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Let p* be the maximum of p and ¢ where 1l <p<wand1/p +1/¢g=1.
If d = (dy, ds, ---) is a martingale difference sequence in real L”(0, 1), ¢ =
(e1, €2, -+ -) is a sequence of numbers in {—1, 1}, and n is a positive integer,
then

[| 251 exdellp = (p* = 1) | 2kt diell

and the constant p* — 1 is best possible. Furthermore, strict inequality holds
if and only if p # 2 and || ¥3-1 di ||, > 0. This improves an earlier inequality
of the author by giving the best constant and conditions for equality. The
inequality holds with the same constant if ¢ is replaced by a real-valued
predictable sequence uniformly bounded in absolute value by 1, thus yielding
a similar inequality for stochastic integrals. The underlying method rests on
finding an upper or a lower solution to a novel boundary value problem, a
problem with no solution (the upper is not equal to the lower solution) except
in the special case p = 2. The inequality above, in combination with the work
of Ando, Dor, Maurey, Odell, Olevskii, Pelczynski, and Rosenthal, implies
that the unconditional constant of a monotone basis of L?(0, 1) is p* ~ 1. The
paper also contains a number of other sharp inequalities for martingale
transforms and stochastic integrals. Along with other applications, these
provide answers to some questions that arise naturally in the study of the
optimal control of martingales.
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1. Introduction. It must have been well known to Alexander Calder that
it is possible to design a mobile that can be hung initially in a small room but
which, if it is to move freely through all of its possible configurations, will have
to be hung anew in an exceedingly large room. There is a close mathematical
analogue. To each possible configuration of a mobile made with string, rods, and
weights, there corresponds a martingale with a similar arrangement of successive
centers of gravity and this martingale is a transform of the martingale corre-
sponding to the initial configuration. It is easy to see, either by looking first at
mobiles or directly at martingales, that there do exist small martingales with
large transforms.

This paper contains more precise information about the relative sizes of
martingales and their transforms. This information throws light on a number of
problems in the optimal control of martingales. It also leads to the unconditional
constant of any monotone basis of L?(0, 1) and to some sharp inequalities for
stochastic integrals. Some of the underlying methods are of independent interest.

We recall some definitions, notation, and other background. Suppose that f =
(fi, f2, - - -) is a sequence of real integrable functions on the Lebesgue unit interval
[0, 1) and (dy, ds, - - -) is its difference sequence: f, = Yi-1 di, n = 1. Then fis a
martingale if d,., is orthogonal to ¥(d,, - - -, d,) for all real bounded continuous
functions ¥ on R" and all n = 1. This orthogonality (equivalent, of course, to
E(fueil fis -+, f2) = fr ae, n = 1) is a convenient tool here and much of the
paper requires little else. The one other property of martingales that we shall use
frequently is a simple consequence of orthogonality: If ® is a nonnegative convex
function on [0, «©) with #(0) = 0, then

(1.0) E®(|ful) = E®(| fanr]), n= 1

(For some nondecreasing odd function ¢ on R, ®(t) = [¢ ¥(s) ds, t = 0, so that
®(| fasr]) = ®(| fn|) + ¥(fn)dn+1. If ¢ is bounded and continuous, (1.0) follows
from the orthogonality of Y(f,) and d,.,. The general case follows by monotone
convergence. For the usual proof of (1.0) and related background, see [10].)

If B is a Banach space, the definition of a B-valued martingale is similar: The
integral of the product of the B-valued (strongly) integrable function d,., and
the scalar-valued function ¢(d,, - - -, d,), where ¢ is bounded and continuous on
B", is equal to 0, the origin of B. Here, except in a few remarks, we shall consider
only martingales with values in some Euclidean space, usually R, but even to
study real-valued martingales and their transforms, we shall find it convenient
to introduce related martingales with values in R? or R®.

If v = (vq, Vs, - - -) is a sequence of scalar-valued measurable functions on the
Lebesgue unit interval, then v is predictable (relative to f) if d,., is orthogonal to
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every real bounded continuous function of vy, - -+, Up41, dy, -+, d, foralln = 1.
The sequence g = (g1, &2, - - -) defined by g, = Y, vrd: is the transform of f by
v. If, for example, the v, are bounded, then g is also a martingale. In most of our
work here, we shall be able to reduce consideration to the case v = ¢ where ¢ =
(e1, €2, - -+) and ¢ is a number in {—1, 1}. The maximal function of g is defined
by g*(s) = sup,|8.(s) |, s € [0, 1), and the p-norm of f by [ f |, = supx | fa .
The letter P will denote Lebesgue measure on [0, 1). Any other nonatomic
probability space would do and nonatomicity is not needed if the space is allowed
to vary as well as f and g.

The following theorem is one of the key results of the paper and is proved in
Section 5.

THEOREM 1.1. Let 1 < p < o and p* be the maximum of p and q where 1/p
+ 1/q = 1. If g is the transform of a real martingale f by a real predictable sequence
v uniformly bounded in absolute value by 1, then

(1.1) lglp=(p*=DIfl,

and the constant p* — 1 is best possible. If 0 < || f |, < o, then equality holds if
and only if p = 2 and Y-, vidi = Yi-1 di almost everywhere.

This sharpens one of the inequalities of [3] by giving the best constant and
conditions for equality.

The following closely related theorem is proved in Section 4. The proof will
illustrate in a simpler setting some of the methods to be used in the proof of
Theorem 1.1. :

THEOREM 1.2. Let 2 <p < o, If fis a real martingale with || f |- < 1 and g is
the transform of f by a real predictable sequence v uniformly bounded in absolute
value by 1, then

(1.2) lgllp<T(p+ 1)/2
and the constant T'(p + 1)/2 is best possible.

The following theorem, proved in Section 8, is also closely related to Theorem
1.1.

THEOREM 1.3. Let 1 =< p =< 2. If g is the transform of a real martingale f by a
real predictable sequence v uniformly bounded in absolute value by 1, then
(1.3) supr=oA"P(g* = \) = 2| f|5/T(p + 1)

and the constant 2/T(p + 1) is best possible. Strict inequality holds if 0 < || f ||, <
o qnd 1 < p < 2 but equality can hold if p =1 or 2.

The easy case p = 2, in which the best constant is 1, and the less easy case
p = 1, in which the best constant is 2, are already known. For the case p = 1, see
[3] and [4]. For new light on both cases, see the first part of Section 8.
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In Section 2, the proofs of Theorems 1.1 and 1.2 are reduced to the special
case of f starting at 0 with v = ¢ where ¢ is a numerical sequence in {—1, 1}. In
fact, ¢ can always be taken to be the sequence (1, —1, 1, —1, - . .). Later it will be
clear that the constants appearing in all three of the theorems above are already
best possible in this special case. Zigzag martingales, to be used to study martin-
gale transforms in the case v = ¢, are introduced in Section 3. Theorem 1.2 is
proved in Section 4 with their use and the use of a blconcave function defined
on the closure of

D={(x,y) ER" |x—y| <2}

The proof is not difficult once the right function is found. It is the least biconcave
function u on the closure of D such that if | x — y| = 2, then

x+y|”
2

Theorem 1.1 is proved in Section 5 with the use of a similar method. Martingales
with values in R? are used, however, and the biconcave function u is replaced by
a function defined on a subset of IR, It satisfies a more subtle concavity condition
but is again the upper solution to a boundary value problem. It is found by solving
a system of five second order nonlinear partial differential equations and ine-
qualities on several different subdomains and by checking that the several
solutions fit together in the right way. Once this is done, Theorem 1.1 follows
fairly quickly.

. Theorem 1.2 is extended in Section 6 by replacing the power function of that
theorem by a more general convex function & with a strictly convex first
derivative. Theorem 6.2 identifies the upper and lower solutions of the related
boundary value problem.

Suppose that « and B8 are real numbers and f is a real martingale with
fi = a. What condition on f assures the existence of a predictable sequence

u(x, y) =

v = (1, vs, v3, ---) uniformly bounded in absolute value by 1 such that the
transform g of f by v satisfies
(1.4) P(sup,g, = B) =17

That is, when can the martingale f be controlled to satisfy (1.4)? Theorem 7.3
gives a necessary condition:

(1.5) IIfIIIZ(B—a)VIaI,

the maximum of 8 — « and |«|. This is best possible; in fact, there is
always an f satlsfymg (1.5) with equality so that f can be controlled by v =
a,- . +) to satisfy (1.4).

The ﬁrst part of Section 8 is devoted to a genumely elementary proof of the
inequality (1.3) in the case p = 1. The proof of Theorem 1.3, and somewhat more,
is completed in the second part. Section 9 has additional information about the
control of martingales and contains the final part of the proof that the functions
U, and L,, defined there, are respectively the upper and lower solutions of the
boundary value problem in R?® mentioned above.
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Sections 10 to 17 contain diverse variations, extensions, and applications of
some of the methods and results described above. For example, it has been known
for about fifty years that the unconditional constant of the Haar system in
LP(0, 1) is finite if 1 < p < o (see Paley [20] and Marcinkiewicz [16]). About ten
years ago, Pelczynski and Rosenthal [21], and Dor and Odell [12] proved, more
generally, that the unconditional constant of any monotone basis of LP(0, 1) is
finite. With the help of Theorem 1.1, these results can be strengthened (see
Section 15): The Haar system and, indeed, any monotone basis of L”(0, 1) has
the unconditional constant p* — 1. Here is a related result, an extension of
Theorem 1.1 to an arbitrary positive measure space in the special case v = a
where a is a sequence in [—1, 1]: If P, =0, P;, P,, - - - is a nondecreasing sequence
of contractive projections in L” of an arbitrary positive measure space, then the
series

Yh=1 a)z(Pk = Ppy)

converges in the strong operator topology to an operator having a norm no greater
than p* — 1 (see Theorem 15.3).

Section 16 contains some of the sharp inequalities for stochastic integrals that
follow from Theorems 1.1, 1.2, and 1.3, and the other inequalities of the first

nine sections of the paper.

Theorem 1.1 is analogous to the classical inequality of M. Riesz [23]. In
Section 17, the best constants in these two inequalities are compared, not only
in the real case but also in a broader setting.

2. Some reductions. It is enough to prove Theorem 1.1, Theorem 1.2, and
Theorem 1.3 for martingales f = (fi, fs, - - -) starting at the origin: f; = 0. For if
f is a martingale and g is its transform by a predictable sequence v, let F; = 0,

V1 = 1, ]
Fri1(8) = fn(2s) if s €0, %),
=—f,2s = 1) if s € [% 1),
and '
Vn+1(s) = l)n(23) if s E [0’ 1/2),
=0,(25s — 1) if s € [%, 1)

Then F = (F,, F,, --.) is a martingale starting at the origin and V =
V1, Vs, -) is predictable relative to F. Moreover, if G is the transform of F by
Vathen "Fllp:"f"p, ”G"p="g”p’and *

P(G* = \) = P(g* = \).

In addition, it will be enough to prove Theorems 1.1 and 1.2 for the special
case in which v is a sequence of numbers in {—1, 1}. This will follow from the
lemma below which expresses the nth term of g as the sum of a pointwise
convergent series of the 2nth terms of transforms by (1, -1, 1, -1, ---).
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LEMMA 2.1. Let g be the transform of a martingale f by a real predictable
sequence v uniformly bounded in absolute value by 1 and suppose that either v, =
1 or that d, is orthogonal to every real bounded continuous function of v,. Then

there exist martingales F/ = (Fj, Fi, - - ) such that, for each positive integer n,
(2.1) fo=Fho j=1,
(2.2) & = X1 277G,

where G’ = (G4, G4, - - -) is the transform of FV by (1, -1, 1, =1, - - .).

PROOF. We begin with the case in which each function v,, in addition to
satisfying the above assumptions, has all of its values in {—1, 1}. Let Ds,—y =
(1 + v,)d,/2 and D,, = (1 — v,)d,/2. Then D = (D, D,, ---) is a martingale
difference sequence. To see this, let ? be a real bounded continuous function on
R?! where n > 1, the other cases being even simpler. The orthogonality of D,,
and @(D,, - - -, Dy,_1) follows from the orthogonality of d, and

(2.3) (1 =vn)P(Dn, + -y Dapy) = (1 — Un)P(Dy, - -+, Don—s, 0).

To see that (2.3) holds, note that both sides vanish on the set {v, = 1} and Ds,—;
vanishes on its complement.

Let F be the martingale corresponding to D and @ its transform by (1, -1, 1,
—1, ---). It follows from the definition of D that d, = Ds,—; + D., and v,d, =
Dy, y — Dsp, 50

(2.4) fn = F2n = Zgzl Dk’
(2.5) 8n = G2n = §'=‘1 (—l)k—le'

Now consider the general case in which the functions v, have values in
" the interval [—1, 1]. There exist measurable functions ¥;: [—1, 1] — {—1, 1} such
that t = 3%, 279,(t) for t € [—1, 1]. Let v}, = ¥;(v,). Since v is predictable rela-
tive to f, the same is true of (v, v}, - --). For each positive integer j, the sim-
pler case discussed above now yields a martingale F’, and its transform G’ by
1, -1,1-1, ---), such that f, = F}, and

Yi-1 Vide = Gin.

Multiplying both sides by 27 and summing gives the desired decomposition and
completes the proof of Lemma 2.1.

Once we prove that Theorem 1.1 holds for all pairs f and g such that f is a
martingale starting at 0 and g is the transform of f by a sequence of numbers in
{—1, 1}, we can conclude that Theorem 1.1 holds as stated. For if f and g are as
in the statement of the theorem and f starts at 0, as we can assume by our earlier
discyssion, then f and g can be written as in Lemma 2.1 and

lgl, = 2521 271 Gllp = (p* = 1) T3 27 F/ I,
=(P*= 1D T 270 fllo= (* = DI fle
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Here we have used the fact, which follows from (1.0) and (2.1), that || Fb,—; ||, <
| Fb, I, = |l f» |l - Note that if f has a finite and positive p-norm and p # 2, thén
G/ |l, < (p* = 1) || f ||, for every j and this implies that || g|l, < (p* = 1) || f ||
If | £, is finite, then (d;, ds, ---) is an orthogonal sequence so | f||% is the
integral of Yi.; d}, giving the last part of Theorem 1.1. Finally, the value of the
constant of the inequality in Theorem 1.1 can be no smaller than the p*.— 1 of
the special case.

Similarly, once we prove Theorem 1.2 in the special case of f a martingale
starting at 0 with | f |l = 1 and g the transform of f by a sequence of numbers
in {—1, 1}, we can conclude that the theorem holds as stated.

REMARK 2.1. The above lemma and its proof carry over with no change to
B-valued martingales, giving an alternative proof of Theorem 2.2 of [5]. The
approach taken here has the advantage of preserving strict inequality in the
transition from the special to the general case.

3. Zigzag martingales. There is another reduction or transformation of
the kind of problem that we consider here that is convenient and provides
additional intuition. Let (x, y) € R? and suppose that f is a real martingale
starting at (x + y)/2 and g is the transform of f by a sequence ¢ = (1, ez, €3, - - -)
of numbers in {—1, 1}. Let Z, = (X,,, Y,) where Z; = (x, y) and, for n > 1,

(8.1) X, =x+ Yko (1 + er)ds,
(3.2) Yn =Yy + ZZ:Q (1 - Ck)dk.

Then Z = (Z1, Z,, ---) is a martingale with values in R? such that Z starts at
(x, ¥) and, for each positive integer n, either X,,, — X, =0or Y, — Y, = 0.
We shall call such a martingale a zigzag martingale: If Z moves at all at the nth
step (n = 2), it moves either horizontally or vertically, which way depending only
on n.

