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ON THE MAXIMUM OF A MEASURE OF DEVIATION FROM
INDEPENDENCE BETWEEN DISCRETE RANDOM VARIABLES

By Zvi GILULA AND GIDEON SCHWARZ

Hebrew University of Jerusalem

The squared n*-dimensional Euclidean distance £, between a given joint
distribution of k& random variables with values in 1, ..., n and the joint
distribution of independent variables with the same respective marginals has
been suggested as a measure of dependence. The following facts are established
for M}, the maximum of f, over all joint distributions for fixed k: (1) M, is
attained among the distributions with all k& variables equal to a variable X
that takes on just two values. (2) For k < 6, M, = Y% — (%)* is attained when
the distribution of X is {¥, %}. (3) For k = 7, M, is not attained at {'%, %4}
and strictly exceeds % — (%)*. (4) For k — o, the distributions of X where
M, is attained approach {0, 1}, and M, /7 1.

1. Introduction. Let X;, --., X, (kK = 2) be discrete random variables
ranging over the finite sets C;, ---, C, respectively, where, without loss of
generality, we assume

Ci=1{1,2 ---,n;}, j=1,.---, k, n;=2.
Let
PG j)=PX;=1), j=1,.---,k i=1,.--,n;j,
P(iy, -+, i) = P(Xy =11, Xo=1g, -+, Xi = la),

and let P = (p(il, Tty ik))'
Consider the function

fe®) = Zi. iy [P, -+, i) = I1J1 PGy, )P

If P is regarded for each joint distribution as a vector in Euclidean
(ning.---. np-dimensional) space, then f(P) is the squared distance between P
and the corresponding independent distribution, and as such, f.(P) is a measure
of deviation from independence between X, - - -, X,. This function arises in the
literature regarding the establishment of a measure of complete dependence
between discrete random variables (Cramér 1924, Goodman and Kruskal 1954,
Lancaster 1963, and Gilula 1981). The function f,(P) vanishes if and only if X,
..+, X} are independent.

In order to interpret the value that f;, attains for a given k-dimensional joint
distribution, one naturally would like to compare it with the maximal value that
f1 can attain for that k. Ideally, a measure of complete dependence should attain
its maximum if and only if the variables are completely dependent. Cramér
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(1924), who considered the bivariate case (k = 2), showed that Max f, = %, and
the maximum is attained when the two variables are two-valued, completely
dependent, and take on their values with probability % each. Otherwise, f, is
strictly less than %4 (even for completely dependent variables).

We study here the maximum of f;, for general k. First, we reduce the search
for a maximum to the case where all k variables are equal to one variable, say x,
that takes on two values only, with probabilities, say p and 1 — p. Denote f.(P)
for such a distribution by f»(p). Next, we show that when k < 6, f; is unimodal,
attaining the maximum % — (%)* at p = %; when k > 6, the maximum is attained
elsewhere, and strictly exceeds 2 — (%)*. For k approaching infinity, the pairs
{Pr, 1 — pr} where the maximum of f, is attained approach {0, 1}, and the
maximum itself approaches 1.

Summarizing, we obtain the following picture. Cramér’s result, that for k = 2
the maximum of f, is attained for completely dependent variables that take on
two values with probability % each, is valid also for k = 3, 4, 5 and 6. Beyond
k = 6, a surprising change occurs: the maximum is still attained for completely
dependent two-valued variables, but the probabilities are no longer (¥, %).
Another result is that for large k the maximum is attained close to 0 and to 1,
while at (0, 1) f, vanishes. This reflects the fact that degenerate variables, being
both independent and completely dependent, form a singularity of the complete
dependence concept (compare with Kimeldorf and Sampson, 1978). The difficulty
is therefore inherent in the concept of complete dependence rather than in the
particular measure chosen to quantify it.

2. Upper Bounds on f(P). By Crameér (1924), in maximizing f,(P) atten-
tion can be confined to the case where all k variables considered are equal so that

all sets C; are the same, namely C;= {1, ---,n}j=1, ..., k,n=2and
. .\ _ Jpi if i1=i2=,‘°‘,=ik=i, (i=1’...,n)
Py, -y ia) = {O otherwise,

where also P(X;=i)=p;, j=1,--- ki=1,---,n Skipi=1.
Let p= (p1, - -+, pn). Then

fe(@) = i p? — 2 Tk pi*t + (T D™

We will now show that in maximizing f.(p), attention can be further confined
to the case where sets C; contain only two elements, or equivalently, where the &
variables considered are all Bernoulli variables.

fr(p) is continuous in the compact simplex >%; p; = 1, p; = 0 and therefore
attains its maximum there. Let q be an interior point, of the simplex, different
from its centroid (1/n, ---, 1/n). Assuming n = 3, there exists a vector u,
orthogonal to (1, - - -, 1) and to q, but not to (¢, - - -, g&).

* As is easily seen, the gradient of f.(q) at q is a linear combination of q and
(g%, .-, q¥) with nonzero coefficients. Therefore, the directional derivative of
fr(p) at g in direction u will not be zero, and the maximum is not attained there.
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The centroid is also ruled out as a maximum point, since f.(0, 1/(n — 1), .-,
1/(n — 1)) is easily shown to exceed fr(1/n, .- -, 1/n).

