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ORDERED PRIME DIVISORS OF A RANDOM INTEGER

By STUART P. LLOYD
AT&T Bell Laboratories

Without using the prime number theorem, we obtain the asymptotics of
the rth largest prime divisor of a harmonically distributed random positive
integer N; harmonic asymptotics are obtained from asymptotics of the zeta
distribution via Tauberian methods. (Knuth and Trabb-Pardo need a strong
form of the prime number theorem to obtain the distributions when N is
uniformly distributed.) A trick brings in Poisson variates, and then we can
use the methods developed for the fractional length of the rth longest cycle
in a random permutation.

1. Introduction. The asymptotics of the rth largest prime divisor of a
random positive integer give rise to a certain limiting distribution F,, derived by
Knuth and Trabb-Pardo in [7]. They observe that their F, coincides with the
limiting distribution of the fractional length of the rth longest cycle in a random
permutation, obtained in [9]. They do not explain the coincidence. The present
contribution consists of deriving the rth largest prime divisor distribution by a
method paralleling that of [9]. No isomorphism of the problems is established;
the termwise correspondence is not particularly close. The methods developed
here are applicable to other problems involving divisors of a random integer.

2. Ordered prime divisors. We denote by g.(n) the rth largest prime
divisor of a positive integer n. That is, n is the product n = q,(n)gz(n) - - - where
g-(n) is a prime or 1 and is weakly decreasing in r, eventually to 1. It is convenient
to have g,(n) defined for all r = 1, 2, ..., as we have done. The quantities of
direct concern are the 7.(n) defined by

n(n) = log ¢,(n) , n>1,
(1) log n
= 0r1, n= 1°

The following distributions of a random positive integer N are familiar. The
uniform distribution is some weak limit of the finite approximations

P =n = 220 ="

The harmonic distribution has finite approximations

PN = n} = {(1)/“"” 1=n=w
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where
a, =31 (1/n) =logv+ v+ 0(1/v);

v = .577 --. is Euler’s constant.
It is shown in [7] that limiting distributions

(2) lim, P, {n.(N) = x} = F,(x), 0=<x=<1/r,

exist, and explicit forms for the F, are given. In [9] the same functions F, are
obtained via their moments. Explicitly, let E(x), 0 <x < «, denote the exponential
integral

ooe_y
E(x) = —-y—dy, 0<x< oo,

and let £(t), 0 < t < o, denote its functional inverse: E(£(t)) = ¢, 0 <t < .
Then the moments of F, are represented as

Gym = J; e

m ¢ -1

1/r
= f x"dF,(x), m=0, r=1.
0
What we prove here, using the method of moments, is

THEOREM 1. For the harmomic distribution of N, the asymptotic distribution
lim, P, {n,(N) = x} =F.(x), 0<x=<1/r,

exists, r=1,2, --- .

This is a weaker result than (2), but we obtain it without the prime number
theorem, used in [7]. Getting uniform asymptotics from harmonic asymptotics is
a delicate matter, requiring control of the error terms or Tauberian conditions;
cf. [4]. Indeed, the prime number theorem can be given this setting [8]. (On the
other hand, Billingsley does not need the prime number theorem to obtain the
asymptotics of the ordered distinct prime divisors of uniformly distributed N [3].)
The harmonic averages are a poor man’s theory of a random positive integer; we
let it go at that. Related problems are treated in [1], [5].

3. The zeta distribution. The following family of distributions of N is
known by a variety of names; we call it the zeta distribution. Namely, for s > 1,

Ps{N= n} = 1/(§(s)ns)’ n= 1, 2, )
where
§(s) =37 1/n%, s>1,

is the Riemann zeta function. As s | 1 the unnormalized probabilities 1/n° tend
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to the unnormalizable harmonic distribution 1/n. It is well known that Tauberian
methods will give harmonic asymptotics in terms of zeta asymptotics at s = 1 [4]
[6, Volume II, Section XIIL.5]. The following is sufficient for our purposes.
Assume the Tauberian condition f(n) = 0, and suppose that lim,_,E.{f(N)} = A
with 0 < A < «. Then lim,_.E,,{f(N)} = A.

Let p, =2, po = 8, ps = 5, - - - be the enumeration of the successive primes. In
several places it will simplify the formalism if we define also p, = 1; this is not
regarded as a prime. We will also use the usual convention where p is a variable
ranging over the set {p,:u = 1}. Let

n = Il [P

be the prime factorization of n; for given n, the {a,(n)} are defined for all
u=1,2, ..., and are eventually 0. The Euler factorization

1 o _1
) (1 p:)’

together with the prime factorization of N, gives

Pfey(N) = a1, ae(N) = aa, ---} = Iz, [(1 - %)(i,) ]
Pu/\Dy.
for all sequences (a;, az, - - -) of nonnegative integers eventually 0. But this is to
say, the {a,(N)} are mutually independent geometrically distributed random
variables, the ratio parameter of o,(N) being 1/p;. This independence often
makes it possible to evaluate E,{f(N)} explicitly when f(-) is a multiplicative or
additive number theoretic function; cf. [2, Chapter 11].
The following device enables us to approximate the geometrically distributed
{a,(N)} with Poisson variates. If a random nonnegative integer « is geometrically
distributed, the generating function of its distribution is

E{x*} =

1-0p
<1
1= px’ x| <1/p,

where 0 < p <1 is the ratio parameter. The Poisson distribution of mean p has
generating function exp[(x — 1)p], | x| < .

