time t by X (j, t). On X we have the group of shifts, which in a
natural way also acts on functions f defined on X; if e.g. f = F(x;,, - - -, x;,) the
function f shifted by k is Sif:

2.1) Skf(x) = F(xj4r, * 5 X 4k)-

The following mappings of X into itself will be considered
(2.2) x — x’ where (x/)r = xx + dj,
(2.3) x — x* where (™), = x, + b — ;.

(The latter is only defined on {x; > 0}.)
The process X is determined by its generator L:

(2.4) Lf(x) = ezt c(x) Tip-ji=1 (fx®) — f(x));
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here ¢(-) is a function on N which satisfies the following conditions:
(i) ¢0) =0<c(1),
(25) (i) c(k+ 1) —c(k) =0 forall k&,
(iii) supgc(k + 1) — c(k)] =: c* < .

Intuitively, (2.4) means that a particle jumps from j to a neighbouring site k with
an intensity depending on how many other particles are on site j at that time.
The semigroup of transition operators is denoted by (T%}), t = 0; it has the Feller
property. The order structure on X (coordinatewise) and the corresponding notion
of monotonicity of functions and stochastic order of measures play an important
role: as a consequence of (2.5 (ii)) we have preservation of stochastic order by T.
To fix ideas we will prove something only in the special case below, which allows
us to present the method of coupling in a simple way.

PROPOSITION 2.1. Let f monotonic be given; then
(2.6) T.f(x) < T:f(x’) for xE€X, ¢ € z°

PROOF. Let X be the process with initial state x; define a process W, which
conditioned on X is in a random walk on Z? with the following generator L

@7  Lh(j) = (XU, t) + 1) = c(X(, 1)) - Tik—ji=1 (R(R) — h())),

and which starts at £ Define the process Y by

(2.8) Y(j, ) = X(j, t) + 6(j, W(t));

then it is easy to see that Y is Markovian with semigroup (T}), too. Since Y = X

by construction, the assertion follows. O

It is known ([6]) that the measures u,, u < u*, described below, are extremal
invariant under (T}): u, is a product measure and

(2.9 pux; = n) = Z(Ww)™ - u” - [Tizm=n c(m)™

Here Z(u) is a normalizing constant and u* the radius of convergence of the

power series at the r.h.s. of (2.9).
We fix a value of u; unless stated-otherwise the process X will in the sequel
always be stationary with initial measure u = u,. We denote its density by p:

(2.10) p= ¥ X(, t).

We remark that X is also invariant in law under the shifts S; and that X is
reversible, i.e.

(2.11) f fT.g du = f gT.fdu forall f, g € L*(p).

Reversibility is an important structure, since it allows us to use spectral argu-
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ments. So, for example, one gets immediately that the process X is also mixing:
the spectral theorem applied to the generator L of (T in L?(u) gives the
representation

(2.12) ff - Tif du = J; e ™ ag(dN), t=0,
with
ar(dN) = (f, IT (dN)f),

where JJ (d)) is the spectral measure of —L and (-, - ) denotes the scalar product
in L?(p). From (2.12) it follows that Cesaro convergence of the Lh.s. to zero, as
t — o, is equivalent to ordinary convergence; but the former holds, since X is
ergodic, for every f with [ f du = 0. So we arrive at

(2.13)  lim; e ff . T.,g du = 0, whenever f fdu = fg du =0,

which means that X is mixing.

3. The Euclidean structure of local quantities and its time evolution.

General ideas. Consider functions f, centered, depending only on finitely
many coordinates and—for the moment—square integrable. To each such f we
associate the stationary (in space) process

(3.1) Sif, j€z°,
and the “formal Hamiltonian”
(3.2) ¥; S;if.

What we intend to develop is kind of a calculus of those Hamiltonians, better:
of their linear structure; in particular we want to investigate how the semigroup
(T.) acts on the process (3.1), resp. its Hamiltonian (3.2).

The space of functions f of the above type is given a Euclidean structure by
means of the (degenerate) scalar product

(3.3) Eof, 8 = X, 'ff - Sjg du

which is well defined, since the sum converges absolutely. The first step is to
construct a domain for E, as well as for E,, which is formally defined by

(3.4) E(f, g) =%, f f- SiTg du.