Given a zigzag martingale Z starting at (x, y), a pair f and g as above can be
constructed uniquely as follows (the e is not necessarily unique but this is
inessential): Let ey = 1l and d, = (x + y)/2. If Yo— Y, =0,let e, =1 and d; =
(X2 — X1)/2. Otherwise, let e¢o = —1 and d; = (Y, — Y1)/2, and so on. Then

(3.3) fo=(Xn + Y,)/2,
(34) &= Y= (Xn - Yn)/2

This one-to-one correspondence will help not only in the demonstration of a
number of inequalities but also in the construction of examples showing that the
inequalities are sharp.

4. A boundary value problem in two dimensions. The principal goal
of this section is to illustrate some of the methods that will be used to prove
Theorem 1.1. This we do by proving Theorem 1.2, a theorem with its own interest
and connections.
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For example, what conditions on a martingale f and a class of predictable
sequences v imply that || g ||~ = 1 for some transform g of f by a member of the
class? Related problems abound. For a basic class of predictable sequences, the
following lemma contains a necessary condition on f.

LEMMA 4.1. Let 2 < p < . If f is a real martingale such that | g« = 1 for
some transform g of f by a sequence of numbers in {—1, 1}, then

(4.1) IflII5 <T(p+1)/2
and the constant I'(p + 1)/2 is best possible.

If g is the transform of f by a sequence in {—1, 1}, then f is the transform of g
by the same sequence (¢7 = 1). Therefore, the lemma yields Theorem 1.2 for the
special case in which v is a numerical sequence in {—1, 1}. In turn, by the results
of Section 2, this special case yields the full theorem.

PROOF OF LEMMA 4.1. Let D = {(x, y) € R%* |x — y| < 2} and D denote
the boundary of D. If (x, y) € D U dD, let F(x, y) be the family of all real
martingales f such that f; = (x + y)/2 and, for some sequence (1, e, €3, -+ ) in
{—1, 1}, the transform of g by this sequence satisfies

sup. " 8n — y"w =1L
This family is nonempty: If f, = (x + y)/2 for all n, then f € F(x, y). Let
(4.2) Ulx, y) = supill fI5: f € F(x, y)}.

Keeping in mind that we may assume f; = 0 as in Section 2, we see that the
least upper bound of | f || for f as in Lemma 4.1 is U(0, 0).

The following characterization of U will help lead to an explicit formula: U is
the least biconcave function u on D U dD satisfying

p

(4.3) ulx, y) = x“;y if (x, y) € aD.

Or, to say the same thing another way, U(., y) is concave on [y — 2, y + 2],
Ul(x, -) is concave on [x — 2, x + 2], and U is the least such function satisfying
(4.3). '

Lemma ‘4.1 does not depend explicitly on this characterization of U so we
defer its proof to Section 6. Here it will serve as a guide to our intuition.

If u is the least biconcave function on D U dD satisfying (4.3), then

4.4) u(x, y) = u(y, x) = u(—x, =y).

Otherwise, replace u(x, y) by the minimum of u(x, y), u(y, x), u(—x, —y), and
u(+y, —x) to obtain a strictly smaller biconcave function.

A study of the analogous problem on Z2 N (D U dD) and on grids with a finer
mesh suggests that the least biconcave function u on D U 9D satisfying (4.3)
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must be of the form
) 2u(x, y) = (1 + xy)A(1) if |x|V]yl=1,
4.5
=(y—x+2Ax)+ (x—y)B(x) if x=1, x—2=<y<=xy,

where B(x) = (x — 1)”. The definition of u on D U D is completed by using the
symmetry property (4.4). This gives equality in the boundary condition (4.3). If
A were twice differentiable on (1, «), then, forx >1and x — 2< y < x,

(4.6) 2u(x, y) = (y — x + 2)A’(x) — A(x) + (x — y)B'(x) + B(x),
(4.7)  2uulx, y) = (y — x + 2)A"(x) — 24’ (x) + (x — y)B"(x) + 2B’ (x),

and the biconcavity of u would imply the differential inequality u..(x, x—) < 0
or, equivalently, A”(x) — A’(x) + B’(x) < 0. Since u is extremal, it would be
reasonable to expect that u,.(x, x—) = 0 so that

(4.8) A”(x) — A’(x) + B’ (x) = 0.
One solution of this equation on (1, ») is the function A defined by
(4.9) A(x) = e* f B(t)e™t dt = e*! f tPe™ dt.
x x—1
In fact, differentiating A on (1, ) gives
(4.10) A’(x) — A(x) + B(x) = 0.

With this choice of A(x), the function u defined by (4.5) and (4.4) is biconcave
~on D U dD: Trivially, u is biconcave on Dy U 4D, where

(4.11) Do = {(x, y): || V |yl <1}.
It is also biconcave on D, U dD; where
(4.12) Di={(x,y):x>1,x—2<y<uxl
and this can be seen as follows. On D, the derivative u,, vanishes and, by (4.7)
and (4.8), ‘
2u.(x, y) = (y — x)[A”(x) — B"(x)]

(4.13) o
= (y — x)e* f [B"(t) — B"(x)]e™* dt < 0

since B”(t) = p(p — 1)(t — 1)P"2 is strictly increasing in t for t > 1 and p > 2. It
remains to show that u is biconcave on the whole of D U dD. By the symmetry
and continuity of u, it will be enough to show that u.(-, y) exists and is
nonincreasing on (y — 2, y + 2). In fact, it will be enough to show that u,(1—, y)
=u(l+, y)for-1<y=<1,and u(y—, y) = uly+, y)fory> 1 If-1<y=1,



656 D. L. BURKHOLDER

then, by (4.6) and (4.10),
2u,(1+, ¥) = (y + 1A’(1+) — AQ1)
= (y + D[AQ1) - B(1)] — AQ1)
= yA(1) = 2u,(1-, ).
If y > 1, then, by the symmetry of u, )
2u(y+, ¥) = 2A4"(y) — A(y) + B(y) = A(y) — B(y)
= 2uy(y, y=) = 2uly—, ¥).

Thus u is biconcave on D U dD. Similarly, u, and u, not only exist on D but are
also continuous there and have continuous extensions to D U 4D.

Because u is biconcave on D U 3D and satisfies the boundary condition (4.3),
u must also satisfy

p

Y < u(x, y), (x,y) € DUD,

2

with strict inequality holding for (x, y) € D: For fixed y, the difference between
the left-hand side and the right-hand side is strictly convex in x for x in [y — 2,
y + 2]

The next step is to show that, for f € F(0, 0),

(4.15) 1715 < (0, 0).

Let f € F(0, 0) and suppose that g is the transform of f by a sequence ¢ =
(1, &2, €3, - - -) of numbers in {—1, 1} such that | g ||~ = 1. We may assume with-
_ out loss of generality that g is uniformly bounded in absolute value by 1. Let
Z be the zigzag martingale determined by f and g as in Section 3. Then
| X, — Y| = 2|8.] = 2 everywhere so Z, has all of its values in D U dD.
Therefore, by (3.3) and (4.14),

(4.14)

X, + Y, ||f
p
Furthermore,
(4.17) Eu(Z,.+1) < Eu(Z,)
and strict inequality holds, for example, if
(4.18) P(Zy, € Do U Do, Zn+1 & Do U 8Do) > 0.

To prove (4.17), we shall use an inequality that follows at once from the
biconcavity and smoothness of u: If both (x, y) and (x + h, y + k) belong to the
closure of D and either h = 0 or & = 0, then

(4.19) uwx+ h, y + k) < u(x, y) + ulx, y)h + u,(x, y)k.

Here u, and u, denote the continuous extensions to D U 8D of the respective
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first order derivatives on D. By (4.19) and the zigzag property of Z,
(4-20) u(Zn+1) = u(Zn) + ux(Zn)(Xn+l - Xn) + uy(Zn)(Yn+1 - n)«

Note that X,+1 — Xn = (1 + ¢n41)dns1 and Y,i1 — Y, = (1 — €441)dn+1. The uniform
boundedness of g implies the uniform boundedness of d, hence the boundedness
of Z,. Accordingly, there is a bounded continuous function ¥: R” — R such that
ulZ,) = P(dy, - - -, d,). Since d is a martingale difference sequence, Xn+1 — X, is
orthogonal to u.(Z,) and, similarly, Y,.: — Y, is orthogonal to u,(Z,). Therefore,
integrating both sides of (4.20) gives (4.17). Moreover, if (4.18) holds, then, by
(4.18), strict inequality holds in (4.20) on a set of positive measure. Both sides of
(4.20) are bounded, hence integrable. Therefore, (4.18) implies that strict inequal-
ity holds in (4.17).

We can now complete the proof of (4.15) as follows. If (4.18) does not hold for
any positive integer n, then

(4.21) P(Z,€DyUdDy,n=1)=1
and
(4.22) I foll5 = 1 =%[u®, 0) + w(-2, 0)] < u(0, 0)

for all positive integers n. Otherwise (4.22) holds for n = m where m is the least
integer n satisfying (4.18), and, for n > m,

423) | ful = EuZ,) < EuZnn1) < Ew(Zn) < Ew(Z,) = u(0, 0).

Therefore, || f |5 < u(0, 0) always holds and, since u(0, 0) = I'(p + 1)/2, so does
the desired inequality (4.1).

The last step of the proof of Lemma 4.1 is to construct an example showing
that the constant I'(p + 1)/2 in (4.1) is best possible. It is clear from (4.22) and
© (4.23) that, if || f || is to be near (0, 0), the martingale Z must move out of Do
U 8D, but in such a way that the two sides of (4.20) are not too far apart. Also,
if the martingale is in D, after n steps, the next step should be vertical: u,, = 0
on D, but u,, < 0 there. Considerations of this kind lead to a candidate for Z and
hence, by Section 3, a candidate for f. Here f € F(1, 0) but this determines a
companion example in F(0, 0) by the first paragraph of Section 2. Let 0 < <2,
v =1/(2 +8),and 8 = (2 — §)/(2 + 8). Using the same notation for an interval
[a, b) and its indicator function, we set

dl = 1/2[09 1)7 d2 = 1/2(1 + 5)[0’ 7) - 1/2[7’ 1)’
ds = 8[0, By) — (1 — 8/2)[Bv, 7),
d4 = 6[09 ﬁ27) - (1 - 5/2)[627’ .87)’

and so forth. This is a martingale difference sequence: d,.; is orthogonal to
constant functions and is supported by an interval on which #(d,, - - -, dn) is
constant. Consider the transform g of the associated martingale f by (1, —1, 1,
—1, ---). It is easy to see that || g|| = 1. Hence f € F(1, 0). Also, for n = 1,

(4.24) farz = [1 + (2n + 1)6/2][0, B™y) + i kO[B*y, B7),
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which implies that
115 = (1 = B) Tk= (k8)PB*.
Set o = (—log 8)/5. Then
IF15 21— B) Tis (kS)Pe™=*12
o (2 +98)*

Using 1/8 =1+ 6/(1 — §/2), we see that « — 1 as § — 0 and, by Fatou’s lemma
that :

“tPetdt T(p+1)
2 2
(By (4.1), the limit exists and equality holds.) This shows that the constant

I'(p + 1)/2 is best possible and completes the proof of Lemma 4.1, hence the
proof of Theorem 1.2.

zy(1 - B) Tia f

(k—1)3 0

(4.25) lim inf; o[ f 15 = f
0

5. Aboundary value problem in three dimensions. We shall now prove
Theorem 1.1. The case p = 2 has already been treated at the end of Section 2.

LEMMA 5.1. Let 2 < p < . If f is a real martingale such that || gll, < 1 for
some transform g of f by a sequence of numbers in {—1, 1}, then

(5.1) Ifllp<p—1
and the constant p — 1 is best possible.

This implies Theorem 11in the case p > 2: See the paragraph immediately
following Lemma 4.1.
p
!

and note that the section {(x, t): (x, v, t) € Q} of Q determined by y is convex as
is the section of Q determined by x. If (x, y, t) € Q U 99, let F(x, v, t) denote the
family of all real martingales f such that f; = (x + y)/2 and, for some sequence
(1, eo, €3, - - -) in {—1, 1}, the transform g of f by this sequence satisfies

(53) sup, ” & — Y "f? =t

Just as in Section 4, this family is nonempty. Let U denote here the function on
Q U 99 defined by

ProOF oF LEMMA-5.1. Consider the domain

(5.2) Q= Jl(x, y, t) € R%: E—-—;—Q-/

Ulx, y, t) = supl| f I5: f € F(x, y, t)}.

By the first paragraph of Section 2, the least upper bound of || f||£ for f as in
Lemma 5.1 is U(0, 0, 1).
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As in Section 4, the function U is the upper solution of a nonclassical boundary
value problem. Here U is the least function u on Q@ U dQ such that

the mapping (x, t) — u(x, y, t) is concave

5.4
(5:4) on the section of QU JQ determined by 1y,

the mapping (¥, t) — u(x, y, t) is concave

(55) on the section of QU dQ determined by «x,
and

x+y|°
(5.6) u(x, y, t) = if (x, y,t) € Q.

The proof of this characterization is given in Section 9 or, for a slightly
different approach, see the proof of Theorem 3.3 in [5]. Here, as in Section 4,
this characterization of U is a guide to our intuition and is not used directly.

Let us consider the above boundary value problem. Suppose that there does
exist a function u: @ U Q@ — R satisfying (5.4), (5.5), and (5.6), and that u is the
least such function. Then u must also satisfy the symmetry property

5.7) u(x, v, t) = uly, x, t) = u(—x, =y, t).
Otherwise, replace u(x, y, t) by the minimum of u(x, y, t), u(y, x, t), u(=x, =y, t)

and u(—y, —x, t) to obtain a strictly smaller function satisfying (5.4), (5.5), and
(5.6). Also,

(5.8) u(x, y, t) = A\ Pu(Ax, Ay, A°t), A>0.

For if ux(x, y, t) denotes the right-hand side, the function u, satisfies (5.4), (5.5),
and (5.6), so u < u, by the minimality of u. But this inequality implies the reverse
" inequality u;/\ < u. Both inequalities hold for all A > 0. Therefore, the homoge-
neity property (5.8) holds and, for (x, y, t) € @ U 9Q with ¢ > 0,

(5.9) u(x, y, t) = tF(xt™P, yt="7)
where F(x, y) = u(x, y, 1). Note that F is defined on D U dD where
D={(x,y) ER: |x—y| <2}

We shall be able to obtain a formula for F, hence a formula for u.

If u is twice continuously differentiable on a neighborhood of some point
(%0, Yo, 1) € Q, then (5.4) and (5.5) imply that, on the same neighborhood, u,, =<
0, uyy < 0, uy < 0, U Uy — u% = 0, and uyu, — ul = 0. These lead, by (5.9), to
the following system of differential inequalities for F on a neighborhood of
(x0, y0) € D: ‘

(5.10)  Fa=0,
(5.11) F,=<0,
(5.12) %2F,, + 2xyF,, + y°F,, — (p — 1)[xF, + yF,] < 0,

(513) (P - 1)[xe - yFy]Fxx - [(p - l)Fx - nyy]2 + y2FxxFyy = 0’
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(5.14) (p — V)[yFy — xF.)F,y, — [(p — 1)Fy — xF, ) + x*F..,F,, = 0.

If To(F), Ty(F), and T9(F) denote the functions on the left-hand side of (5.12),
(5.13), and (5.14), respectively, then

(5.15) UselX, y, £) = £ 2P (xt =P, yt=1P),
(5.16) (%, , 1) = t1PE, (xt ™V, yt=10P),
(6.17) U(x, ¥, t) = p~2t 7 To(F) (at ™7, yt7'/P),

(5.18)  un(x, y, unlx, y, t) — uklx, y, t) = p 2 PT(F)(xt P, yt='/),
(5.19)  w,y(x, y, uulx, y, t) — ullx, y, t) = p~2~YPTo(F)(xt™P, yt7),

for all (x, ¥, t) in any subdomain of Q@ on which u is twice continuously
differentiable.