LEMMA 1. The quotient [(1 — p)/(1 — px)]/[e* V"] is the generating function
of a probability distribution:

Ao ple o o Anlo)e™, 151 < 1/n
where
An(p) = (1 — p)e’p™a(m),
(3) (1)

a(m) = Y% m=01..., 0=sp<1.

it
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Proor. Explicit calculation. A direct proof of 0 < ¢(m) = 1 is straightfor-
ward; alternatively, 1 — o(m) is the matching probability of [6, Vol. I, page 101].
]

Lemma 1 is equivalent to the following: the above geometrically distributed « is
equidistributed with a’ + a” where o’ is Poisson with the same parameter as «,
a” has the distribution (3), and «’ and «” are independent. As will appear, the
property that makes this useful is P{a” > 0} = P{a” = 2} = 0(p?), p — 0,
stemming from ¢(1) =

Let us apply this to each «,(N) of the zeta distribution. We extend the
probability space, if necessary, to support independent random positive integers
N’ and N” with the following distributions:

’r — o 1 = cee
PN’ =n} = = )n e "=
(4) *)
” _ . = e
Ps{N = ¢(s)n® H,‘=1 U(au(n)), n 1,2, ’
where

v(s) = exp[zz;l ls], s> 1.
Py

Then N = N’N” has the zeta distribution, since «,(N) = a,(N’) + a,(N”) and
{a.(N’)} are independent Poisson with the appropriate parameters and the
independent {a,(IN”)} have the distribution (3).

The point is that N” does not diverge as s | 1. The divergence of N = N’N”
is carried by the N’ factor, and the Poisson {a,(N’)} are more tractable for our
purposes than the geometrical {a,(N)}. More precisely, the N” distribution has
a limit at s = 1 which is a probability distribution. (In fact, this persists for
s>, and E{(N")°} exists for s — ¢ > 14.)

LEMMA 2. The abscissa of convergence of the Dirichlet series

Yn=1 ls Iz, o(e.(n)) (= -f(i), Re(s) > 1,)
n® ~°# v(s)

iss="Y.

PrROOF. Mobius inversion [2, page 40] of
log §(s) = ¥, X1 (1/mp™)
= Ym=1 (1/m) log v(ms), Re(s) > 1,
gives
log v(s) = -1 (k(m)/m) log {(ms), Re(s)>1,
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absolutely convergent in Ze(s) > 1. From this we obtain

$6) _ ¢ [exp<—1/ps>J
v(s) Pl 1-1/p°

= L5, [§ms)] ™/,

m=

and these are convergent in Ze(s) > Y%, with divergence at s = %. The proof is
completed by appeal to the results of [2, Section 11.9]. 0

Later we will use
v(s) ~ C/(S -1, s l 1,

where ¢ = .729 is the constant
S A
p
This follows from {(s) ~ 1/(s — 1) and v(s)/¢(s) — c.

4. The Poisson process model for N’. With s > 1 fixed, we lay off the
points t,(s) > t;(s) > - -. | 0 on the positive t-axis, where

tp(s) = ;o=n (l/p:)y m= 1’ 2’ M)

noting that t,(s) = log v(s) < . We define the uth interval I,(s) to be I,(s)
(t.+1(8), £ ()], p =1, 2, - .- ; the length of I,(s) is 1/p5. We define also Io(s)
(tl (s ), m) .

Let a Poisson process take place on the t-axis, with jump rate unity. The
number of jumps of the process occurring in I,(s) has the Poisson distribution of
mean 1/p;, and the numbers in the various I,(s) are mutually independent. But
this is the joint distribution of the {a,(N’)} for the N’ distribution of (4). More
completely, define A,(t), 0 < t < o, by

A(t) = IOg Dy LE I“(S), vk=01,....

Let 0 < 7, =< 73 < ... be the random locations of the successive jumps of the
process on 0 < ¢ < m, counting to the right from the origin. The total number of
jumps in (0, t,(s)] is finite w.p.1, so the terms in the series Y=, A,(r,) are
eventually 0 w.p.1. The series thus determines a random positive integer N’
according to Y72, A,(7,) = log N’ w.p.1. The distribution of this N’ is the N’
distribution of (4).

The usefulness of the method now becomes apparent: the rth term in the
series is A,(7,) = log ¢,(N’), r =1, 2, --. . The density of 7, is e~%t""/(r — 1),
0 <t <, as is well known. The distribution of g,.(N’) is thus

tr—l
Ps{Qr(N’) = pn} = I(s) e_t[m] di, pu=0, 1, ...