At the same time, one tries to make visible the formal Hamiltonian itself; at
least something like its conditional expectations on local ¢-fields are shown to
be meaningful (Proposition 3.2). (In the Appendix, when we prove Theorem 1,
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this aspect will become more important.) The rest of this paragraph deals with
the “conserved quantity” f, = xo — p, whose Hamiltonian is
(3.5) - i Sifo= Y (x; — p),

the total number of particles, and its invariance under T,. Finally we state the
main theorem, which says that in the metric of E, the time evolution T} acts like
a projection onto the space spanned by fo.

Notations.
Fr: the o-field generated by x;, j € T;
L*(T): the set of u-square integrable and #-measurable functions;
27*(I"): the set of centered “r-measurable functions, which are increasing and
for which

(3.6) Y, sup.(f(x)) — f(x)) < oo

9+ = Ul‘fmite 9+(I‘),
D =% — ¥ similarly 2(T).

DEFINITION 3.1. The elements of & will be called local quantities (functions).

PROPOSITION 3.1. Let f € 27 be given; put a(j) = sup.(f(x’) — f(x)), a =
Y a(j). Then

(3.7 - ’ Zj f fSJf du < x - a®
where x = [ (xo — p)* du.

ProOOF. The increasing functions are positively correlated since u is a product
measure (elementary; special case of FKG-inequality [12]). So all terms in the
sum (3.7) are positive.

But also g(x) := ¥ a(k)(xr — p), as well as g — f and Sj(g — f) are increasing
functions. Applying twice FKG we obtain

ffsjf du = fgsjg du = x - 2k a(k)a(j — k).
Summation over j yields (3.7).0
COROLLARY. For f, g € & the symmetric bilinear form
(3.8) ' Eof, 8) = Z; f f-Sig du
is well defined, the r.h.s. converges'absolutely.

PROPOSITION 3.2. Same assumptions as Proposition 3.1. Fix t = 0 and a finite
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T. Then there exists a function F with the properties
(i) F is Sr-measurable;
(ii)) 0= F(x*) — F(x) < a;

(3.9) (iii) for each increasing g € LX(T); ng du=Y; f gS;T.f du;

(iv) deu = 0.

PROOF. We choose | A| < o and set hp := Y jep S;f. For each x and k one
gets .

(3.10) 0 < hn(x®) — hp(x) = Tjenalk—j) < a.

As in Proposition 2.1, we conclude that (3.10) remains valid with T;hx instead
of hp. Further, also

hn = £ (Tiha| Fr)

satisfies the same estimates. The FKG-argument then yields

(3.11) fﬁ% - du < a? f (Zker (xx — p))? du =a® - x|T|.

By Schwarz’ inequality for each g € L%(T") we get thus

- (3.12) Yien f g - SiTif du = f ghn dp < | g|| - const.

The sum on the L.h.s. consists of positive terms if we require in addition g to be
increasing; for all such g we have thus

(3.13) Zj f gSjT,f dy. < oo,

On the other hand, the value (3.13) can be written as

fg'F'dﬂ’

where F is the weak limit in L%(T) of A, as A — Z% This proves (i), (iii); the
statement (ii) follows from (3.10) by integrating

0 < hp(x®) — hr(x) < a

over the cylinder sets {y: y; = x;, j € T'} and taking the limit in A; (iv) is an
immediate consequence of (iii). O
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COROLLARY. The symmetric bilinear form

(3.14) E(g f):=2; f g - SiTif du
is well defined for f, g € I since the r.h.s. is absolutely convergent.
PROPOSITION 3.3. The function t — Ef, f) is for each f € 9 positive and
decreasing. The limit
(3.15) E(g, f) = lim, .« E«(g, f)
exists for each f, 8 € 2.
PROOF. Because of the absolute convergence of the series (3.14) its value can
also be identified as
(3.16) limpE?Ng, f),

where EXNg, ) =[N0 - [ (ZA S;@)T(Za Sif) du and A runs through an
increasing sequence of cubes. Using spectral arguments, since X is reversible, we
write

(3.17) 2 1) =J; e™ ap(d))

with o, a positive measure. Hence E’(f, f) is positive and decreasing, even
alternating of any order, which properties are preserved in the limit A — Z°
The rest is obvious. [

. REMARK. The bilinear form E on &, which is well defined by Proposition
3.3, can for each finite I' be extended to L%(T'), since for each f € Z(T")

(3.18) E(f,f) S Eo(f,f) =@ - I fI%

PROPOSITION 3.4. Define fo(x) = xo — p. Then
(3'19) Et(g9 fO) = EO(g9 fO) for all t= O’ g € 9’