The minimality of u suggests that F should satisfy
P

+
22 (x, y) € aD,

2

and that, on some subdomains of D, equality should hold in at least one of the
above differential inequalities, which one depending on the subdomain. Later, in
this section, when we return to the martingale origins of our boundary value
problem, we shall construct an example suggesting that, if x > 0, then

(5.20) F(x, y) =

(5.21) F(x, x) = (w—1)?
where w > p is the unique positive solution of
(5.22) xP + pwP™ — wP =0.

This example is suggested in part by the example in Section 4.
All of this and additional study suggests that

(5.23) : F(x, y) = (w—1)*
on the subdomain
(5.24) D, ={(x,y)€ED:x>0,(1-2/p)x < y<xj
with w = w(x, y) > p being here the unique positive solution of
(5.25) xP[1 — p(x — y)/2£] + pwP™ —wP =0,
and that

x+y

(5.26) F(x, y) =

](p -1)®

p

x=y
+1- ===
[I2

2
on the subdomain
(5.27) Dy={(x,y) ED: x>0, -x<y<(1-2/p)x}.

Indeed, all of this is true and we have the following lemma which we shall use
when we return to the proof of Lemma 5.1.
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LEMMA 5.2. Suppose that 2 <p < o,

(i) Let F be the continuous function on D U dD given by (5.23) on the subdomain
D,, by (5.26) on D,, and satisfying

(528) F(x’ y) = F(y’ x) = F(_x’ —y)~

Such a function exists, satisfies the boundary condition (5.20), and has continuous
first partial derivatives on D. On D, the function F has continuous second partial
derivatives and satisfies (5.10)-(5.13) with strict inequality and (5.14) with equality.
On D, it has continuous second partial derivatives and satisfies (5.10)-(5.11) with
strict inequality and (5.12)-(5.14) with equality.

(ii) Let u be the function on Q@ U 9Q with u(x, x, 0) = | x |? and such that, for
(x, ¥, t) €E QU IQ with t > 0.

(5.29) u(x, v, t) = tF(xt™p, yt~P),

Then u is continuous on Q U 9Q and satisfies the concavity conditions (5.4) and
(5.5). It also satisfies the boundary condition (5.6) with equality.

ProoOF OF LEMMA 5.2. We note first that

- +
(5.30) 0<i2<? and <Y<y om D,,
2 p q 2
+ —
(5.31) 0< xry < z and X < %/ <x on D,,
"and
+ -
(5.32) EEY_T and 222=2% on 4D, N 8D,.
2 q 2 p

Recall that g is conjugate to p: 1/p + 1/q = 1.
Let H be the function on D, defined by

(5.33)  H(x, y) = x”[1 — p(x — y)/2x] = (1 — p/2)xP + pxP~ly/2.

The continuous extension of H to D, U dD,, which we also denote by H, is
strictly positive and infinitely differentiable on D, and vanishes on 4D, N dD,.
The mapping A — A\ — pAP™! from [p, ®) onto [0, ®) is strictly increasing and
continuous. Let w be its inverse composed with H. Then w is continuous on D,
U dD;. Thus, (5.23) is well-defined on D, and has a continuous extension to D,
U dD,. Also, (5.26) has a continuous-extension to D, U D, and the two extensions
agree on 0D; N 4D, where they are constant and have the value
(p — 1)P. We can conclude that the function given by (5.23) on D; and by (5.26)
on D, does have a continuous extension F to D U dD satisfying the symmetry
condition (5.28). It is also clear that F satisfies the boundary condition (5.20): If
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x = pand x — y = 2, then (5.25) becomes

xP — pxPt + pwPt — wP =0
so w(x, y) =xand F(x, y) = (x —1)? = | (x + ¥)/2|*. In case 1 <x<pandx-—
y = 2, the boundary condition follows directly from (5.26).

To calculate the first and second partial derivatives of F on D, we shall use
the function ¥ defined on (0, ©) by

W(A) = (1 4+ NP)P — p(1 + AYP)P,
Note that ¥((p — 1)?) =0,
Y/ (N) = (1 + A\/P)P2(2 — p + A/P)\1H1P)
which is strictly positive for A > (p — 2)”, and
¥"(N) = [(p = 1)(p — 2)/pl(1 + NVP)P2\ 2417,

which is strictly positive for all A > 0. If (x, y) € D, U 8D, then, by the discussion
above, F(x, y) = (w(x, y) — )" = (p — 1)? so ¥'(F(x, y)) > 0, ¥"(F(x, y)) > 0,
and

(5.34) V(F(x, y)) = H(x, y).

Now consider the first and second partial derivatives of F on D;. By (5.34) we
have F, = H,/¥’(F) and this leads to expressions for F.,, and F,,. It is convenient
to let

(5.35) M=1/¥'(F) and N=¥'(F)/[¥Y'(F)P,
- both strictly positive on D; U dD,. Then, on D,

(5.36) F.= MH,,

(6.37) F,= MH,,

(5.38) F.. = MH,, — MNH?,

(5.39) F,, = MH,, — MNH},

(5.40) F,, = MH,, — MNH.H,.

These lead directly to the following expressions for To(F), T1(F), and Tx(F), the
functions on the left-hand side of (5.12), (5.13), and (5.14), respectively:

(5.41) To(F) = MTo(H) — MN[xH, + yHy]z,
(5.42) Ty(F) = M?Ty\(H) — M*NTs(H),
(5.43) To(F) = M*Ty(H) — M*NT(H).

Here T,(H) is the left hand side of (5.12) with F replaced by H, and T(H) and
Ty(H) have a similar meaning. On the other hand, T5(H) is the function on D,
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defined by

Gagy D = (p = DisHe = yHJHE + 2{(p = DH. = yHoJH.H,
+ y’H..H} + y°H, H?

and

(45 T = (P~ DIoHy = sHJH; + 20((p = DH, ~ xHoJH.H,

+ x*H.H? + x*H, H?2.

For x > 0, the function H(x, y) = (1 — p/2)x? + pxP~'y/2 is positively
homogeneous of order p: v(x, y, t) = tH(xtP, yt~'/P) is constant as a function
of t > 0. Therefore, v,(x, y, t) = 0 so, by the analogues of (5.17)-(5.19) for v and
H,

(5.46) To(H) = Ti(H) = T2(H) = 0 on D,.

The first and second partial derivatives of H on D, are given by
(5.47) 2H.(x, y) = p(2 — p)x"™' + p(p — 1)x"™%,
(5.48) 2H.(x, y) = =p(p — 1)(p — 2)x"%(x — y),
(5.49) 2H,(x, y) = px*~,

(5.50) 2H,,(x, y) = 0,
(5.51) 2H,,(x, y) = p(p — 1)xP~2

Combining (5.38)-(5.51), we obtain the following information about the func-
tion F on D;:

" (5.52) F.<MH, <0,
(5.53) F,, = —-MNH? <0,
To(F) = —MNI[xH, + yH,]?
(5.54) o(F) [ yH,]
= —p?MNH? < 0,

T\(F) = —M*NT;s(H)
=p*(p — D(p — 2)x**(x — y)M*NH?/2 > 0,
(5.56) Ty (F) = —M*NT(H) = 0.
Now consider the function F on D,: )
2°F(x, y) = (x + y)* + [2° = (x — y)"l(p — D)".

If (xt™, yt='P) € Dy, then u(x, y, t) = tF(xt™/, yt~V/P) satisfies u.(x, y, t) =
Uy(x, ¥, t) = uu(x, y, t) = 0 so that, by (5.17)-(5.19),

(5.57) To(F) = Ti(F) = To(F) = 0 on D,.

(5.55)
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Using (5.31), we also see that

(5.58) 2°F,(x, y) = p(x + ¥)*"' = p(x — y)* (p — 1),
(5.59) 2°F,(x, y) = p(x + ¥)P"' + p(x — y)* X (p — 1)?,
and

4Fxx(xv y) = 4Fyy(xv y) .
+ p—2 _ P2
=p(p—1>["2y = (p—w’]

<p(p — Dl(x/q)*"% = (x/p)*"%(p — 1)7]
=p(p — 1)gPx*"%q* — p?] < 0.

To see that F, and F, exist and are continuous on all of D, recall the following
elementary fact: If 6 is a positive number, ¥ is a continuous function from the
interval (-4, 6) to IR, and ¥’ exists and is continuous on (—§, 0) U (0, 6) with
®’(0—) = ¢’(0+), then ¥’ exists and is continuous on (-6, §). Note that F, and
F, are continuous on D; U D, and hence, by the symmetry condition (5.28), on
the set of S of all (x, y) € D satisfying x*> # y% y # (1 — 2/p)x, and x #
(1 — 2/p)y. It is easy to check that F,, for example, has a continuous extension
G from S to D, even to D U dD. If (x, y) € D\S, then there is a positive number
6 such that (x + a, ¥) € S for 0 < | «| < 6. Thus F, exists at (x, y) and F,(x, y)
=G(x, y).

This completes the proof of part (i) of Lemma 5.2. To prove part (ii), we shall
use the following additional property of F: There exist positive real numbers a,
and b, such that, for all (x, y) € D U 3D,

(5.60)

p—-1

+ by.

P x+y

2

x+y
2

By the continuity and symmetry of F, it is enough to prove this on D; U D,.
Provided b, = (p — 1)?, as we can assume, the inequality (5.61) does hold on D,
as is clear from (5.26). So it is enough to prove that (5.61) holds on D,. If (x, y)
S Dl, then

(5.61)

%

P
+
< F(x,y) < lx—zz

x+yp

(5.62) H(x, y) < —

To see this, let x > 0 and observe that ¥, defined by

P p

x+y — H(x, y) = x +

2 2

is convex on the section of D; U éDl determined by x, and ¥ (x) = ¢’ (x—) = 0, so
¢ = 0 and (5.62) holds. It is clear from the definition of ¥ that

limy_ ¥ (N)/A =1,

P(y) = — %P+ pxP(x — y)/2,
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implying that, for a suitable choice of b, and all A > 0,
A< (14 AP =¥(\) + p(1 + \V/P)P?
= ¥(\) + 2p[¥Y(N)]P~V% + b,
Recalling (5.34), we see that
F(x, y) < H(x, y) + 2p[H(x, )]*" + b,

and obtain the right-hand inequality of (5.61). To prove the left-hand inequality
on D,, we check it first on dD,. By (5.2(5), it holds at least on 6D, N dD. It also
holds on the upper part of the boundary: If x > 0, then w = w(x, x) > p satisfies

2P = wP — pwP ! < (w — 1)? = F(x, x).
On 3D1 N aDg,

p

Al g (x/q)? = (p/q)? = (p — 1) = F(x, y).

2

Therefore, the left-hand inequality holds on dD; and, by (5.52) or (5.53) and the
argument leading to (4.14), the left-hand inequality holds on D,. This completes
the proof of (5.61).

The proof of part (ii) of Lemma 5.2 follows easily. By (5.20) and its definition,
u satisfies the boundary condition (5.6) with equality. The next step is to show
that u is continuous on Q U dQ. Except possibly at points of the form (x,, xo, 0),
this is clear from the continuity of F. But the continuity of u at (xo, xo, 0) follows
at once from an immediate consequence of (5.61): If (x, y, t) € Q U 92, then

p—1
+ byt.

p
+ apt'’P

p

+
=ulx, y,t) < 4

x+y

(5.63) x;y

To show that u satisfies the concavity conditions (5.4) and (5.5) on @ U 99,
we need to show only, because of the continuity and symmetry of u, that the
mapping (x, t) — u(x, y, t) is concave on the section of Q determined by y. Let
(x, y, t) be a point in Q and & its distance to 9Q. Let (§, 7) € R? satisfy £2 + 72 <
62. Consider the function ¥ defined on (-1, 1) by

Pla) = u(x + at, y, t + ar).
It suffices to show that ¥ is concave. We do this by showing that
Pa) = tu(x + af, y, t + at) + Tus(x + af, y, t + ar)

is nonincreasing on (—1, 1). By the existence and continuity of F, and F, on D,
the derivative ¥’ exists and is continuous on (-1, 1)._ Suppose for the moment
that £ # 0. Then, by part (i),

90”(01) = Ezu,x + 2ETuxt + ‘rzun

exists and is nonpositive for all but a finite set of o’s in (=1, 1). Thus (-1, 1) is
the union of a finite number of intervals such that ¥’ is nonincreasing on the
interior of each interval. Since ¢’ is continuous on (-1, 1), ¢’ is nonincreasing
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on (—1, 1). If £ =0, ¥’ is nonincreasing because it is the limit of nonincreasing
functions: ¢’(a) = lim,_,»¥} («a), where, for large n, ¥, is defined on (-1, 1) by

Pola) =ulx + a/n,y, t + ar).

This completes the proof of Lemma 5.2.
Before returning to the proof of Lemma 5.1, we note that u, and u, extend
continuously to @ U 9Q: By (5.29) and the first-order differentiability of F,

Uy (x, y, t) = tY9F, (xt P, yt~1/P)

for all (x, v, t) € Q. There is a similar expression for u,. At the least, since F,
and F, extend continuously to D U 4D, both u, and u, extend continuously to
the set

(5.64) Q. = (2 U Q)\{(x, x, 0): x € R}.
But u, and u, are also well-behaved near any point (xo, xo, 0) with x, € R. For

example, let % > 0 and (x, y, t) be a point near (%o, %o, 0) with t > 0 and (xt™?,
yt~P) € D,. Then, by (5.36) and (5.47),

(5.65) U, y, t) = Hy(x, y)/¥' (F(xt™"7, yt~17)).
Using limy_,»¥’(\) =1 and

x+y|”

2

which follows from (5.61), we see that u.(x, y, t) must be near H,(xg, x) =
px57'/2. For the case x, = 0 with (x, y, t) as above, the same result holds since in
this case H,(xo, x0) = 0 and (5.66) may be replaced by

F(xt™P, yt=/7) = (p — 1)P

(5.66) F(xt™Vp, yt=1/P) = ¢!

?

so the denominator in (5.65) is bounded away from 0. If (x, y, t) is a point near
(0, 0, 0) with t > 0 and (xt~'7, yt~'/P) € D,, then u,(x, y, t) = Fy(x, y) where F,
is given by (5.58). So here also, u.(x, y, t) is near H,(xo, xo). These results also
hold if (x, y, t) is near (xo, %o, 0) with ¢t > 0 and (xt™*?, yt~'/P) € 9D, or dD,.
Similar results for u,, and symmetry, lead to the conclusion that u, and u, have
continuous extensions to @ U dQ. The same symbols u, and u, will be used to
denote these extensions.

The function u of Lemma 5.2 also satisfies the following inequality: There is
a positive real number c, such that, for all (x, y, t) € @ U 99,

(5.67) lua(x, y, )| < cplt + ulx, y, )]
and a similar inequality holds for w,. This follows at once from the fact that
(5.68) | Fa(x, y) 1/11 + F(x, y)]'

is bounded on D U 8D. For example, if x is positive and large and x — 2 <y < x,
then, by (5.61), F(x, ¥)/x? is near 1 implying that ¥’(F(x, y)) is near 1. Also,
H.(x, y)/xP~'is near p/2 so, by (5.36), the expression (5.68) is near p/2. So the
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boundedness of (5.68) near infinity is clear; elsewhere the boundedness follows
from the continuity of (5.68).

The mapping u; does not have a continuous extension to @ U dQ. However,
the mapping (x, y, t) — tu,(x, ¥, t) on Q does have a continuous extension y to Q
U 99 given by

(5.69) Y(x, ¥, t) = ulx, y, t) — pHxu.(x, y, t) + yu,(x, y, t)].

If (x,y, t) € Q, then tu,(x, y, t) = Y (x, ¥, t) by differentiation and the continuity
of Y on Q U 99 follows from the continuity of u, u., and u,. In particular, u; has
a continuous extension to the set Q. defined in (5.64). Although u;(x, x, 0) has
not been defined, we adopt the convention that tu.(x, x, t) = 0 if t = 0. By (5.67),
Y(x, %, 0) = 0 so tu,(x, y, t) = Y(x, y, t) holds for all (x, y, t) € Q U Q.