"



1210 S. P. LLOYD

The moments of log g,(N’) are then

r-1

E.{[log q,(N")]™} = J; [As(t)]’"e"[(rt_ 1)!] dt, m,r=1.

Existence of the moments is assured by comparison with
1 . (ogn)™
() =" nt 7
5. Proof of Theorem 1. Let us define £(t) = (s — 1)A,(t), 0 <t < ». We

will prove lim,_,1£,(¢) = £(t), 0 < t < », where £(t) is the function specified in
Section 2. The asymptotics of £(t) are [9]

E(t) ~ e—t_‘y’ t— oo,
~ log (1/t), t— 0.
Let Y(dx) be the discrete measure which assigns measure 1/p, to the point

E {(log N)™ = s>1.

x=logp,forall u=1,2, ---;the cumulative is
Y(x) =3, {1/p:p se’, —o<zx<ox,
=0, -0 < x < log 2.

In terms of this,

t.(s) = f e e *Y(dx), p=12, ---.

logp,~

The asymptotics of Y(x) are as follows [2, Section 4.8]. For a certain constant
A,
Yx)=logx+ A+ Yi(x), log2=x<o,

Y.i(x) = O(1/x), x — co.

(The prime number theorem is equivalent to convergence of [“ xY;(dx), but we
do not need this; cf. [8].) We find

t.(s) = f e’(“”"[d—x + Yl(dx)]
logp,~ X

M

= E((s — 1)log p,) — exp(—(s — 1)log p,)Y:(log p,-)

+(s—=1) f e VY, (x) dx.
logp,

Since (s — 1)log p, = &(t), t € I,(s), this can be rewritten as
tu(s) = E(&(t)) + e *“0(1/log p,)
+ (s — DO(E(&(2)), L(s) Dt
Now fix 0 <t < and let s | 1. The x for which I,(s) D ¢ increases to © as s | 1,

®)
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and t,(s) — ¢. (The jumps in £,(¢) tend to zero:
(s = log pu+1 — (s — 1)log p,
= (s — 1)O(1) by [2, Theorem 4.7]
(or = (s — 1)o(1) by the prime number theorem).)

From (5) then follows lim,_,:£,(¢) = £(t), 0<t< oo,

We want to show that the moments of £,(t) converge to the moments of £(t)
relative to the density of 7,. Since pointwise convergence has just been shown,
and since 0 < log q,(N’) < log N, it will suffice to show that the family
{[(s — 1)log N]™:1 < s < so} is uniformly integrable with respect to E,{-},1<s
< so. (The corresponding step in [9] is easier.) This is a direct consequence of
the following result.

LEMMA 3. Let 0 <6y, < > and 1 < so <  be fixed. Then
Pis—Dlog N=0) =Ae™® 1<s=<sy, 0p<0<o,
where 1 < A < « is independent of 0, s.

PROOF. Summation of
1 " dx

— = —, n>1,5s=0,
n n-1 X
gives
1
n15is = Dlogn =6 < =D — ]-D
Z{ns(s Jlog n } s_1le ]
-0 PN
=e__Bi_(&"_l, 0>0,S>1,
s—1
where

B(8, s) = [1 — e~¥6~D]~6-D,

Since B(6, s) is decreasing in 8 and increasing in s, we can take A = B(6,, so).
The inequality (s — 1)§(s) > 1, s > 1, is elementary, and the lemma follows. [

With uniform integrability thus established, we now have
lim,}, E,{[(s — 1)log p,(N")]™}

= lim,; J; [Es(t)]me-tl:(rt:— 1)!] dt

— ° m,—t tr—l
—J; [£(2)]™e [(r_ 1)!] dt

=m!G.,, m=0, r=1.
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Let us rewrite this in the equivalent form

da " e ) S " cGpm
(_ ds) L2 n® [1, [a.(n)]! < ds) {s - 1}’ sl

with #,(n) defined in (1). We integrate m times on (s, ®), which is permissible,
and divide by v(s); we obtain the weaker result

limsllES{[nr(N,)]m} = Gr,ma m = 0, r=1.
We now argue that this implies
©) lim,, E,{[n,(N)]™} = Grm, m =0, rz=1

This follows from the fact that 5,(N’) — #,(N) in distribution: ¢,(N’) = q,(N)
except on a set of small measure, and log N/log N’ — 1 in distribution. We omit
the epsilontics. From (6) and the Tauberian theorem,

limv—mEh,v{[ﬂr(N)]m} = Gr,ma m=0, r=1,

and application of the method of moments [6, Volume II, page 514] completes
the proof. I

Properties of the rth shortest cycle in a random permutation were investigated
in [9] with the same machinery as for the rth longest cycle. The techniques of
the present paper would not be very useful for treating the rth smallest prime
divisor of random N = N’N”, since the small divisors of N’ and N” remain
intertwined even when N’ — o,
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