PrROOF. By means of the interpretation (3.16) we get

t
(3.20)  (E: - Eo)(g, fo) = limp | A7 - J; [f G" - T,LF} du] ds

with F§ = ¥jen Sjfo, G" similarly. Since
(3.21) LF} = Z|j—k|'=1 1ijenkeni(c(xr) — c(x;))

we have | LF | = O(n®"V72) for the L%-norm of LF4, if A is a cube of length 2n.
Since | G" || = O(n%?) and T is a contraction, the expression under the limit is
of order O(n~"?) for each fixed t, by Schwarz’ inequality. Hence the Lh.s. in
(3.20) is zero.
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DEFINITION 3.2. The multiples of f, are called conserved quantities.
The reason for this name is that, in the sense of the Ey-metric, T:f, is equal

to fo, by Proposition 3.4; if one likes, one might define also scalar products
Ey(T.f, T.g), since the series in (3.14) converges absolutely and, by reversibility,

thg - Tih du = fg - Toh dﬂ~

THEOREM 1. Iff€ 2 and if one sets

(3.22) a=Eof, fo) - x7,
then
(3.23) E(g,f)=a - Eyg, fo) forall g€ 2

(Equivalent formulations are:
lim E(f — ofs, f — afo) =0, or
limE(g, f — ofp) =0 forall g€ Z)

The statement made in this theorem, that T, acts like a projection onto the
multiples of f, as t — o, implies in particular that there are no nontrivial other
conserved quantities, i.e. functions f; satisfying

(3.24) E(g fi) = Eo(g, fi) forall g€ g t=0,

besides f;. Proposition 3.4 and Theorem 1 can also be viewed as “linearizations”
for small 8 of the fact that the measure pg, formally written as

(3.25) ¢ - p - exp(B X (x— p)),

(which is of the form g, for some v) is invariant under T}, and of the conjecture—
not yet proven to our knowledge—that for reasonable f the measures ¢ - pu, -
exp(B ¥; S;f)T, converge weakly as t — o to some pg . The proof of Theorem 1
is postponed to the Appendix.

4. The Fourier picture. This paragraph is devoted to an asymptotic
calculation of the family of time delayed covariances

(4.1) A(j, t) = #(X(0, 0) — p)(X(J, t) — p).
The method of Fourier transformation allows us to formulate the result precisely
and provides a very useful technique to prove it. First, we have to extend the
scalar products E, by adding an additional argument.

DEFINITION 4.1. Forf,g € &, t =0 and ¢ € R% we put
(42) E(t7 0; f’ g) = 21‘ f f ‘ eijoTtng d”"

(j9 is understood as scalar product in R%.)



STOCHASTIC PARTICLE SYSTEMS 751

PROPOSITION 4.1. The expression E(t, ©; f, f) is continuous in ¢ for fixed t
and decreasing in t for fixed 9. It is positive and bounded uniformly in t and ¥.

Proor. We represent once more E(¢, 9; f, f) as lima [ HT.H du with H =
|A|7Y2 . Yen e’S;f. Everything follows from there; the boundedness is a
consequence of the absolute convergence of the series in (4.2), resp. (3.14).0

The representation used in the proof shows that E(t; -5 f, ), if understood as
function on the d-dimensional torus, is nothing but the spectral density of the
stationary (in space) process S;(T\f), j € Z°.

PROPOSITION 4.2. Let f € D be given, suppose E(f, fo) = 0. Then we have
(4.3) lim; w90 E(t, 9;f, f) =0 and
(4.4) lim; o 90 E(t, 9;f,8) =0 forall g€
where the limit may be taken in any order.

Proor. By Theorem 1, we know that lim,E(t, 0; f, f) = 0. Given ¢ > 0, by

Proposition 4.1 we can find a ¢, and n > 0 such that for all t = t; and | ¢ | < n we
have

(45) 0 = E(t, 0; f’ f) = E(tO’ 0’ f’ f) = E(tO’ O; f’ f) +e= 23-
This proves (4.3); assertion (4.4) follows from Schwarz’ inequality, since
E(t, ¥; -, -) is a nonnegative bilinear form. [

We proceed now to the computation of the covariance
(4.6) A(j, t) == £ (X(0, 0) = p)(X(J, t) — p).
For that purpose we introduce another covariance:
(4.7)  B(j, t) == £(X(0, 0) — p)c(X(j, ) = £ (X(0, 0) — p)(c(X(j, £)) — w).

(Take into account that [ c(xo) du = Z(w)™ - T, u" - [Tizm=n - c(m)™ - c(n) =
u.)