All of this leads to the following inequality: Let (x, y, t) and (x + h, y + k,
t + r) belong to Q@ U dQ where either h = 0 or k = 0 and where r = 0 if t = 0.
Then :

<
(5.70) u(x + h,y+ k t+r)=<ulxyt)+ulx,y t)h
+ uy(x’ y’ t)k + ut(x’ y’ t)r

and strict inequality holds, for example, if x = 0, y = 0, t > 0, and either h # 0 or
k # 0. If both (x, y, t) and (x + h, y + k, t + r) belong to Q, then (5.70) follows
from the concavity conditions (5.4) and (5.5) and the existence of the first-order
derivatives. If ¢ > 0, the more general result follows by continuity. If t = 0 and r
=0,then x =y and x + h =y + k so that h = k = 0 and (5.70) holds in this case
also. The statement about strict inequality follows from the strict concavity of
u(-,0,t) and u(0, -, t) for t > 0.
We now return to the proof of Lemma 5.1 and show that

(5.71) 115 < (0,0, 1)

if f € F(0, 0, 1) and u is the function of Lemma 5.2.

Fix f and g as in the definition of F(0, 0, 1) and note, in particular, that | g ||,
< 1. Let Z be the zigzag martingale determined by f and g as in Section 3. We
shall also use a martingale W = (W;, W,, --.) with values in R? defined as
follows: W, = (Z,, T,.) = (X,, Y., T,) with

To = E(|g217| )

where g.is the limit in L? of g (since g is an L”-bounded martingale, such a limit
exists [10]) and <7, is the smallest o-field with respect to which dy, ds, - - -, d»
are measurable. Jensen’s inequality for conditional expectations gives

181" = | E(8=| o) |” = E(|8=1"| 24,) = Th

except possibly on a set of measure zero. We can and do assume without loss of
generality that | g||, = 1 and | g.{? < T, everywhere so that

X, - Y.|”
2 =T,

and W is a martingale starting at (0, 0, 1) with values in @ U 42. By (3.3) and
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(5.63),

X, + Y, |”

(5.72) I fallf = ” 2 < Eu(W,).

p

The next step is to show that
(5.73) Eu(W,.1) < Eu(W,)
and that strict inequality holds if
(5.74) P(Z,=0,Z,+, #0) > 0.

The zigzag property of Z and the fact that T+, = 0 almost everywhere on the set
where T, = 0 imply, by (5.70), that almost everywhere

u(Wn+1) = u(Wn) + ux(Wn)(Xn+1 - Xn)
+ Uy (W) (Yoir — Vo) + we(Wo)(Trir — Th).

(5.75)

Integrating both sides of this inequality gives (5.73) since, as we shall see,

(576) } Eux(Wn)(Xn+1 - Xn) =0,
(5.77) Eu,(W,)(Yp1 — Y,) =0,
(5.78) Eu,(W,)(Ths1 — T,) = 0.

These depend on the integrability of u(W,): By (5.63),
0 < u(W,) < | ful® + apTHP1 ful % + b, T

where ET, =1 and ||f|, =< Y% | drll, = 2n| g, = 2n. By Holder’s inequality,
the middle term on the right is also integrable so u(W,) € L. This and (5.67)
give u,(W,) € L Since X,4+1 — X, = (1 + ep41)dnr1 € LP, Holder’s inequality
implies that u,(W,)(X,+1 — X,) is integrable. Now W is a martingale so

E[(u:(Wn) Aj) V (=)[Whs1 — W,] = 0.

If we consider the first component of this vector in IR?, let j — , and use the
dominated convergence theorem, we obtain (5.76). The proof of (5.77) is similar.
Turning to u;, we see by (5.69) and what we have already proved that T, u,(W,)
= y(W,) is integrable. If j is a positive integer let ¥;: R?® — R be a bounded
contmuous extension of the bounded continuous mappmg (x,5,t) > u(x,y,tV

7™ Ajon QU Q. Since u(x, y, -) is concave and nonnegative on its interval of
def1n1t10n u:(x, y, -) is nonnegative and nonincreasing on its interval of definition
so we may assume that 0 < ¢, < ¢;,,. If (x, y, t) € Q U 42 and ¢t > 0, then
lim;.¥;(x, y, t) = u.(x, y, t). By the martingale property of W,

E¢j(Wn)(Tn+l - Tn) = 0.
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Therefore, by the monotone convergence theorem,

Eu,(W,)Tpe1 = J;T o u(Wo)Thir = limj—»OOEsoj(Wn)Tn+l

n

= lim;_EP;(W,)T, = Euw,(W,)T,

which, in view of the integrability of u,(W,)T,, gives (5.78) and complefes the
proof of (5.73). To check the statement about strict inequality, assume that (5.74)
holds. Since

p

= 1n+1

Xn+1 - Yn+l
2

on the set where Z,, = 0 and Z,,, # 0, we have, by (5.74), that
PZ,=0,Z,,1#0,T,>0)>0.

Therefore, by (5.70), strict inequality holds in (5.75) on a set of positive measure
implying that strict inequality holds in (5.73).

To complete the proof of (5.71), we note first that if (5.74) does not hold for
any positive integer n, then

0<

P(Z,=0,n=z1)=1

so | f112 =0 < u(0, 0, 1). On the other hand, if (5.74) does hold for some positive
integer n, let m denote the least such integer. Then, using (5.72) and (5.73), we
see that, for n < m, | f.||5 = 0 and, for n > m,

" fn"g = Eu(Wn) = Eu(Wm+1)
< Eu(W,) = Eu(W;) = u(0, 0, 1).

This completes the proof of (5.71) and, since u(0, 0, 1) = (p — 1)®, the proof of
(5.1).

To show that the constant p — 1 in (5.1) is best possible, let x > 0 and denote
by w = w(x, x) the unique number w > p satisfying (5.22). Set § =1 — 1/w and

I T
™+ (n— 1)
where 6 > 0. Define f = (f1, f2, --+) on [O, 1) by

‘(s)=x+(n—-1)0 if0=<s<m,,
(5.79) fn(s) ( ) s
= fxs®! ifrm, <s<l.

It is easy to check that Ef, = x so that d,.; is orthogonal to every constant
function. Also, d,. is supported by the interval [0, w,) on which every function
of the form ¢(d,, -- - , d,) is constant. Therefore, f is a martingale. Note that f
starts at x, then increases in steps of size § until it drops to the value 0xs’~! where
it stays ever after. Let g be the transform of f by (1, -1, 1, =1, ---). We shall
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show that

(5.80) lim;_osup, [ g. — xll, = 1,
(5.81) limsoll fll, = w = 1,
which gives immediately that

(5.82) lim, olimsoll gl = 1, '
(5.83) lim,_olim, o[ fll, =p — 1.

In turn, (5.82) and (5.83) imply that p — 1 is the best constant in (5.1). By (5.79),
1
I £all5 =[x + (n — 1)6]Pmn + f (0xs?~1)P ds.

Since w > p, the first term on the right approaches 0 as n — . By (5.22), the
second term approaches

1

(5.84) f (0xs*Y)P ds = (w — 1)~.
0
This implies (5.81). To prove (5.80), note that if m,.+1 < s < m,, then | g.(s) — x|
=<,
|gn+l(s) - gn(s) | = fn(s) - fn+l(s)

=x+ (n—1)5 — Oxs* ' < x(1 — 6)s*2,

and g,+1(s) = gn+2(s) = - - - . Consequently, if 0 < s <1, then
SUp,| g.(s) — x| < 6 + x(1 — )"
and, by (5.84),
sup,llg. — xlp =6+ (w—-1)1—-0)/6 =06+ 1.

This implies that the left-hand side of (5.80) is not greater than 1 and the reverse
inequality is obtained similarly. This completes the proof of Lemma 5.1.

The martingale in the above example may be slightly modified so that each
term takes on only a finite number of values; see [6].

We finish the proof of Theorem 1.1 by studying the case 1 < p < 2. One
approach is to use duality as in [3] but to take care to check strict inequality if
the p-norm of f is finite and positive. This is easy to do. An approach similar to
the one used above to prove the case 2 < p < « is also possible and gives
additional information. We sketch it here.

LEMMA 5.3. Let 1 < p < 2. If f is a real martingale such that || g, = 1 for
some transform g of f by a sequence of numbers in {—1, 1}, then
(5.85) Iflp<gq-—1

and the constant q — 1 is best possible.
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The proof has the same pattern as that of Lemma 5.1. Everything is the same
as in that proof up to (5.21). However, here

(5.86) F(x,y) = (w—1)?

on the subdomain

(5.87) Di={(x,y)ED:x>0,—x<y<(l - 2/q)x},
where w = w(x, y) < q is here the unique positive solution to

xP[1 — q(x — y)/2x] + qwP™! — w? = 0,

and
p _ P
(5.88) F(x, y) = i% + [1 - Fz—y ](q - 1)°
on the subdomain
(5.89) Di={(x,y) ED:x>0,(1—-2/q)x<y<zx}

LEMMA 5.4. Suppose that 1 <p < 2.

(i) Let F be the continuous function on D U 8D given by (5.86) on the subdomain
Ds, by (5.88) on D,, and satisfying the symmetry condition (5.28). Such a function
exists, satisfies the boundary condition (5.20), and has continuous first partial
derivatives on D. On D; the function F has continuous second partial derivatives
and satisfies (5.10)-(5.13) with strict inequality and (5.14) with equality. On D, it
has continuous second partial derivatives and satisfies (5.10)-(5.11) with strict
_ inequality and (5.12)-(5.14) with equality.

(i1) Let u be defined on Q U 9Q using this F as in Lemma 5.2. Then u satisfies
the concavity conditions (5.4) and (5.5), and the boundary condition (5.6) with
equality.

The proof and application of this lemma are similar to those of Lemma 5.2.
Finally, (5.82) and (5.83) remain valid for 1 < p < 2. So we have that (g — 1)f
is the transform of the martingale (¢ — 1)g by (1, -1, 1, -1, .- -),

(5.90) lim,_olim; o[l (¢ — 1)g "p =q-1,
and, using (p — 1)(g — 1) = 1, we have
(5.91) lim,—olimsoll (¢ = 1fll, = 1.

Thus g — 1 is the best constant in (5.85).
This completes the proof of Theorem 1.1.

6. Boundary data with &’ strictly convex. Let ® be an increasing
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convex function on [0, ) with #(0) = 0 and

(6.1) J; d(t)e ™t dt < oo,

Also, assume throughout this section that & is twice differentiable on (0, ) with
a strictly convex first derivative satisfying ®’(0+) = 0. (Some examples: ®(t) =
tPforp>2;®d(t)=e*—1—atfor0<a<1)

The following extends Theorem 1.2.

THEOREM 6.1. If f is a real martingale with || f|- < 1 and g is the transform
of f by a real predictable sequence v uniformly bounded in absolute value by 1, then

1 (=]
(6.2) sup, E®(|g.|) < 3 f d(t)et dt
0
and the constant on the right is best possible.

As before, the constant is already best possible if it is assumed that v does not
vary over all possibilities but is simply taken to be the numerical sequence (1,
-1,1,-1,...).

The proof has exactly the same pattern as the proof of Theorem 1.2. In the
proof of the analogue of Lemma 4.1, the function u is again defined on D U 4D
by (4.4) and (4.5) but here, for x = 1, B(x) = &(x — 1) and

(6.3) Ax) = e* f B(t)e i dt = e*! f d(t)e™ dt.
x x—1
With this choice of u, we have the following extension of the main result of
Section 4. Note that to prove Theorem 6.1 only the case x = y = 0 is needed.

LEMMA 6.1. Suppose that (x,y) € R?and | x — y| < 2. If f is a real martingale
starting at (x + y)/2 and, for some sequence (1, e, €3, - - -) in {—1, 1}, the transform
g of f by this sequence satisfies sup, || g, — ¥ ||« < 1, then

(6.4) sup, E®(|fa|) < u(x, y)

and the bound on the right-hand side is best possible. Equality holds if |x —y| =
2.

PROOF. Let D = {(x, y) € R%: | x — y| < 2} as before. The martingales f and
g determine, as in Section 3, a zigzag martingale Z starting at (x, y) with values
in DUAD. If | x — y| = 2, these properties of Z imply that almost everywhere
Z,= (x,y)and ®(|f.|) = u(Z,) = u(x, y), and the last statement of the lemma
follows. )

Now assume that (x, y) € D. As in Section 4,

(6.5) E®(|fu|) = Eu(Z,) < --- < Eu(Z,) = ul(x, y)
so the left-hand side of (6.4) is not greater than u(x, ¥). To show that it is strictly
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less than u(x, y), we shall need to show only, since E®( | f,| ) is nondecreasing in
n, that

(6.6) lim, o E®(|f.|) = ulx, y)

does not hold.
Assume, on the contrary, that (6.6) does hold. Then (6.5) implies, since u(Z,)

— ®(|f.|) is nonnegative, that

6.7) limy e | u(Z0) = ®(|fal) 1 = 0
and
(6.8) Eu(Z,.+,) = Eu(Z,), n=1.

To see that (6.7) and (6.8) lead to a contradiction, consider first the case in
which (x, ) in D satisfies | x| V |y| < 1. Then (6.8) implies that (4.21) holds.
So | f.| = | (X, + Y,)/2| converges to 0 in probability: By (6.7), for large n, the
probability is near 1 that u(Z,) — ®(|f.|) is near 0 and, with Z, € Dy U dD,,
this is possible if and only if Z, is near (1, —1) or (-1, 1). Therefore, by the
dominated convergence theorem and the fact that here ®(|f.|) < ®(1) almost
everywhere, we have that

lim, . E®(|f.]|) = ®(0) = 0 < u(x, y),

a contradiction of (6.6).
To handle the other cases, we let Q(x, y) be the set of all points (x + h, y + k)
in D U 3D where either h = 0 or k = 0 and equality holds in

(6.9) u(x + h,y + k) < u(x,y) + u.lx, y)h + u,(x, y)k.
For example, if x > 1 and x — 2 <y < x, then
(6.10) Qx,y) ={x,y+k):x—2=<y+k=<zxl

and Q(x, x) = Q(x, x—) U Q(x—, x).
Since Z starts at (x, ¥) in Q(x, y) either

(6.11) PZ.€Q(x,y),n=1)=1
or, for some positive integer n,
(6.12) P(Z, € Q(x,¥), Zns1 & Q(x,y)) > 0.

Let y = x > 1. If (6.11) holds, then P(Z, = (x, x)) = 1, since (x, x) is an
extreme point of @(x, x), so '

E®(|fs]) = 2(x) < ulx, x),

a contradiction of (6.6). If (6.12) holds, then Eu(Z,.,) < Eu(Z,), a contradiction

of (6.8).
Now let x > 1 and x — 2 < y < x. If (6.11) holds, then (6.7) implies that Y
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converges in probability to x — 2 and, by the uniform boundedness of Y,
y=EY1= =EYn_)x—2’

a contradiction of y > x — 2. On the other hand if (6.12) holds, then at least one
of the following three probabilities must be positive:

(6.13) PX,=%x-2<Y,<x,Zn1 € Qx, )
(6.14) P(Z,= (x,x), Zpns1 # Z,),
(6.15) P(Zn = (x’ X — 2)9 Zn+l ¢ Zn)'

Since Z is a zigzag martingale with values in D U 4D, the last probability
vanishes. Therefore, using the fact that (x, x) is an extreme point of Q(x, x), we
have that :

P(Z, € Q(x,y) N D, Zn & Q(Z,)) > 0.

But this gives Eu(Z,+,) < Eu(Z,), a contradiction of (6.8).

All the other cases follow by symmetry. Therefore strict inequality holds in
(6.6), and (6.4) follows.

