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ON SERIES REPRESENTATIONS FOR LINEAR PREDICTORS

BY PETER BLOOMFIELD'
North Carolina State University

The series expressions for the linear predictors of a stationary process
have been known for a long time, but necessary and sufficient conditions for
the mean square convergence of these series are still not available. It is shown
that an equivalent problem is to find necessary and sufficient conditions for
the invertibility of the infinite moving average representation of the process.
Two known sufficient conditions are discussed, and a more geneéral condition
that includes both as special cases is given. The process that arises from
fractional differencing of a random walk is discussed as an example.

1. Introduction. Suppose that {x(t)} is a discrete time weakly stationary
stochastic process. The »-step linear prediction problem consists of finding a
linear combination of x(t), x(t — 1), --- that is close to x(t + »), » > 0, in the
sense of mean squared error.

In practice we have only a finite number of observations x(t), x(¢t — 1), - - -,
x(t — n) from which to construct the predictor, and so the minimum mean squared
error linear predictor can be found as the linear regression of x(¢t + ») on x(t),
x(t—1), ---, x(t — n). However, finding this optimal predictor generally involves
solving an n + 1 by n + 1 system of equations, and it is often more convenient
to solve the problem as if the entire past were available, and then use an
approximation involving only the finite past.

Suppose that the best v-step predictors based on the finite and infinite past
are

Yro bPx(t —r) and Yo b,.x(t — 1)

respectively, where we assume that the latter series converges in mean square.
Then

E{x(t + v) — 320 b,,.x(t — r)}?
< Efx(t + ») — 3ro biPx(t — r)}? < Efx(t + v) — X7 b,,x(t — 1))
= Efx(t + v) — 320 b,,x(t — P + E{Y% 01 b,,x(t — P}2

In general the nth partial sum of the infinite predictor is not as good as the best
finite predictor. From the above it follows that

Efx(t + v) — Treo by,yx(t — 1) — E{x(t + ») — Yo b x(t — )
' < E{Y, 1 b,xt—1r?—>0 as n—o

and consequently the partial sum is nearly as good as the best predictor when n
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is large. This is the justification for using the truncated infinite predictor, but
clearly the argument depends on the mean square convergence of the series
representation of the infinite predictor.

2. Prediction and inversion. We assume that {x(¢)} is purely linearly
indeterministic (Anderson, 1971, page 421), and hence possesses an infinite
moving average representation .

(1) x(t) = Yoo are(t — 1),
where {e(t)} is white noise, ao = 1, and 3 a? < ». We note that «(t) is the one-

step prediction error and hence is uncorrelated with x(u), u < t. Suppose that (1)
may be inverted to give

(2) e(t) = Xo brx(t — 1),
where the series on the right-hand side converges in mean square. (In the

remainder of this paper, convergence of a series of random variables will always
be in mean square). Now (1) implies that

Efe()x(t)} = Efe(t)*}
and (2) implies that
E{e(t)} = boEfe(t)x(t)},
and hence by = 1. Thus (2) may be rewritten
2+ 1) =et+1) — X bx(t+1—r).

Since ¢(t + 1) is uncorrelated with x(u), u < t, it follows that the best one-step
predictor of x(¢ + 1) is

3) Bt +1) ==Y ba(t+1—r).

Thus convergence of (2) implies the existence of the convergent representation
(3) for the one-step predictor. Conversely, if the one-step predictor %,(¢t + 1) has
the mean-square convergent representation (3), then the one-step prediction
error satisfies

e+ 1) =x(t+1) -t +1) =320 bx(t+1—7r)

with by = 1 and the sum convergent in mean square. Thus we have shown that a
necessary and sufficient condition for the existence of (3) as a mean square limit
is the existence and convergence of (2). In the next section we shall find sufficient
conditions for the latter. However, we show first that when (2) converges, we can
find convergent representations for all the v-step predictors, v = 1. This fact was
apparently overlooked by Akutowicz (1957), who having found a sufficient
condition for the convergence of (2), introduced further assumptions to assure
the existence of convergent series representation for the predictors.

THEOREM 1. The v-step predictor of x(t + v) possesses a convergent series
representation for all v = 1 if and only if ¢(t) has the convergent series representation

(2).
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PROOF. In view of the above remarks, we need only show sufficiency of the
convergence of (2). Now (2) implies that for s > 0,
0 = Efe(t — s)e(t)} = Yr=o brEfe(t — s)x(t — r)},
while (1) with ¢ replaced by ¢t — r implies that for 0 < r < s,
Efe(t — s)x(t — r)} = a,,E{e(t — s)?.
Thus
20 bra;—, =0, s>0.
Hence again using (2),
-1 et + ) = Yj1 @y Lo byx(t + j — 1)
= Yje1 @ {850 boa(t + j = 1) + T2 boa(t + j — 1))
= Y1 Q- Z;i=1 bi—sx(t + 8) + Yj-1 @, Yoo bjssx(t — )

= Yo=1 X(t + 8) Vs @by + Yoo x(t — 8) Yoy Ajbjss.