PROPOSITION 4.3. (d/dt)A(j, t) = Ss_sj=1 (B(k, t) — B(j, ).

PROOF. Obvious. One just counts the expected net flow between j and its
neighbours in the time interval (¢, t + dt), given some condition on X(0, 0). 0

If we take the Fourier transforms of A and B,
(4.8) AW, 1) = T; A(j, t)e”,
B analogously, Proposition 4.3 reads as

(4.9) (d/dt)A®, t) = B@®, t) - 2 - Y41 (cos 9y — 1).
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If in addition we rescale space and time, defining

(4.10) 4.9, s) = A(e0, se72),
similarly 5” the evolutioin equation is
(4.11) (d/dt)a.(9, s) = b,(9, s) - 2672 - T (cOs(edm) — 1).

THEOREM 2. For fixed ¢ and s one has
(4.12) lim,_04,(¢, s) = x - exp(—% - k - s - 9?)

where k = 2u - x %

An equivalent formulation is the one given in the introduction:
(4.13) lim; . 3; A(j, t)exp(yj - 9t7V%) = x - exp(—ux~' - 9.
(92 stands for Y¢ 9%.)
PROOF. The idea of proving (4.12) is to apply Theorem 1 and to replace in
the limit ¢ — 0 the right hand side of (4.11) by
a - 4,(9,s) - 0%

the thus modified equation (4.11) is easily solved and has the right type of
solution.

a) The coefficient « suggested by Theorem 1 is

(f c(x0)(x0 — p) dﬂ) . (f (%0 — 0)2 dl»‘) .

The denominator has been called x, the numerator is computed as
Z7' - Bnzo u” - [Imsn c(m)™ - c(n)(n — p)
=Z7" Yo" - [Imsncm)™ - u - (n+1-p) =u

We set therefore

(4.14) a:=u-x.

We can thus write

(4.15) b.(9, s) = ad(9, s) + rle, ¥, s)

where r is of the form

E(se™, ¢9; fo, g) with g satisfying lim.E(¢t, 0; fo, g) = O.
From Proposition 4.2 we conclude that
(4.16) lim,r(e, 9, s) =0 for o fixed,

even uniformly in s = s > 0.



STOCHASTIC PARTICLE SYSTEMS 753
b) We fix ¢ € R? and write (4.11) in integral form

417 4.9, s) = a9, 0) + J; I;c(z?, s') « Y 2e7%(cos(edn) — 1) ds’.

The integrand on the right is bounded (Proposition 4.1), 4.(¥, 0) = x for all .
Hence the family a.(¢, ), ¢ > 0, is precompact in the supremum-metric in the
space of continuous functions on [0, S], for any fixed S. Due to a), the bound-
edness of b and the fact that

limc zm 28_2(008(80,”) - 1) = —02’
any limit function @ must satisfy

(4.18) as) = x — f a - a(s")v?ds’.
-

But (4.18) has a unique solution, namely a(s) = x - exp(—a®?s), which thus turns
out to be the limit of a.(3, s). 0

REMARK. The diffusion constant x = 2ux™' can be understood also by
another, heuristic argument. One easily verifies the identity

do\ ™
u-x"1=<£> .

u= f c(xo) du.

So, the statement of Theorem 2

Further, we have seen that

(4.19) k=2 .—

equates «/2 to the rate at which the intensity of jumps over a given bond in one
direction changes if the density is increased. It is very natural to believe that this
quantity tells us at which average speed additional particles will diffuse. That is,
in our opinion, the most appealing interpretation of the bulk diffusion coefficient.
If we ask instead for the self diffusion coefficient, the speed at which a tagged
particle diffuses, which from a pile of height n jumps over a given bond with rate
¢(n)/n, the theorem of Spitzer and Harris ([7], [8]) tells us what the average
jump rate of this particle in one direction is: the expectation of ¢(xo)/xo under
the Palm measure, which equals ‘

pt - fc(xo) cxg'modu=u - p7h

That means that the self diffusion coefficient is 2up~! compared to 2 - (du/dp),
the bulk diffusion coefficient.
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5. The fluctuation field. We are going to restate Theorem 2 in this
paragraph, using a somehow different language without any Fourier terminology.
In the new context, however, we are able to state also a new fact (indeed an easy
consequence of Theorem 1), the “Boltzmann-Gibbs principle” ([5], [9]) about
the behaviour of time averages of fluctuating variables.