It remains to show that the bound u(x, y) in (6.4) is best possible. The example
fin (4.24) satisfies :

lim;_osup. E®( | f.|) = % J; d(t)e t dt = u(l, 0)

exactly as in Section 4. So the bound is best possible for (x, y) = (1, 0), hence
also for (x, y) = (0, 0). Related examples for all the other cases can be constructed
easily as follows. Let 0 < 6 <2and Z,(s) = (x,y)for0=s< 1. IfZ,, .--, Z,
have been defined on [0, 1) and the set

{s: Z,(s) = (x', ¥")}

is an interval [a, b), define Z,,,;0n [a, b) as follows. If -1 <x’' <land -1 =y’
=<1,let

Z,1(s) = (—1,y") ifa=ss<cg,
=(1,y") ife<s<bd

where ¢ € [a, b] is chosen so that

b
(6-16) f [Zn+1(3) - Zn(s)] dS = 0.
Ifx’=zlandx' —2=<y=x',let
Zni(8) =", x" +06) ifass<eg,
=(x',x" —2) ifc=s<b,

where ¢ € [a, b] is again chosen so that (6.16) holds. Similarly, if y’ > 1 and
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y' —2=x"<y’,let
Zo(s)=(y' +46,y) ifass<e,
=(y' —2,y) ifcss<b
with ¢ chosen as before. The other cases are handled symmetrically. Note.that if
0 is small, then Z,.,(s) is either in or near Q(x’, y’). Clearly, Z = (Z,, Z,, ---) is
a zigzag martingale. Let f be the martingale defined by f, = (X, + Y,)/2 and g
the transform of f by the sequence ¢ = (1, ¢, €3, - - -) defined in Section 3. Then

f and g are as in the statement of Lemma 6.1. It is easy to see by considering
separately the two main cases that

(6.17) lim;_osup, E®( | f.|) = u(x, y).

This completes the proof of Lemma 6.1.
Let Uy and L be functions on the closure of D = {(x, y) E R%: |x — y| < 2}
satisfying the symmetry condition (4.4) and such that 2Us(x, y) is

(6.18) 1+ xy) J;“’ d(t)e™ dt

if|[x] V|y| =1, andis

(6.19) (y — x + 2)e” J:Q &t — e tdt+ (x — y)®(x— 1)
ifx=landx —2=<y=<x,and 2Ls(x, y) is

6.20) (y—x+ 2)e'y[<I>(1) + J;y ®(t + 1)et dt] +(x—y)P(y+1)

f0sy=sx=<y+2 andis

* @t +1) a(y + 1)
(6.21) (y —x+ 2)[<I>(1) + J; (t_+—172— dt] +(x+y) —y—;—l_—

if-1<y=<0and —y=<x=<y+ 2, with Ly(—1, 1) = 0. The function U, is simply
the function u of Lemma 6.1 and will be shown to be the upper solution of a
boundary value problem. The function Ly is the lower solution. The information
that L contains about the control of martingales will become clear in Sections 7
and 11.

THEOREM 6.2. The function Uy is the least biconcave function u on D U 6D
such that .

x+y> if (x,y) € aD.

2
The function Ls is the greatest biconvex function u on D U 9D such that

(6.22) u(x,y) = <I><.

(6.23) u(, y) < cp( i% ) if (x,y) € aD.
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PrOOF. We know from Lemma 6.1 that
(6.24) Us(x, y) = supzsup,E®(|f.|)

where f, = (X, + Y,)/2, as usual, and Z = (X, Y) is a zigzag martingale starting
at (x, y) with values in D U aD. In fact, by (6.17), each term of Z can be assumed
to have only a finite number of values. .

We already know that U, is biconcave and satisfies the boundary condition
(6.22). It remains to show that it is the least such function. Let u be any biconcave
function on D U 4D satisfying (6.22). Then E®(|f.|) < Eu(Z,) as before. To
show that Eu(Z,..) < Eu(Z,) we may assume that Z,,, = (Xn+1, Y»). (The other
case, Zps1 = (Xn, Yn+1), is similar.) By the concavity of u(., y) and Jensen’s
inequality,

(6.25) E[u(Zn+1) |Zn] = u(E(Xn+1|Zn)y Y,) = u(Z,)

and this gives Eu(Z,+,) < Eu(Z,). Thus E®(|f.|) = Eu(Z,) < --- <=Eu(Z,) =
u(x, y) so Us(x, ¥) < u(x, y). This completes the proof of the first half of the
theorem. The proof of the second half has the same pattern.

7. Boundary data with &’ strictly concave. We assume here, as in
Section 6, that & is an increasing convex function on [0,%0) such that ® is twice
differentiable on (0, ©) and ®(0) = &’(0+) = 0. In this section, however, we
assume that &’ is strictly concave. (Examples: ®(t) = t* for 1 <p < 2; ®(t) =
t log(t + 1); ®(t) = t — log(t + 1).) In this case (6.1) is automatically satisfied
since, for t > x>0,

B(t) = ®(x) + ®'(x)(t — x) + 2 " (x)(¢t — x)2
The following is the dual of Theorem 6.1.

THEOREM 7.1. If f is a real martingale such that, for some real predictable
sequence v uniformly bounded in absolute value by 1, the transform g of f by v
satisfies g* = 1 almost everywhere, then

(7.1) % J; & (t)e™t dt < sup,E®(|fn|)

and the constant on the left is best possible.

Again u is defined on D U 4D by (4.4) and (4.5) where B(x) = &(x — 1) and
A(x) is given by (4.9). Here, however, u is biconvex on D U dD: Note, for example,
that the strict concavity of ®’ implies that u..(x, y) > 0if (x,y) € D, as is clear
from (4.13).

LEMMA 7.1. Suppose that (x, y) E R?and | x — y| < 2. If f is a real martingale
starting at (x + y)/2 and, for some real predictable sequence v = (1, vg, U3, -+-)
uniformly bounded in absolute value by 1, the transform g of f by v satisfies
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sup,|g. — ¥ | = 1 almost everywhere, then
(7.2) u(x, y) < sup,E®(|f.|)

and the bound on the left-hand side is best possible. If | x — y | = 2, then u(x,y) <
sup,E®(|f.|) and equality holds if and only if f = ((x + y)/2, (x + ¥)/2, ---)
almost everywhere.

By the first reduction of Section 2, Theorem 7.1 follows at once from the
special case x =y = 0.

ProOOF OF LEMMA 7.1. If |x — y| = 2, then u(x, y) = E®(|fi|). The
conditions on ® imply that the mapping t — ®( | ¢ | ) is strictly convex. Therefore,
by Jensen’s inequality, u(x, y) = &(| Ef,|) < E®(|f.|) unless f, = (x + y)/2 a.e.
and the last statement of the lemma is proved.

To prove (7.2), we can assume that sup, E®( | f.| ) is finite so, by the inequality
t<1+ ®(t)/®(1), t =0, the martingale f is L'-bounded. Let f. denote its almost
everywhere limit [10] and g the almost everywhere limit of g [3].

We can also assume in the proof that

(7.3) lge —y| =1 ae.

For if (7.3) is not satisfied, we can replaced g by g" = {g.an, n = 1} where 7 =
inf{n: | g, — ¥ | = 1}. On the set {r < o},

(gD -yl =18 —yl=1,

and, on the set {r = o}, the inequality |g, — y| < 1 holds for all n but
sup,|g. — y| = 1 ae., so g" satisfies (7.3) a.e. The martingale f* starts at
(x+y)/2 and g" is the transform of f” by v. Furthermore, E®(| f,a.|)<E®(|fa|),
an immediate consequence of the martingale property of f; see [10]. So we can
and do assume in the proof of (7.2) that (7.3) holds.

Let Z = (Z,, Z, - --), where Z, = (X,,, Y,,), be the martingale with values in

R? defined by

(7.4) X, =x+ Yk (1 + v&) dy,
(1.5) Y.=y+ 22=2 (1 = vg) dy.
Note that (3.3) and (3.4) are satisfied but that here
(7.6) (Xn+1 — Xn)(Ypa1 — Yi) = 0.

Also note that Zo = (Xw, Y=) & D a.e., where D has the same meaning as in
Section 4, since | Xo— Yw|/2 =| 8= — y| = 1 a.e. The argument leading to (7.3)
allows us to assume that

(7.7 Zni1 = Z, on the set {Z, & D}.
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We now extend to IR? the function u in the statement of the lemma by defining
x+y

)

for (x, y) € D U dD. This extension, also denoted by u, is biconvex on the whole
of R2 For example, if x > 1, then '

2u.(x+, x — 2) — 2u,(x—, x — 2) = ®'(x — 1) — [FA'(x) + 2B’(x)]
=A’(x) — B'(x)

u(x, y) = <I>(

= ¢* f [B’(t) — B'(x)]e™* dt > 0.

We shall also use the fact that u is strictly convex along any line with positive
slope: Let h > 0 and k > 0. Then ¥, defined by #(a) = u(x + ah, y + ak), has a
strictly increasing right-hand derivative on R. A key element in the proof of this
is that, on any neighborhood of (x + ah, ¥y + ak) in which u is twice continuously
differentiable, u,,> 0 so that

(7.8) ¢”(a) = h®u,, + 2hku,, + k%u,, > 0.

Suppose that h > k > 0. (The case h = k> 0 is also easy and the remaining case
is symmetric). As in Section 4, the derivatives u, and u, are continuous on D.
Therefore, by (7.8), ¢’ is continuous and strictly increasing on the interval

{@ € R: (x + ah, y + ak) € D}.
Also, for example, if x > 1 and y = x — 2, then
2¢0'(0+) — 2¢’(0—) = [A’(x) — B'(x)](h — k) > 0.
Accordingly, for (x, y) € D and (x + h, y + k) € R? with hk = 0,
(7.9) u(x + h,y + k) = ulx, y) + u.(x, y)h + u,(x, y)k

and strict inequality holds if hk > 0 or, more generally, if hk = 0 and (x + h,
y + k) & Q(x, y), exactly the same set as in Section 6.
We now show that

(7.10) Eu(Z,.+1) = Eu(Z,).
Let I denote the indicator function of D and J the indicator function of its

complement. Then, by (7.7), Eu(Z,+1)J (Z,) = Eu(Z,)J(Z,) so it suffices to show
that

(7.11) Eu(Zn41)(Z,) = Eu(Za)I(Z,).

But u.(Z,)I(Z,)(Xn+1 — X,) and u,(Z,)I(Z,)(Yn+1 — Y,) are integrable, as we
show below, so (7.11) follows at once from (7.9) and the fact that Z is a martingale
satisfying (7.6).

The integrability of u,(Z,)I(Z,)(X,+1 — X,) follows from

(7.12) | ui(Z)(Z,) | = %2 @'(1ful) + ¢,
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(7.13) | Xn+1 — Xn| < 2| dnsr| = 2| fasr] + 21fal,
(7.14) b®'(a) = 2%(a) + 2%(b), a, b= 0,

and the integrability of ®(|f.|) and ®(|f.+1|). Here ¢ is a suitably chosen
positive constant and &’(0) denotes the vanishing right-hand derivative at 0. On
D the derivative u, is continuous up to the boundary so u, is locally bounded on
D. Therefore, by symmetry, it is enough to consider u, for (x, y) € D with x = 2.
Then, using the convexity of u(-, y), we have that

u(x, y) S u(y + 2+,y) =% ®'(y + 1).

Since &’ is increasing but ®” is decreasing,

l ,x+y l ,x+y ”
u,,(x,y)s2<1><——2 +2>s2<1><——2 >+¢I>(1),

which gives (7.12). To show (7.14), assume that a > 0. Then, since &’ is concave,
®’(a)/a = &'(t)/t for 0 < t < a. Therefore,

a

ad’(a) = 2 j; t®’(a)/adt < 2 J; ®’'(t) dt = 2®(a),

which, by monotonicity, implies (7.14). By symmetry, integrability for u, also
follows. This completes the proof of (7.10).
The next step is to observe that

(7.15) lim, . |u(Z,) — ®(|fa]) 1 = 0.

Since u and ® are continuous and Z., € D a.e., the integrand converges to u(Z,)
— ®(|f»|) =0 a.e., and by (7.18) below,

(7.16) 0 = u(Z,) — ®(1fal) = u(0, 0).

So, by the Lebesgue dominated convergence theorem, (7.15) holds,
By (7.10), (7.15), and the inequality

Eu(Z,) = E®(|fa|) + lu(Z,) — (| fa]) lI1,
we have that
(7.17) u(x,y) = Eu(Z,) = ... =lim,Eu(Z,) < lim,E®(|f,.]).

Furthermore, Eu(Z,) < Eu(Z,.,) must hold for some positive integer n. This is
even simpler to prove than the corresponding result of Section 6 since here Z,
€D ae.and Z,,, = Z, on {Z, € D}. For example, here the probability in (6.15)
must vanish since (x, x — 2) € D. Apart from the proof of (7.18), given below,
this establishes the desired inequality (7.2). The example of Section 6 also shows
here that the bound on the left-hand side of (7.2) is best possible. (Note, in this
connection, that the « defined in the last paragraph of Section 4 is an increasing
function of é for 0 < § < 2. Therefore, the monotone convergence theorem can
be used in place of Fatou’s Lemma to obtain the dual of inequalities such as
(4.25) in which the inequality sign must be reversed.)
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We now show that

x;y‘)Su(0,0)

for all (x, y) € R2 This gives (7.16). Equality holds on the left if and only if
(x,y) € D, and on the right if and only if x = y = 0. We can assume in the proof
that ®(1) = 1. Then .

(7.19) d(x)=2x%, 0=sx=1

(7.18) 0<uly)— cI><

To see this, fix a number x in the open unit interval. If ®’(x) = 2x, then, by the
concavity of ®’, we have that ®'(¢) = 2t for 0 <t = x, so

<I>(x)=f ®'(t) dtaf o2t dt = x2.
0 0

On the other hand, if ®’(x) < 2x, then ®’(t) <2tforx =t =1,so0

1 1
®(x) = 1—f ®'(t) dt>1—f 2t dt = x2
We shall also need
(7.20) u(0, 0) < [u(2, 0) + u(-2,0)}/2=2(1) =1

and, forx =1,
(7.21) Al(x) =e* f B'(t)etdt <B'(x + 1) = ®'(x).

The latter inequality follows from Jensen’s inequality and

e"f tetdt=x+ 1.

Now consider the right-hand term minus the middle term in (7.18) in the case x
=y =0: Let M(x) = ®(x) + u(0, 0) — ulx, x). Then M(0) =0 and, for 0 <x =
1, we have, by (7.19) and (7.20), that

M(x) = ®(x) — u(0, 0)x2 > &(x) — x> = 0.

If x > 1, then M’ (x) = ®’(x) — A’(x), which, by (7.21), is positive, so M(x) >0
here also. Now fix a nonnegative number x and consider

N(s) = ®(x) + u(0,0) —u(x +s,x —s)
fo;05s<oo.Then,for0<s<1, ’
N'(s) = uy(x + s, x — 8) — us(x + s, x — 8) = 25u(0, 0) ifx+s<l1,

N'(s) =s[A’(x+s) —B'(x+s)] ifx+s>1.



SHARP INEQUALITIES 681

In both of these cases N’(s) > 0. (If x + s = 1, the third possible case, then N’(s)
=sA(1) and N’ is continuous on (0, 1) as it should be.) Therefore, for 0 <s <1,

(7.22) N(s) > N(0) = M(x)

and, since N(s) = N(1) = u(0, 0) for s > 1, the inequality (7.22) holds for all s >
0. By symmetry, the right-hand side of (7.18) follows and equality holds'if and
only if x = y = 0. In a similar way, the left hand side is a consequence of

u(x+s,x—s)—®(x)=N(1)—-N(@G)>0, 0<s<1.

This completes the proof of Lemma 7.1.