Now
y y—s 1 v=s
2j=s av—jbf—s = Zk=0 av—s—kbk = {O y>s,
and hence
Yim1 aje(t + J) = x(t + v) — Yo by.x(t — s),
where

bv,s = —2_‘1{=1 au—jbj+s-
Since the left-hand side is uncorrelated with x(u) u < t, it follows that the best
v-step predictor of x(¢ + ») is
(4) Lt +v) = X2 b,x(t — ).

This is a well-known expression (see, for instance, Wiener, 1981). Our point in
rederiving it is to show that the convergence of the series follows from its
construction as a finite linear combination of tail sums of convergent series.

3. Inversion. We have just seen that the key question is the convergence
of the inversion formula (2). We now use a well known isomorphism to discuss
this in terms of the mean convergence of Fourier series.

Let _# be the Hilbert space found by closing the set of finite linear combina-

tions
] 2 a.x(t)
with respect to the norm associated with the inner product
(a, b) = E(ab).

Then the map x(t) — e, -7 < 0 < =, from _# into L*(w) (the space of functions
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defined on the interval (—m, 7], square-integrable with respect to the spectral
density function of {x(¢)}, w(#)) is an isomorphism (see, for instance, Doob, 1952,
page 483). Hence a series such as

Yo brx(t — r)
converges in mean square if and only if the Fourier series

2;0; o br ei(t—r)e

converges in L?(w).
Helson and Szegd (1960) showed that every f € L%(w) has a Fourier series
which is convergent in L%(w) if and only if w has the representation

(5) w(f) = exp{u(f) + 0(0)},

where u € L®, v € L” and || v || « < /2. Hunt, Muckenhoupt and Wheeden (1973)
showed that an equivalent condition is that

1 1 a1 -
(6) (ITIJ;ww) d@)('l'l—l J;w(0) d0> <K

for every interval I, for some constant K. (Here “intervals” are allowed to wrap
around from —= to 7, and | I | is the length of the interval.) Thus these equivalent
conditions assure that every random variable in .# possesses a convergent series
representation.

The simplest functions that satisfy (5) or (6) are those that are bounded and
bounded away from 0: w € L* and w™" € L®. This condition was studied in the
multivariate context by Wiener and Masani (1958), who showed directly that it
implies the convergence of (2). Akutowicz (1957) also used the condition that
w € L*, but showed that the condition w™' € L” could be replaced by a condition
which is easily seen to be equivalent to w™ € L'. Masani (1960) showed that an
analogous condition is sufficient in the vector case. Masani (1981) attributed the
scalar version of the result to Wiener and Kallianpur. Now functions satisfying
Akutowicz’ conditions

(7) wel*, w'el

do not necessarily satisfy (5) or (6). For instance, one easy consequence of (5) is
that w and w™ € L for some p > 1, (Zygmund, 1968, page 254), while a function
satisfying (7) need not have w™ € L? for any p > 1. On the other hand, the
function w(d) = (cos 0/2)*, —1 < a < 0, satisfies (5) (Helson and Szegd, 1960),
but fails to satisfy (7) by being unbounded.

Thus we have two different sufficient conditions neither of which can be
necessary. Below we derive a more general condition which includes both as
special cases. However, it is instructive first to examine a proof of the sufficiency
of the Wiener-Kallianpur condition, since the proof of our result is very similar.

We first note that the isometry described above maps ¢ into e’/ h(#), where

8 w(0) = (v%/27) | L(6) |7,

72 is the one-step prediction error, and h(f) is an outer function in the Hardy
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space H? (see, for instance, Hannan, 1970, Section II1.3). We shall not use any
of the properties of h except the identity (8). Under the condition w™ € L!, (8)
implies that 1/h € L2, and hence 1/h possesses a Fourier series that converges
in L2 But under the condition w € L*, L2-convergence implies L*(w)-conver-
gence. Note that we have really only used the property that w/| k|2 is bounded.
Thus we have proved

THEOREM 2 (Akutowicz, Masani). If w € L* and w™ € L?, then every f
satisfying w | f|? € L has a Fourier series that converges in L%(w).