DEFINITION 5.1. Let f be a local function; we associate to f and ¢ > 0 the
following &’-valued process N°(f), whose evaluation at time s and ¥ € & is
the random variable

(5.1) Ne(f; 5, ) := e T; P(e)Sif(X(se™).

If f = fo we will write simply N°(s, ). The process N°(f) can be interpreted as
the properly rescaled deviation of an extensive quantity from its mean value.
Together with X, N°(f) is stationary also.

THEOREM 2a. For ¢,y € & and s = 0 we have

(6.2) lim_o ¥ N0, $)N°(s, ¥) = x - ff P (w)gs(w — v) dv dw,

where g,(-) is d-dimensional Gaussian density with mean 0 and covariance
2
g - 1.

PrOOF. The quantity under the limit sign is equal to
(5.3) Yik e - Plele(j + k) - A(k, se72).

Theorem 2 is a weak convergence statement for the discrete measure with weight
A(k, se7%) at ¢ - k: it converges to x g...(dw). The rest is obvious. O

THEOREM 3. (“Boltzmann-Gibbs principle” for fluctuation processes). Let

f be a local function; assume that Eo(f, fo) = 0. Let S(¢), ¢ > 0, be a family of
positive numbers with

(5.4) lim,_ oS « 2 = 0.

Then for each ¥ € & the time average

s

(5.5) St f Ne(f; s’, ¥) ds’
0
converges to zero in quadratic mean.

PrOOF. Using “microscopic” time T'= Se~2 we express (5.5) as

T
(5.6) T . fo e . ¥, Pef)S;f(X(t)) dt,



STOCHASTIC PARTICLE SYSTEMS 755

whose square integral, by Fubini, is equal to

(5.7) T2 . f f K.(|t, — t2]) dt; dta,

where
K.t = f H.T.H,du and H, =% . Zj ?(ef)Sif.

Sufficient for the theorem to hold is that
(5.8) lim,K,(t) = 0, whenever t = t(e) — .
- Now we argue as in Proposition 4.2 to establish (5.8):

a) K,(-) is positive and decreasing
b) lim K.(t) = (J ¢*dw) - E{f, f);

the r.h.s. in (b) goes to zero by assumption on f. Therefore
(5.9) lim, 0, K.(t) = 0
as desired, which proves Theorem 3.0
REMARK. We have made no statement about the Gaussian character of the
field N* in the limit ¢ — 0. It is easy, since u is a product measure, to see that for

fixed t the r.v.s N°(t, ¥), ¢ € & get jointly Gaussian in the limit; the limiting
field is Gaussian white noise with covariance kernel

(5.10) FEN(t, P2 =x - f P%(w) dw, P € &

" What has not been shown is the joint Gaussian character of N°(t;, ¥1) - - - N°(ts,
¢, forty, - -, t, ER, Py, ---, P, € & in the limit ¢ — 0. But since we know its
covariance structure (Theorem 2a), the limiting field, if it is Gaussian, can be
identified. It is easy to see that the covariance structure is that of a stationary
Ornstein-Uhlenbeck process N(t, ), Y € &t = 0, which is characterized by (5.10)
together with

foreach ¥ € & the process
) t
(5.11) t — N(t, ¥) — N(0, ¥) — f N(s,% : A‘P) ds
0

is a Brownian motion with diffusion constant 2u . [ | V¥ |%dw.

(See [10] for the case of independently moving particles.)

APPENDIX

f’ROOF OF THEOREM 1. We assume that f € 2" and set a := ¥, sup,(f(x’) —
f(x)). Major steps in the proof are

a) the identification of (d/dt)E.(g, f) (Proposition A.1);
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b) the construction of functions Fr, |I'| < o, which may be thought of as
conditional expectations of the limit Hamiltonian given % (Proposition
A.2);

c) a Liapounov argument in terms of Fr: its increments Fr(x*) — Fr(x) do not
depend on k, for k € T' (Proposition A.3/4);

d) the identification of Fr by a martingale argument.

PROPOSITION A.1 Forg € 2 and t > 0 one has
(A.1) (d/dt)E(g, f) = E/Lg, f),

where the r.h.s. is defined as the absolutely convergent series
(A.2) 2 f Lg - S;Tif dp.