The effect of the concavity of &’ is to interchange the definitions of Ly and
U, given in Section 6. Here Ly is the function u of Lemma 7.1, that is, 2Ls is
given by (6.18) and (6.19) while 2U, is given by (6.20) and (6.21).

THEOREM 7.2. The function Ly is the greatest biconvex function u on D U 6D
such that

(7.23) ul, y) < q>< x ; y ) if (x,y) € aD.
Similarly Us is the least biconcave function u on D U 3D such that
(7.24) u(x, y) = q>( 5%“ ) if (xy) € aD.

Proor. By Lemma 7.1 and its proof,
(7.25) Ls(x, y) = infzsup, E® (| f,|)

. where f, = (X, + Y,)/2 and Z = (X, Y) is a zigzag martingale starting at (x, )
with the property that almost everywhere the distance of Z, to the complement
of D is not bounded away from 0. In fact, the examples showing that the bound
in (7.2) is best possible can be slightly modified (move immediately to D after a
suitably large number of steps) so that, in (7.25), Z may be assumed to have
values in D U 4D and a finite number of values altogether, so that, for some
positive integer n,

Zy=1Znps1= - =Zs €4D.
The remainder of the proof is parallel to that of Theorem 6.2.

REMARK 7.1. Suppose that ®’ is merely concave and not necessarily strictly
concave. Then Theorem 7.2 holds without change but the possibilty of equality
must be allowed in (7.1) and (7.2). A similar remark applies to Section 6.

Consider the example ®(t) = 2t, which will be of particular interest below. Let
u be the continuous function defined on R? by
ulx,y)=1+2xy if|x|V |y|l=1,

7.26
( ) |x +y| if |x|] V ]|y|>1.
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The analogue of (7.2) here is
(7.27) u(x, y) < 2| fl

where f is a real martingale starting at (x + y)/2 with (x, y) € R? such that for
some real predictable sequence v = (1, vg, U3, - - -) uniformly bounded in absolute
value by 1, the transform g of f by v satisfies sup,.| g, — ¥ | = 1 almost everywhere.

We sketch a direct and simple proof of this. It is elementary to check that, for
(x,y) ER?, '

(7.28) O=sux,y)—|x+y| =1,
and that if (x + h, y + k) € R? with hk = 0, then
(7.29) u(x+ h,y+k)=u(x,y) + P(x, y)h + ¢(x, y)k

where @(x, y) =yand ¢ (x,y) = xif |x| V |y] =1, and P(x, y) = ¢(x, y) =
sgn(x + y) elsewhere in IR% The functions ¢ and y are bounded and measurable
so the martingale property of Z implies that

E‘P(Zn)(erl - Xn) =0
with a similar result for . Therefore,
(7.30) u(x, y) < Eu(Z,) < --- < Eu(Z,).

Using (7.28) and the permissible assumption that Z,, &€ D a.e., we have (7.15) and
(7.17) here so (7.27) holds.

To obtain (7.27), we assumed that f could be controlled to satisfy
sup, |g, — ¥| = 1 a.e. In the following, we assume that f can be controlled to
satisfy a one-sided condition: sup,g, = 8 a.e. The gambling interpretation of this
is obvious.

THEOREM 7.3. Suppose that o and B are real numbers. If f is a real martingale

starting at o and for some real predictable sequence v = (1, v, vs, - - -) uniformly
bounded in absolute value by 1, the transform g of f by v satisfies

(7.31) P(sup,g, = B) = 1,

then

(7.32) Ifliz @BV |al

and the bound on the right is best possible. In fact, there is a real martingale f
starting at « such that f satisfies (7.32) with equality and the transform of f by
1, -1,1, -1, -..) satisfies (7.31).

PROOF. Suppose that f is a real martingale starting at « and for some real
ptedictable sequence v = (1, v;, vs, - - -) uniformly bounded in absolute value by
1, the transform g of f by v satisfies (7.31). Let x and y be defined by o =
(x +y)/2 and 8 =y + 1. For each positive integer j, let f and g’ be the martingales
satisfying f;, = 2f,/(j + 1) and g}, = 2g,/(j + 1). Note that g’ is the transform of
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f’ by the above predictable sequence v, that f’ starts at (x; + y;)/2 where
5=2x/(j+1)+(G-1/G+1),
yi=2/(G+1D)-0G-1/G+1),

and that, by (7.31), sup,(g’, — ¥;) = 1 a.e. Therefore, by (7.27),

(7.33) ulx, y) < 20 Fllh = 41fl/G +.1).
Now multiply both sides of this inequality by (j + 1)/4 and let j — o to obtain
(7.32).

We now show that there does exist a real martingale f starting at « such that
f satisfies (7.32) with equality and the transform of f by some predictable sequence
(1, vg, Us, ---) satisfies (7.31) where each v, has values in {—1, 1}. This is not
quite the assertion of the theorem but does imply it by the first part of the proof
of Lemma 2.1; see (2.4) and (2.5).

There are four cases. i) f 3 <o, let f= (o, ---). (ii) fa<B=0,letv =
(1, 1, ---) and f be any nonpositive martingale starting at « that converges a.e.
to 0. (iii) f 3>0and B/2 <= a < B, let v = (1, =1, =1, =1, --.) and f be the
double-or-nothing martingale starting at a: f, is 2" '« times the indicator function
of [0, 1/2"7%). (iv) Now consider the remaining case: 8 > 0 and « < /2. Our
example here uses the double-or-nothing idea twice. Let o be a measurable
function from [0, 1) to {2, 3, - - -} and 7 > ¢ a similar function such that

Ple=m,7=n)=1/2"" if 2=m<n.
Define f and v on [0, 1) by
fa(s) = 2" o — B/2) + B/2 if n < a(s),
- (7.34) = 2m©)8/2 if ¢(s) = n < 7(s),
=0 ifn=17(s),
(7.35) va(s) =1 if n < o(s),
=-1 ifn> g(s).

It is easy to check that f is a martingale and v is predictable relative to f.
Furthermore, f satisfies (7.32) with equality and the transform of f by v satisfies
(7.31). -

REMARK 7.2. Let u be the continuous function on D U 9D satisfying the
symmetry condition (4.4) and such that
ux,y) =x+y+(y—x+2e”? if0sy=sx=y+2,
(7.36) =21+ - (y—x+2og(l +y)
' f-1<y=0,-ysx=<y+2

This is the least biconcave function on D U 4D such that |x + y| < u(x, y) if
(x, y) € 4D, the upper solution U, for ®(t) = 2¢. Note that u,, = 0 and u,, <0
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on the set where x + y > 0 and x — 2 < y < x. This contrasts with the lower
solution L4 given by the restriction of (7.26) to D U dD and the extremal, or
nearly extremal, zigzag martingales Z must be chosen accordingly.

8. Weak-type inequalities. To illustrate the method, we begin by giving
a new and elementary proof of the following weak-type inequality from [3] and
[4]: If f is a real martingale and g is the transform of f by a real predictable
sequence v uniformly bounded in absolute value by 1, then

(8.1) AP(g*=\) =2|fll,, A>0.

To prove this we can assume that f, = 0, Z is defined by (7.4) and (7.5) with x
=y =0, and (7.7) holds. Then {g* = 1} = {Z, & D} where

&n(8) = sup1<r=n| &r(s)].
Let u be the continuous function defined on R? by (7.26). Then, by (7.30),
(8.2) 1=u(0,0) =Eu(Z,) < -.-.- <Eu(Z,).
Let I denote the indicator function of D. Then, by (8.2),
P(gr =z 1) =1- EI(Z,) = E[u(Z,) — I(Z,)].
By (7.26) and (7.28), the latter integrand is not greater than | X, + Y,| = 2|f.|
and this gives
P(g*>1) = 2|fl.
Thus AP(g* > \) < 2| f|; for all A > 0, which implies (8.1) and, indeed, gives
(1.3) in the case p = 1.

In the case p = 2, the inequality (1.3) is especially elementary, of course, but
can also be obtained by the above method with the use of the function u defined
by u(x, y) =1 + xy for all (x, y) € R% Here u(Z,) — I(Z,) < |f.|%

We now prove (1.3) in the case 1 < p < 2 by proving a little more. As in

Section 7, ® is an increasing convex function on [0, ) such that ® is twice
differentiable on (0, ), &’ is strictly concave, and ®(0) = ®’(0 +) = 0.

THEOREM 8.1. If f is a real martingale and g is the transform of f by a real
predictable sequence v uniformly bounded in absolute value by 1, then, for all A >

0,

(8.3) P(g* = \) < 2 sup.E®(|f,|/N)/ j; B(t)e™ dt.

The constant on the right is best possible. Equality holds if and only if f =
(0,0, ---) almost everywhere.

PROOF. We can assume that A = 1, sup E®(|f.|) < o, f; =0, Z is defined
by (7.4) and (7.5) with x = y = 0, and (7.7) holds. Then, as in Section 7, the
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almost everywhere limit of Z exists and satisfies
P(Z. & D) =P(|8-|=1) = P(g*=1).
Let u be the function used in the proof of Lemma 7.1. Then, by (7.17),
u(0, 0) < Eu(Z,).
Therefore, with I denoting the indicator function of D as before,
u(0, 0)P(g* = 1)
= u(0, 0) — u(0, 0)EI(Z-)
< E[u(Z,) — u(0, 0)1(Z)]
=E®(Ifa|) + E[u(Z,) — u(0, 0)I(Zx) — ®(|fa])].
The last integrand is dominated from above by u(0, 0), so, by Fatou’s lemma,
u(0, 0)P(g* = 1)
= sup, E®(|fa|) + E[u(Zx) — u(0, 0)I(Z=) — (| fw])].
By (7.18) and the definition of u on the complement of D,
uU(Ze) — u(0, 0)I(Z.) = ®(|f=|)
with strict inequality holding on the set {Z., € D, Z.. # (0, 0)}. Therefore,
8.5) w(0, 0)P(g* = 1) < sup.E®(|f,|),

which is (8.3) in the case A = 1.
If f=(0,0 - --) almost everywhere, then both sides of (8.5) vanish and equality

- holds. To go the other way, assume that equality holds in (8.5). Then
(8.6) P(Zo&€ DorZ,=(0,0) =1

for otherwise the second term on the right-hand side of (8.4) would be negative.
Also, (4.21) holds, otherwise, for some positive integer m and all n = m, u(0, 0)
<Eu(Z,) < Eu(Z,). By (4.21) and (8.6),

P(Z.=(1,-1) or (-1, 1) or (0, 0)) =1
$0 f» = 0 a.e. Also, by (4.21), |f.| <1 a.e., so
sup,E®(|fn|) = lim,E®(|f.|) = E®(|fx|) = O.

Since ®(t) > 0 for t > 0, we can conclude that f = (0, 0, ---) a.e.

The constant 2/ ®(t)e™ dt is best possible since it is already best possible,
by Theorem 7.1, in the special case P(g* = 1) = 1.

This completes the proof of Theorem 8.1 and Theorem 1.3.

(8.4)

REMARK 8.1. 'There is a boundary value problem underlying the above proof
(cf. Theorem 3.2 of [5]): Find the greatest function u defined on

(8.7) {(x, 3, t) ERY |[x —y| =2,0=<t=<1}
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such that
(8.8) if h, k = 0, then the mapping (s, t) — u(x + sh, y + sk, t) is convex,

(8.9) u(x,y,l)s<I>< x;yl) if [x—y| =2,
(8.10) u(x,y,0)5<1>< x—?l)

The function u defined by
u(x, y, t) = u(0, 0)¢ + [u(x, y) — u(0, 0)],

where u(x, y) is as above, satisfies (8.8), (8.9), and (8.10) but is not the greatest
such function. However, on the set

{(0,0,t):0=t=1j}

it agrees with the greatest such function and this is enough to obtain Theorem
8.1.

9. Best possible bounds in the L? case. Our aim here is to extend
Theorem 1.1 and to check that the function u discovered in the course of its
proof is indeed the upper solution of the boundary value problem of Section 5.
The lower solution, which is equal to the upper solution only in the elementary
case p = 2, is an easy consequence.

Let U, be the function on Q U Q defined as follows: If 1 < p < 2, then U, is
the function u of Lemma 5.4; if 2 < p < o, then U, is the function u of Lemma
- 5.2; and

Us(x, y, t) =t + xy.

Similarly, let L, be the function on @ U 9@ with L,(x, x, 0) = | x |? and such that,
for all (x,y,t) € QU IQ with ¢t > 0,

Ly(x, y, t) = tF (xt™/P, yt=/P)

with F here the continuous function on D U 3D satisfying the symmetry condition
(5.28) and the following additional property: If 1 < p < 2, the restriction of F to
D, is given by (5.23) and the restriction of F to D, is given by (5.26); if 2 < p <
oo, the restriction of F to D; is given by (5.86) and the restriction of F to D, is
given by (5.88); and F(x,y) =1 + xy in case p = 2.

If (x, y, t) € QU 4Q, these two functions are related by the following identity:

9.1) Ly(x, =y, Up(x, y, t)) = t = Uy(x, =y, Ly(x, y, t)).

LEMMA 9.1. Suppose that 1 <p < © and (x, y, t) € QU dQ. If f is a real
martingale starting at (x + y)/2 and, for some sequence (1, e, €3, - --) in {—1, 1},
the transform g of f by this sequence satisfies sup, || g, — y |5 = t, then, for p # 2
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and (x,y,t) € Q,

(9.2) Ly(x, 5, t) < I fI5 < Up(x, 5, t).

Ifp=2or(x,y,t) € IR, equality holds. The bounds in (9.2) are best possible.
PROOF. We must check, among other things, that if p > 2 and (x, y, t) e qQ,

then .

(9.3) I£15 < ulx, v, t)

where u is the function of Lemma 5.2. Up to the proof of strict inequality, the
reasoning is similar to that in the proof of (5.71): Here the zigzag martingale Z,
generated by f and g as in Section 3, starts at (x, y) and the martingale T' =
(Ty, T, - --), defined by

(9.4) T. = E(|8- — ¥ 17| ),

satisfles T' = E | g —y|P=tso W= (X, Y, T) = (Z, T) starts at (x, y, t). Also,
both (5.72) and (5.73) hold as before so

9.5)  £15 = limpo | fu |} =< limpw Eu(Wy) < Eu(Wh) = ulx, y, t).

To prove strict inequality, we shall need to consider the set @(x, y, t) of all
points (x + h,y + k, t + r) in @ U dQ where either h = 0 or k = 0, as usual, and
equality holds in (5.70). Let

Q; = {(x, ¥, t) € Q: (xt7P, yt7P) € Dy}
fori=1,2 If (x,y, t) € Q4, then

(96 Qyt) = {(x, y+kt+r)€QUIUk= 2—;; [1 _pl—y) y)] }

and on this set

9.7) u(x,y +k t+r)= t+r u(x, y, t).
If (x, 5, t) € (22 U 3Qs) N Q, then
x—y |°
(9.8) Qx,y,t) = {(x, y, t+r): — <t+ r}
and here
(9.9) u(x,y, t +r) =u(x, y,t) + ru(0, d, 1).

If x>0andt> 0, then
Q(x,x, t) = {(x+h,x,t+r): (x,x+ h,t +r) €Q;UdQ and pth = 2xr}

9.10
( ) U{(x,x+k, t+r) €Q,UJIQ, and ptk = 2xr}.
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For example, to prove (9.7) we may assume by continuity that (x,y + k, ¢t + 1) €
Q;. Under this assumption, (9.7) follows immediately from (5.29), (5.23), (5.25),
and the fact that

px—y—=k)|_ _plx—Y)
t[l— 9% ]—(t+r)[1 77 ]

for k and r as in (9.6). Also, under this assumption,
(9.11) Q(x,y + k t+7r) CQx,y,¢)

and this follows from (9.6). On Q,,
p P
o= [=2 ] )o-r

and this implies (9.9). Now (9.7) and (9.9) together with the other properties of
u described in Section 5 lead without difficulty to (9.6), (9.8), and (9.10). For
example, the strict concavity of u(-, y, -) on @, implies that, for (x, y, t) € @,
the set Q(x, y, t) does not contain any point (x + h, y, t + r) with (h, r) # (0, 0).