We must conclude then that for p to be a maximum point for f; in the simplex
Y&, pi=1, n = 3, it must be a boundary point, namely at least one coordinate
of p must be zero. By induction we obtain the desired reduction to the case where
n=2.

Attention is now focused, therefore, on the function

fr(p) = p®+ (1 — p)* + [p® + (1 — p)})* — 2p**™* — 2(1 — p)**.

This function is a polynomial in p, that is symmetric around p = %. Therefore it
is a polynomial in X = (p — %)2. As X increases from 0 to %, f»(p) goes through
its range. Carrying out the substitution yields

fr(p) = g:((p — %)%,
g X) = Yo + 2X + Tho 22K X7 — S k52 22k ) X,

Let g, gr, g denote the first, second, and third derivative of g.(X). While
fr is stationary at p = Y, this is not the case for g, at the corresponding X = 0.
Indeed, g/ (0), the linear coefficient, is 2(1 — (k%/2*7!)). This is negative for
k =2, 3, 4, 5, 6 and positive for k = 7. So g, is increasing at 0 if & = 7, and
decreasing if 2 < k < 6. Clearly, f, does not attain its maximum at p = ¥ when
k = 1. To establish that, if 2 < k < 6, g, and f, do attain their maxima at X =0
and p = % respectively, consider g/’ . It is a polynomial whose coefficients will
all be positive if this is the case for the coefficients of order = 3 of g,.

Since the expression for g, involves minus signs only for terms of order =
[(k + 1)/2], the only coefficients of g of order = 3 that could be negative, when
k =< 6, are the third order coefficients of g5 and of ge. Since they turn out to be
positive, g’ is positive on 0 < X for2 <= k < 6.

By gi” > 0, g¥ can at most have a simple zero on the positive axis, and g/ at
most two, when 2 < k < 6.

At p = 0, f, and its derivative vanish. By symmetry, this holds at p = 1 as
well. This is a regular point of X = (p — %)?, hence g; and g/ vanish at X = 1.
For 0 = k = 6, g/ can vanish only once more on the positive axis. But since
g+ (0) is negative, g, cannot start up again to a maximum, and then decrease to
zero, without incurring two points of zero derivative. Hence there is no maximum,
not even a local one, except for X = 0, where g,(X) = % — (%)* for k < 6.
We conclude that f,(p) is unimodal on [0, 1] and its maximum is % — (%)%,
2<k=<6.

For k = 17, no explicit forms for the location and value of Max f, were obtained;
however, a study of the limiting behavior of f;, and some numerical results serve
to complete the picture.

Note that for 0 <p < 1, lim f,(p) =p%+ (1 — p)2 and maxo<,<1p® + (1 — p)?
= 1is attained at p = 0 or p =.1. Clearly, therefore, 1 is the least upper bound of
fr(p), over all p and k. In fact, we also have limp,.Maxo<p<i1fr(p) = 1. This
follows from the existence of sequences (ex) such that lim;_,.fr(ex) = 1: choose
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any sequence (ex) such that

e, — 0 but ke, — o

(for example, ¢, = k~/?). Such a choice of ¢, implies, as k — o, (a) ¢ — 0,
b) (1 —ex)?—>1, (€)er*—=0,(d) (1 —e)*™t >0, (e) [(1 —ex)? + 3] — 0.
While results (a), (b), (c) are immediate, (d) and (e) follow since

(1 = cen)® = [(1 — cex)/]",

but (1 — cez)* — e~ and (e~°)** — 0.

Numerical calculations of f, seemed to indicate that f), is bimodal, and its
larger mode p, is of the form k~Y©@~% When (log k)/(log p.) was plot-
ted against k for k = 7, ..., 25 the line & — 3 gives a very close fit. Thus
pr=kV*3 and q, =1 — k~/*~% are empirical formulas for the modes of the f;

fork="1.

Acknowledgement. The authors wish to express their gratitude to Law-
rence Brown, Shelby J. Haberman and Yosef Rinott for their helpful comments
and suggestions.

REFERENCES

[1] CRAMER, H. (1924). Remarks on correlation. Scand. Actuar. J. 16 220-240.

[2] GILULA, Z. (1981). A note on measuring the degree of complete dependence between two discrete
random variables measured on a nominal scale. Comm. Statist. Theory Methods 21 2047~
2055.

[3] GooDMAN, L. A. and KRUSKAL, W. H. (1954). Measures of association for cross-classifications.
J. Amer. Statist. Assoc. 49 732-764.

[4] KIMELDORF, G. and SAMPSON, A. R. (1978). Monotone dependence. Ann. Statist. 6 895-903.

[5] LANCASTER, H. O. (1963). Correlation and complete dependence of random variables. Ann.
Math. Statist. 34 1315-1321.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO HEBREW UNIVERSITY
5734 UNIVERSITY AVE. JERUSALEM, ISRAEL

CHICAGO, ILLINOIS 60637