PROOF. Assume g € 9™ and take I so that g and Lg are % measurable. By
Proposition 3.2 the series in (A.2) converges absolutely, because Lg is the
difference of increasing functions belonging to L%(T"). Consequently, the value of
the sum can be identified as

(A.3) limyEMNLg, f)
in the notation of (3.16). Since for finite A, obviously,
(A.4) (d/dt)E{\(g, ) = El\Lg, f),

everything is reduced to show that for the functions E”(g, f), differentiation and
A-limit can be interchanged. But that is indeed true: these functions are, together
with its limit, alternating of any order, hence decreasing, convex and twice

* differentiable. 0

The family Fr, | T'| < . Call Fy, the function F constructed in Proposition
3.2. The statement of Corollary 3.4 can then be expressed as weak convergence
in LXT) of Fr,, as t — . Call the limit function Fr. Then the properties (3.9)
carry over to Fr and we get:

PROPOSITION A.2 (Properties of Fr).
(i) Fr is Zr-measurable,

(i) 0 =< Fr(x*) — Fr(x) < q,
(A.B)  (iii) f gFr du = E(g, f) foral g€ 2(I),

(iv) f Fr du =0,
(v) Fr=%$Fr| Fr) for TCIV.

(Notice that (v) follows directly from (i) and (iii)).
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The Liapounov argument.

PROPOSITION A3. Ifg € Z and LG € 2(T),

(A.6) f Lg - Frdu=0.

PROOF. From Proposition A.1 one has

d
ng - Fr,du =32Et(g, f);

the r.h.s. goes to zero as derivative of a difference of bounded, decreasing, convex
functions. 0

We introduce the operator
(A7) AVh(x) = h(xY) — h(x);
the generator L then reads as
Lh(x) = ¥, Yik-ji=1 c(x;) A*h(x).
Denote by A(n) the cube of length 2n, centered at 0; we write F,, for Fi(,.

PROPOSITION A.4. For fixed m and j, k € AN(m) we have
(A.8) f c(x)) - (A*F,)? du = 0.
ProoF. If suffices to consider | j — k| = 1. We choose n > m and start from

(Ag) f LFn * Fn+l dl"' = 09

which follows from Proposition A.3. Using a familiar identity for reversible
processes :

(A.10) f g Lhdu=-— é f Ty o) - Alg - ATh dp

we obtain from (A.9)

(A.11) f Tim c)A*F,) - (A*Fpi) dp =0,

where the summation goes over all bonds (j, k) with at least one of its vertices
in A(n). Since u is a product measure, we have by (A.5v)

(A~12) %(Athn-#l l yl\(n)) = Ajk]';‘n
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on the set {x; > 0}, if j, k € A(n). So we can split the Lh.s. of (A.11) in two parts

(A.13a) Y jkenm) f (%) (A*F,)? du
and
(A.13b) D JEN (), kEA(R) f (%) (A*F,) (A*F,_1) du.

The latter expression is for fixed m of the order O(n®?), because F, and F,,,
have bounded increments. Each term in the first expression can be minorized in
the form

(A.14) f o(x) (AMF,)? dp = f o(x) (A*Fr)? dy

whenever I' C A(n) and j, k € T. ((A.12) plus Jensen’s inequality.) We take as T'
now a cube of sidelength 2m and sum (A.14) over all those cubes contained in
A(n) and all bonds (j, k) contained in T'. Due to shift invariance, we get

@m + 1) . 2m Timcam f (%) (A*F,)? du
(A.15)
= (2n —2m + 1)¢ . DG RCAm) f c(xj)(Aijm)Z du.

By (A.11) and (A.13) the Lh.s. is also O(n?™!) for n large; hence the expression
at the r.h.s.

 (A.16) G RCAm) f c(x;)(A*F,)? du
must be zero. That proves (A.8). 0

Final computations. By Proposition A.4, to each cube I there exists a function
Dy such that

(A.17) Dr(x) = Fr(x*) — Fr(x)
whenever k € T. By (A.5ii), D is bounded; further, as in (A.12),
(A.18) E Dy | Fr)=Dr for T CI'.

By a martingale argument we find a D, also bounded, such that
(A.19) Dr= ¥ (D| %) forall T.

Since obviously S;Dr = Dr4; and D = limpDr = limpDr,; (in L'-sense), we
conclude that D = S;D. The spatial ergodicity of p implies that D, and hence all
Dr, are equal to a constant, say a.
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Going back to F, we get from (A.17) and (A.5iv)
(A.20) Fr(x) = Yjer o - (x; — p);
hence, for all g € 2(T)

(A.21) E(gf) = f gFrdu=a - Yjer f g (xj—p)du=a - Eugfo)

This proves the theorem: the coefficient « in (A.21) is computed by setting
g = fo and applying Proposition 3.4; the result is

(A.22) a=x""" Eofo, f)
as stated in (3.22).
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