To complete the proof of (9.3), we must show that strict inequality holds
somewhere in (9.5). If, on the contrary, || |5 = u(x, y, t), then

x+y

(9.12) u(x, y, t) =

(9.13) lim, ol w(W,) = |fa|Pl1=0
and
(9.14) Eu(W,4) = Eu(W,), n=1.

But it is impossible for both (9.13) and (9.14) to hold as can be seen by using the
sets Q(x, v, t) and an argument similar to that used in Section 6.
) The proof of the right-hand side of (9.2) for 1 < p < 2 is similar. The proof of
the left-hand side in the case p # 2 can be based on the identity (9.1).
So the strict inequality (9.2) holds for p # 2 and (x, y, t) € Q. On the other
hand, suppose that p = 2. Then d is an orthogonal sequence in L? s0 that

x+y 2

2

x -
‘_2"‘)'/ + Y heo exds

2
| + iy Ed: = xy +

Ifall% =

2
= "gn - y"% + xy.
Taking the supremum of both sides with respect to n, we obtain
I£13=t+ xy = La(x, 3, t) = Ua(x, 3, t).

If 1 <p<but (x,y, t) € 0Q, then
x—y |’
2

so that E|g, —y|? = | E(g; — ¥)|7. Thus, g, = & a.e. for all n = 2 so that d» =

t= =g —yl5<sup.llgn —yl5=1t
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ds = ... =0 a.e. implying that
x + P
IF1g= | 557 | = Lo(x, 3, ) = Uplx, 3, 0).

It remains to show that the bounds in (9.2) are best possible. Consider the
case 2 < p < . By homogeneity and continuity, the example of Section 5 implies
that, for x = y = 0 and ¢t > 0, the function u = U, yields the best possible upper
bound u(x, x, t). If (x, y, t) € Q; and (x, x, to) and (%, Y«, t») are the endpoints of
the line segment Q(x, y, t) as above, we can proceed as follows. Let 6 > 0 and
(f°, £°) be a pair of martingales satisfying the assumptions of Lemma 9.1 with
respect to (x, x, to) and such that

lim,Eu(W3) = | f°115 > u(x, x, to)) — &

where W0 is the martingale with values in @ U dQ determined by f° and g°.
Choose a so that

(x, y, t) = a(x, x, to) + (1 — a)(x, Yo, tx)
and let Wy = (x,y, t) and, forn = 1,
Woi(s) = Wi(s/a) if0=s<a,
= (X, Yoo, tw) fa=ss<Ll

Then W is a martingale starting at (x, y, t) with values in @ U 4Q. It has the
form (Z, T) where Z is a zigzag martingale. Let f and g be generated by Z as in
Section 3. Using (9.7), we have

Eu(Wn+1)=J; u(Wi(s/a)) d8+f U(%, Yoo te) ds

= aEu(W?) + (1 — a)u(x, Ye, tx)
> aulx, x, to) + (1 — a)u(x, Yo, te) — &
u(x, y, t) — é.

Similarly, sup,|lg. — ¥ |2 = t. Therefore, f and g satisfy the assumptions of
Lemma 9.1 and

I £15 = lim,Eu(W,) = u(x, y, t) — 0

showing that the upper bound u(x, y, t) is best possible. If (x, y, t) € Q2 U 69y,
the proof is similar: In this case, let yo =y, te = | x — y |?/2P, and t, be so large
that F (xt5Y?, yts/P) is near F (0, 0).

This completes the proof of Lemma 9.1.

THEOREM 9.1. Suppose that (;c, y,t) E Qandeither l<p<2o0r2<p<wo,
If f is a real martingale starting at (x + y)/2 and, for some real predictable sequence
v = (1, vy, Vs, - - -) uniformly bounded in absolute value by 1, the transform g of f
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by this sequence satisfies sup, | g, — ¥ |5 = t, then
(9.15) Ly(x, , t) < Ifll5-

On the other hand, if v is uniformly bounded away from the origin by 1 and
sup, || g, — ¥ ||§ <t, then

(9.16) 112 < Up(x, y, ).
By Lemma 9.1, these bounds are best possible. The case p = 2 is elementary.
Proor. To prove (9.15), we shall use the decomposition of g given in Lemma
2.1. Let t; = sup, || G5 — y ||5. Then
t < sup,llgn — yI5 = sup, | TjZ1 277 (Ghn — )15
< (S5 279871 < S 270,

Since v; = 1, both F/ and G’ start at (x + ¥)/2 so G{ — y = (x — y)/2 and
(x,5,t;) €QUIQ for all j. But

p

X — .
Y1 <t< Y1 277

2

so (x, y, t;) € Q for some j. Hence L,(x, y, t;) < | F/||5 = || f||5 for all j with strict
inequality holding for some j. Here we have used (2.1) and Lemma 9.1. Therefore,
by the monotonicity and convexity of L,(x, y,-),

Lp(x; Y, t) = 2;;1 2_ij(x$ Y, t!) < 2}11 2_j "f"g = "f”g‘

To prove (9.16), note that (f, — y, fo — ¥, - - -) is the transform of (g; — y, g2 —
--) by (1, 1/vy, 1/vs, ---). If (9.16) does not hold, then

sup, || (fs = ¥) — (=) I8 = Up(x, , t)
and, by (9.1) and (9.15),
t = L,(x, =y, Up(x, y, t)) <sup,lg. —yl3,

a contradiction. This completes the proof of Theorem 9.1.
Here is another consequence of Lemma 9.1.

THEOREM 9.2. Let 1< p < o, The function L, is the greatest function u on Q
U 9Q such that

(9.17) the mapping (x, t) — u(x, y, t) is convex on the section of QU 4Q
determined by vy,

(9.18) the mapping (y, t) — u(x, 5/, t) is convex on the section of Q U 9%
determined by x, and

p
(9.19) ux, y, t) = | 2221 i (x, 9, 1) € 09
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Similarly, the function U, is the least function u on Q U dQ satisfying the dual
conditions (5.4), (5.5), and (5.6).

ProoOF. By Theorem 9.1,
(9.20) Up(x, y, t) = supw |l fII3

where f, = (X, + Y,)/2, Z = (X, Y) is a zigzag martingale starting at (x, ), and
W= (X,Y, T)=(Z, T) is a martingale starting at (x, y, t) with values in Q U
9Q. In view of the examples showing that the bounds in Lemma 9.1 are best
possible, each term of W can be assumed to have only a finite number of values.

Suppose that u is a function on Q U dQ satisfying (5.4), (5.5), and (5.6). If
W1 = (X1, Yo, Tht1), then almost everywhere

E[u(Wn+1)| Wn] = u(E(Xn+1| Wn), Yn’ E(Tn+1| Wn)) = u(Wn)

and a similar inequality holds if W,.; = (X,, Ya+1, Th+1). Taking expectations,
we have Eu(W,.1) < Eu(W,,). Thus, ||f. |5 <= Eu(W,) < --. < u(x, y, t), which
implies that U, (x, y, t) < u(x, y, t).

The proof of the statement about L, is similar; see the proof of Theorem 7.2.

10. The dyadic case. For many martingale inequalities, the best possible
bounds in the dyadic case differ from those of the general case; here, however,
the best possible bounds in the two cases are the same. Let f be a martingale
with values in B where B = R or any other Banach space. Recall that f is dyadic
if its difference sequence d satisfies d; = b, for some b; € B and, for n = 2 and
any nonempty set of the form

{dl = bl’ Tty dn—l = bn—l},
the restriction of d, to this set either vanishes identically or has its values in
{— b,, b,} for some b, € B with b, # 0. Note that if f is a dyadic martingale and
g is its transform by a sequence ¢ in {—1, 1}, then the corresponding zigzag
martingale Z is also dyadic. The converse also holds; see Section 3.
Maurey [17] has shown that the best possible constant, whatever it might be,
in the inequality

I S5er erdillp < coll Shar dill, 1<p <o,

is also best possible in the dyadic case. Our approach is quite different and rests
on the simple fact that a nonnegative midpoint concave function is concave.

To illustrate our method in the setting of Section 6, we let U$ be the function
defined on D U 4D by

U%(x, y) = supzsup, E®(| f.])

where Z is any dyadic zigzag martingale starting at (x, y) with values in D U 4D.
We claim that

(10.1) Ud(x, y) = Us(x, y),

which implies that the bounds in Lemma 6.1, Theorem 6.1, and Theorem 1.2 are
already best possible in the dyadic case.
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The inequality U$ < U, is an immediate consequence of (6.24). To prove the
reverse inequality, note first that U$ satisfies the boundary condition (6.22). The
next step is to show that U} is biconcave, for example, that U$(-, y) is concave
on [y — 2, y + 2). But this follows at once from the fact that U%(-, y) is midpoint
concave: If x; and x, belong to [y — 2, y + 2] and x = (x; + x,)/2, let Z' be a
dyadic zigzag martingale starting at (x;, y) with values in D U dD, i = 1, 2. We
can assume that Z! and Z? move vertically and horizontally together. Let Z, =
(%, ¥), Zn+1(s) = Z3(2s) if s € [0, ) and Z,,+,(s) = Z2%(2s — 1) if s € [V, 1). Then
Z = (Zy, Zy, ---) is a dyadic zigzag martingale starting at (x, y) with values in
D U 3D. Therefore

“RE®(|fal) + 2 E®(If7]) = E®(|fan]) = Us(x, y),

which implies that U$(-, y) is midpoint concave. Therefore, U$ is biconcave and
U, < U} follows from Theorem 6.2.

11. A method for some general boundary value problems. We shall
illustrate the method in R% A set S C R? is biconvex if each horizontal and
vertical section of S is convex. Let S be a biconvex set of the form S =D U B
where B is nonempty. (Some examples in the case that D is a nonempty biconvex
domain with a nonempty complement D°: B = 9D, B =D U 9D, and B = D°.)
Let 3: B — R. The problem is: If there exists at least one biconcave function u
on S such that u = 8 on B, find the least such function. There is of course the
dual problem for biconvex functions. Note that we do not assume that § is
measurable.

The solution is implicit in what we have already proved. Let (x, y) € S and
Z(x, y) denote the set of all zigzag martingales with values in S such that Z, =
(x, ¥), each term of Z takes on only a finite number of values, and, for some
positive integer n, Z, = Z,., = - -- with the pointwise limit Z, having all of its
values in B. We assume, and this is usually easy to check, that Z(x, y) is
nonempty for all (x, y) € S. Let .

(11.1) Us(x, y) = sup{EB(Zx): Z € Z(x, y)},
(11.2) Ly(x, y) = inf{EB(Z.): Z € Z(x, y)}.

THEOREM 11.1. The function Uy is the least biconcave function u on S such
that u = ( on B provided at least one such function exists. Similarly, the function
Ly is the greatest biconvex function u on S such that u < 8 on B provided at least
one such function exists.

ProoF. If uis a biconcave function on S and u = 8 on B, then, for all Z €
Z(x, y), we have 8(Z») < u(Z) so that
Eﬁ(Zoo) = Eu(Zoo) =...= Eu(Zl) = u(x, y),

the monotonicity of Eu(Z,) following from Jensen’s inequality as in the proof of
Theorem 6.2. Therefore U < u. By taking Z, = (x, y), n = 1, we see that Uz =
6 on B. By the splicing argument used in the proof of (10.1), U; is biconcave.
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This completes the proof of the first half of Theorem 11.1 and the proof of the
second half is similar.

REMARK 11.1. Although the boundary theory needed in this paper is different
from classical boundary theory, there are many analogies and connections.
Biconvexity is analogous to subharmonicity. If a function is both biconvex and
biconcave, it is biaffine. Since there are so few biaffine functions, the Dirichlet
problem is usually not solvable. For example, consider the simple case of D the
open unit disk of R?* and 8 a continuous function on dD. Then U; and L; are
continuous on D U 4D, with L = 8 = Ug on D, but the upper and lower solutions
are not equal throughout D unless 3 is the restriction to dD of some function of
the form

(x,y) = ao + a1x + azy + azxy.
Let Hg be the classical Dirichlet solution. Then, on D,
(11.3) Lg < Hs < Us.

Note that U; is superharmonic (simply check the averaging property of any
biconcave function) on D, hence belongs to the upper class of (.

There are many other analogies and connections with the classical theory. For
example, if Z is a zigzag martingale with values in a biconvex set S and u is a
bounded biconvex function on S, then {u(Z,), n = 1} is a submartingale; see the
proof of (6.25). This is analogous to the classical result for Brownian motion and
subharmonic functions due to Doob [11].

12. Differential subordination. Let fand g be real martingales such that
(f, 8 = {(fn, 8), n = 1} is a martingale. We shall say that g is differentially
subordinate to f if its difference sequence e satisfies | ex| < | dx|, k= 1. (Example:
e, = Updy, where | vy| < 1.) Many of the results for martingale transforms carry
over to such f and g; see [3]. (This is also true if f and g have their values in a
space isomorphic to some Hilbert space but is not true for more general spaces
(51.)

The best possible bounds and conditions for equality that have been obtained
here for martingale transforms carry over to the differentially subordinate case.

For example, Lemma 7.1 carries over because (7.9) holds for hk = 0, not just
for hk = 0, and (7.9) holds with strict inequality if hk > 0: Let (f, g) be a
martingale with f; = g; = (x + y)/2 such that g is differentially subordinate to f.
Let Z, = (X,, Y,) where

(12.1) Xn=x+ Xi-z (dr + €x), |
(12.2) Y=y + Zi-z (dr — ).
ThenZ =(Z,,Z,, ---) is a martingale and
(Xnt1 = Xo)(Yoer — Y,) = dis1 — €ha 2 0.

The proof of Lemma 7.1 carries over without further change.
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If hk < 0, the dual inequality (6.9) holds and, if hk < 0, (6.9) holds with strict
inequality. So, in Lemma 6.1, we may suppose that (f, g) is a martingale such
that f is differentially subordinate to g. Theorem 6.1 and its special case Theorem
1.2 then follow for g differentially subordinate to f.

Let 1 < p < «. To see that Theorem 1.1 and Theorem 9.1 carry over, we need
to show only that u = U, satisfies (5.70) with strict mequahty if hk < 0 or, what
is equivalent, that ¢ deﬁned by

(12.3) Pla) =u(x + ah,y + ak, t + ar)
is strictly concave on the convex set
(12.4) {a: (x + ah,y + ak, t + ar) € Q U 3Q}.

It would be difficult to show this directly but it can be checked easily using
Theorem 9.1 and the splicing argument that has already been used several times,
for example, in Section 10. Fix o = (a; + «3)/2 where a; # a5, and the «; belong
to the set (12.4). We shall show that, for p = 2,

(12.5) V[P (a1) + Plaz)] < P(a) — 07

where 0 = |a; — as|(|h| A | k|)/2. A similar but slightly different inequality
holds if 1 < p < 2 so that in both cases

%[P(a1) + Plag)] < P(a).

Since both sides of (12.5) are continuous in h and &, we can assume in the proof
of (12.5) that

(12.6) h+k#0, h+3k#0, 3h+k#0.

Let 6 > 0 and choose martingales W’ = (X}, Y, T%) = (Z!, T") starting at
(x + a;h, y + a;k, t + a;r) with values in Q U 9Q such that

(12.7 Pla;) — 6 =< |IfiII5

where fi, = (X + Y.)/2. Assume also that Z' and Z? are zigzag martin-
gales moving horizontally and vertically together. All of this is possible by
Lemma 9.1. Let W be the spliced martingale giving equal weight to W' and W?
(see Section 10). The corresponding f and g have the following properties:
fLi=(x+ah+y+ ak)/2,

sup, g, —y — ak|B <t + ar,

and g is the transform of f by a sequence of the form (1, as, as, - - -) where as, ay,
-+ - belong to {—1, 1} but

(12.8) laz] > 1.

In fact, a; = (h — k)/(h + k) and (12.8) follows from the assumption that hk <
0. Note that, by (12.7),

(12.9) Va[Plar) + Pla)] =6 < % [If 15+ IF215] = IfI5.
Now g is also the transform of the martingale M = (M, M,, - : -) with difference
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sequence
(dy, |azlds, ds, dy, ---)

by (1, sgn a,, as, a4, ---). Furthermore, g is the transform of the martingale
N = (N, N,, - --) with difference sequence

(dy, (2 — |az])ds, ds, ds, - - )

by the sequence (1, a2(2 — | az|)7?, as, a4, - - - ). Note that | a; | # 2 by (12.6) and
that | a2(2 — | az|)™ | > 1 by (12.8). Therefore, by Theorem 9.1,

M5 = ®(a), INI5=P(a)
Let n = 2. By Clarkson’s inequality [8],
| 5

1
ST UMIE+ NP -

p

1z = ” M, + N,

p
= ¢@(a) = [[(laz| — 1)d: [} = P(a) — 67
The desired inequality now follows from (12.9).

13. Relaxation of the martingale condition. Recall that we have used
the martingale condition of Lemma 4.1, for example, to obtain

(131) E[ux(Zn)(Xn+l - Xn)] = E[uy(zn)(Yn+l - Yn)] = 0.

Clearly, a weaker condition suffices. If B = R or any other Banach space and f
= (f1, fa, -+ ) is a sequence of integrable functions with values in B, then f is a
very weak martingale if

(13.2) E[?(fa)dnu] =0

for all real bounded continuous functions ¥ on B and all n = 1. (Equivalently,
E(d,+1|f.) =0a.e.) Note that if (f, g) = {(f., &.), n = 1} is a very weak martingale
starting at ((x + ¥)/2, (x + y)/2) with values in R then Z defined by (12.1) and
(12.2) is a very weak martingale starting at (x, y) and this is enough to obtain
(13.1) in the setting of Lemma 4.1. Thus, we have the following extension of
Theorem 1.2.

THEOREM 13.1. If (f, g) is a very weak martingale with values in R? such that
|fll« = 1 and g is differentially subordinate to f, then

(13.3) lglls<T(p+1)/2 2<p<to.

Theorem 6.1 extends in exactly the same way. Similarly, the following theorem
extends Theorem 1.1. Of course, in these extensions, the constants remain best
possible.

THEOREM 13.2. Let1 <p < . If (f, g) is a very weak martingale with values
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in R? such that g is differentially subordinate to f, then

(13.4) lgls = (p* = DIfl,

If 0 < | fll, < o, then equality holds if and only if p = 2 and Y5, e} = Y5, d}
almost everywhere. :

The proof of the analogous extension of Lemma 5.1 requires a small change
in the definition of W = (X, Y, T'). Let S, = | g, |?. Simply let T, be the almost
everywhere limit of the almost everywhere nondecreasing sequence

(Sn, E(Sn+11Sn), E[E(Sn+2| Snt1) | Sal, -+ +)

It is easy to check that T = (T, Ty, - - -) is a very weak martingale satisfying S,
=<T,ae.and ET,= | S|.= g5 =1, n= 1. Without loss of generality, assume
that S, < T, everywhere. Then W = (X, Y, T) is a very weak martingale starting
at (0, 0, 1) with values in Q U 99.

Theorem 9.1 extends in a similar way. However, the results of Sections 7 and
8 do not carry over without substantial change. It is easy to see that there is a
real very weak martingale f such that | f]l; < o but f* = o a.e. So (8.1), for
example, does not hold in the very weak case even with g = f. To construct an
example of such an f, let £ = (£, &, - - -) be an independent sequence of functions
each with the standardized Gaussian distribution. Then it is not hard to show
there is a very weak martingale f satisfying

(135) fn = akfk if n= ng

~ for some sequence of positive integers 1 = n; < n, < ... and numbers 1 = a; <
- a2 < --- = 2.If o, < n < ng4s, then £, can be chosen to be a linear combination
of £, and &4+1. (For the details, see the related example of the author that appears
in [25].) Note that f is a sequence in a Guassian subspace of L? and therefore the
simple orthogonality condition E(f,d,+;) = 0 implies that (13.2) holds. We see
that | f|l: = | fllz < 2 but, by (13.5) and the Borel-Cantelli lemma,

P(f*>N)=P@(E*>0) =1, A>0.

The weak-type inequalities do carry over for the individual terms g,. For
example, if (f, g) is a very weak martingale and g is differentially subordinate to
f, then

(13.6) AP(|g.l = 2) =2|fal.
Only a slight modification in the proof of (8.1) is needed to see this.
14. The best constant in an inequality of R. E. A. C. Paley. This is

an inequality that contains important information about the Haar system A on
[0, 1). To recall the definition of h = (h,, h,, - - -), we shall use the same notation
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for an interval [a, b) and its indicator function. Then
h, =[0,1), hy =10, %) — [%, 1),
hs = [0, %) — [, %), hqs = [%, %) — [%, 1),
hs = [0, 8) — [%, Y4), he = [%, %) — [, 4), ---.

Paley’s inequality (see [20] and [16]) is the following: If 1 < p < o, then there is
a real number c, such that

| Th1 erarhnllpy < cpll Xher arhe o

for all a, € R, ¢, € {—1, 1}, and n = 1. Here we give the best constant and
conditions for equality.

THEOREM 14.1. Let 1 < p < « and p* be the maximum of p and q where
1/p+1/q=1. Then

(14.1) | $3-1 erarhellp < (p* = D Zher arhue |l

and the constant p* — 1 is best possible. Furthermore, equality holds if and only if
p=2or(a1, ...,an)=(0, ..-,0).

PrOOF. Fix n, let f be the martingale with difference sequence
(alhb D) anhru 0’ 0’ ° ')’

and g the transform of f by (e, &, - - -). Note that f is indeed a martingale: If & =
1, then Edi+; = 0 and di4; is supported by a set on which ¢(d;, ---, di) is
constant, so di+; and @(d,, ---, dp) are orthogonal. Inequality (14.1) and the
conditions for equality follow at once from Theorem 1.1.

It is easy to check by induction that a real dyadic martingale has the same
distribution as some subsequence of { X%, a,h, n = 1} where the real coefficients
a; are suitably chosen. Accordingly, by Theorem 1.1 and the result of Maurey
mentioned in Section 10, the constant p* — 1 is best possible.

15. Unconditional constants and contractive projections. Let 1 <p
< o, If e = (ey, €, ---) is a sequence in real L?(0, 1), its unconditional constant
is the least K € [1, ] such that if n is a positive integer and a, - - -, a, are real
numbers such that | ¥3-; axex ||, = 1, then || Y7, eraxex |, < K for all choices of
signs ¢, € {—1, 1}.

THEOREM 15.1.  The unconditional constant of the Haar system in L”(0, 1) is
p*—1.

This result, announced in [6], is an immediate consequence of Theorem 14.1.
Recall that a sequence e in LP(0, 1) is a basis of L?(0, 1) if, for every f €
L~(0, 1), there is a unique sequence a in R such that ||f — Y5, azer|, — 0 as
n — o, Write P,f = Y%, are. Then (P, P;, ---) is a nondecreasing sequence
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of projections in L”(0,1): P, is linear and P,,P, = P,P,, = P,if n= m = 1. The
basis e is a monotone basis if the P, are contractions: || P, || < 1 or, equivalently,

(15.1) | i1 averll, < | X521 anerll,

for all @, € R and n = 1. The Haar system is a basis [24] satisfying (15.1) so the
following extends Theorem 15.1.

THEOREM 15.2. The unconditional constant of a monotone basis of L*(0, 1) is
p*—1.

The finiteness of the unconditional constant is due independently to Pelczyn-
ski and Rosenthal [21], and Dor and Odell [12].

ProOF. Olevskil ([18], [19]; also see [14] and [15]) proved that no basis of
LP(0, 1) can have an unconditional constant smaller than the unconditional
constant, whatever it might be, of the Haar system. Thus, by Theorem 15.1, no
basis of L?(0, 1) can have an unconditional constant smaller than p* — 1.

The other half of the proof rests on Theorem 1.1 and Ando’s theorem [1] to
the effect that, for 1 < p < o, every nonvanishing contractive projection is
isometrically equivalent to a conditional expectation. For the details, see [12] or
[21], where our earlier (nonsharp) version of Theorem 1.1 is used.

Dor and Odell [12] show how the work of Ando [1], Tzafriri [26], and the
author [3] can be used to establish the finiteness of the unconditional constant
of a monotone decomposition of an arbitrary L? space. With the help of Theorem
1.1, this constant can be shown to be no larger than p* — 1. In fact, the direct-
sum method needed to establish this (see [12]) gives the following extension of
" the first part of Theorem 1.1 in the special case v = a where a = (ay, as, ---) is
a numerical sequence in [—1, 1]. Let 1 <p < 2 or 2 < p < o since the case p =
2, where equality can hold, is clear.

THEOREM 15.3. Suppose that (Q, o7, u) is a positive measure space (not

necessarily o-finite). Let Py, P, - -- be any nondecreasing sequence of contractive
projections in LP(Q, o7, u) and set Py = 0. If f € LP(Q, <4, u) and || f||, > 0, then
(15.2) I Z%=1 ar(Pr = Pr-)f ll, < (p* = DI fll,.

The operator Y i-; ap(Pr — Pj-1), the limit in the strong operator topology of
its partial sums, does not attain its norm if, as is possible, that norm is p* — 1.

16. Some sharp inequalities for stochastic integrals. The inequalities
of Section 1 and of Sections 4 to 9.imply similar sharp inequalities for stochastic
integrals. Let (2, %, P) be a complete probability space and F = ()0 a
nondecreasing right-continuous family of sub-o-fields of %, where %, contains
all of the sets A in %, with P(A) = 0. Recall (see Dellacherie and Meyer [9] for
further discussion) that 2, the predictable o-field on [0, ®) X Q is generated by
all left-continuous processes adapted to 7 Let V = (V,).»0 be a real predictable
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process uniformly bounded in absolute value by 1, that is, the map V: [0, ) X Q
— [—1, 1] is measurable relative to . Assume that X = (X,):;»0 is a real
martingale adapted to % and that almost all of the paths of X are right-
continuous on [0, ) with left-limits on (0, ). Now consider the stochastic
integral Y of V with respect to X, an adapted r.c.l.l. process satisfying

Y, = f VdX as.
[0,¢]

(see Dellacherie and Meyer [9]). Let | X |, = sup. || X, ||, and Y* = sup, | Y|.
The inequalities of Section 1, for example, now lead to the following theorem.

THEOREM 16.1. Let Y be the stochastic integral of V with respect to X as
above. Then, for 1 <p < o,

(16.1) 1Yl = (p* = DX,
If|X|w<1and 2 <p < x, then

(16.2) [YI5=<T(p+1)/2

If1 =p=<2,then

(16.3) Sup >oAPP(Y* = N\) <= 2|| X ||5/T(p + 1).

Since these inequalities are sharp in the discrete case, they are also sharp
here. In fact, they are sharp in the special case of the Ito integral:
Simply embed in Brownian motion the examples that prove sharpness in the
discrete case.

What about conditions for equality? These are undoubtedly analogous to those
for the discrete case. For example, if p > 2, then strict inequality in (16.2) could
be proved directly with the use of a general It6 formula provided the function u
of Section 4 had continuous second order partial derivatives—which it does not.
A slightly modified argument that would overcome this difficulty is a likely
possibility. ' ‘

PrOOF. It will be convenient in the proof to assume that X, = 0; see the first
paragraph of Section 2.
Let Z be the collection of all processes Z = (Z,):=0 of the form

(16.4) Z:, =Y ap[X(rp AN t) — X(7p—1 A\ t)]

where n is a positive integer, the a, belong to [—1, 1], and the 7, are bounded
stopping times relative to . satisfying0=r1o<7, < --- < 7,. (As usual, X(t)
= X;.) Then, for all Z € Z,

(16.5) 1Z1, = (p* = DIXIp.

To see this, let

(16'6) ' f= (X(Tl)’ Sty X(Tn)’ X(Tn)v "')2

a martingale by Doob’s optional sampling theorem, and let g be its transform by
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(aly cc0, An, 0’ O’ . ’)' By (11)’ fOl’ all t= " Tn "00’
1Z:lp = lgnlls = (p* = Dfalls

= (p* — DI X@) I, = (p* = DI Xellp,
which implies (16.5). Similarly, if | X |- =1 and 2 < p < o, then

(16.7) ZII5=T(p+1)/2.
Furthermore, if 1 < p < 2, then
(16.8) P(Z*>1) =2|X|5/T(p + 1),

but here the method is slightly different. Let » = inf{¢: | Z,| > 1} and pp. = 7, A
7. Define f here by (16.6) but with the 7, replaced by the u,. Then, by right-
continuity,

P(Z*>1)<P(r=<71,) <P(|Z(u)| = 1)
=P(lg.| =1 =2[fl3/T(p + D).

Since [|f. |, = || X || , as before, (16.8) follows.
In view of the following lemma, the desired inequalities (16.1), (16.2), and
(16.3) are immediate consequences of (16.5), (16.7), and (16.8).

LEMMA 16.1. (i) If 1 <p < and | X|, < o, there is a sequence (Z7);>, in
Z such that
lim; || 2 — Y], = 0.
(i) If l=p<wand | X||, < =, there is a sequence (Z’);>, in Z such that
lim; ,(Z/ — Y)* =0 as.

For a proof, see Bichteler [2].
Note that (16.2), for example, can be strengthened to

-

1 (-]
(16.9) sup:=oE®(| Y:|) = 2 f d(t)e "t dt
0
where & is a convex function as in Section 6.

17. A comparison with the M. Riesz inequality. Theorem 1.1 is the
martingale analogue of the M. Riesz inequality. To compare the best constants
in the two inequalities, let 1 < p <  and B be a Banach space. Let a,(B) be the
least o € [0, + ] with the property that if n is a positive integer and ao, - - -, a,
and by, - - -, b, belong to B, then the L%(0, 27) norms of

fn(0) = ao/2 + Y i-1 (arcos kO + bsin k)
and its conjugate

8n(0) = Yh-1 (arsin kO — bycos ko)
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satisfy

lgnlle =< alfals.

M. Riesz [23] discovered that a,(RR) is finite and used this to prove that the
Hilbert transform is bounded in LP(R). Pichorides [22] showed that

a,(R) = cot(w/2p*).

In addition, see the work of Cole as described in Gamelin [13].

Now let 8,(B) be the least 8 € [0, + ] such that if f = (f, fo, ---) is a
B-valued martingale and g is the transform of f by a numerical sequence ¢ in
{—1, 1}, then

lells = BIflo

By [5] or Remark 2.1, the same value of 8,(B) is obtained if ¢ is replaced by a
real-valued predictable sequence v uniformly bounded in absolute value by 1.
Furthermore, 3,(B) is finite if and only if there is a biconvex function {: B X B
— IR satisfying (0, 0) > 0 and

(17.1) () sla+yl if |x|=|y|l=1

Here | x| denotes the norm of x. See [5], where the condition on { is slightly

different.
By Theorem 1.1, 8,(R) = p* — 1. An elementary calculation gives

cot(r/2p*) = p* -1

s0 a,(R) < #,(R). But this is no mere happenstance. McConnell and the author

[7] proved that a,(B) is finite if 8,(B) is finite; in response, Bourgain (personal

communication) showed the converse. Some of the ideas of the present paper can
“be used to prove that, for all Banach spaces B,

(17.2) ap(B) = B,(B).

The details will appear elsewhere.
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