Our main theorem is proved in essentially the same way. It uses as a critical
step:

THEOREM 3 (Hunt, Muckenhoupt and Wheeden, 1973). If w is a nonhegative
function on (—m, 7], and 1 < p < o, then every f € LP(w) possesses a Fourier series
that converges in LP(w) if and only if w satisfies the condition

. _1_ Lf -1/(p-1) >P"1 <
Ap.<|1|£w(0)d0><|“ | w() dd) =<K

for all intervals I and for some finite K independent of I.

The condition (6) stated earlier and its consequence are the special case
p = 2. We can now prove

THEOREM 4. If the weight function w may be written as w = w,w,, where for
some p, 1 < p < o, we have

(a) wi' € LP and w, € L”, where 1/p’ + 1/p = 1, and
(b) w? satisfies Agp,

then every f satisfying w| f|*> € L possesses a Fourier series that converges in
L3(w).

ProOF.

@ flf((i)lz"wz(ﬁ)" d0=f{w(0)|f(0)|2}"w1(0)"’d0

= (IIwaI2IIoe)".f w1(0)7 db,

sow|f?| € L” and wi' € LP imply that f € L¥»(w3).

(ii) Since w?’ satisfies Az, f € L¥*(w?) implies that f has a Fourier series
that converges in L*(w%) (Theorem 3).
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(iii) For any g € L¥(w),

f | 800) I”w(6) do = f | 8(6) |w1(0)wa(6) d
I ll/p' i/p
slf w(0)” d0I' 1f | 80) |*Pw,y(9)? dﬂ} .

Thus convergence in L?(w) is implied by convergence in L?(w3). This completes
the proof.

4. Special cases. Note first that in the case p = 1, p’ = © and we have the
factorization w = w,; w,, where

(a) wi'€ L!and w, € L*, and
(b) w, satisfies As.

Thus the product of a function satisfying (6) with a function satisfying (7) meets
the criteria of Theorem 4. Since constant functions satisfy (7) and A, (indeed,
Ap), we see that both previous sufficient conditions also emerge as special cases.

Another special case of some interest is where w,; = 1. We then have that it is
sufficient that w € L? and w™ € LP, for some p, 1 <p < .

It is interesting that this simple condition, (6) and (7) all imply that w™ €
L', or in other words that the process {x(t)} is minimal (Rozanov, 1967, page 99).
However, not all weight functions satisfying Theorem 4 have this property. The
most we can say is that w™' € L9 for some q > Y%, which follows from Holder’s
inequality and the fact that since w#$ satisfies A, it also satisfies A, for
some r < 2p, r > 1 (Hunt, Muckenhoupt, and Wheeden, 1973) and therefore
w3P € LYY for this r. For example, w(f) = (cos 0/2) satisfies (5) (and hence
Ay) for —1 < a < 1 (Helson and Szego, 1960), and satisfies (7) for 0 < a < 1.
Thus it may be factorized as in Theorem 4 with p = 1 for —1 < o < 2. (This
extends the range of values given by Hosking, 1981, Theorem 1.) For the values
1 < a <2, however, w™! & L', and hence the process is not minimal. Note that
for « < —1, w & L' and hence cannot be a spectral density function. Also if a =
2, ¢(t) does not have a convergent series representation (Topsoe, 1977). In fact
for « = 2, 1/h & L' and hence 1/h does not possess a Fourier series. Thus
Theorem 4 gives complete information about this example.

Some interesting properties appear when we take into account the fact that
A, functions satisfy integrability conditions. Suppose, for instance, that w € A;.
Then w and w~"? are both integrable. Thus we can factorize w as w,w, where

(a) w; =w"? whence wi' € L¥? and w, € L3, and
(b) ws = w??, whence w¥/? satisfies As.

Thus the conditions of Theorem 4 are met, with p = %.
" Since w € Ay, ¢ = 1, implies that w € A, for any r = ¢ (Hunt, Muckenhoupt,
and Wheeden, 1973), it follows that w € A,, 1 < g < 3, is a sufficient condition
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for Theorem 4 to hold, with p = 3%. However, this seems to be the highest value
of p for which w € A,, is enough by itself to satisfy the theorem. If p > %, an
additional condition is required, such as w™' € L%,

It is also interesting to note that a simple consequence of the factorization in
Theorem 4 is that

1 1 e g < K
(m fzw‘(” d”)(m f,w<0> Zd”) =17

for all intervals I and for some finite K independent of I. This may be compared
with .
As: (/11| w(6) d6)(1/| I w(6)™ df)* < K.

It follows from the above discussion that these are respectively a necessary
and a sufficient condition for the existence of the factorization in Theorem 4.

5. Discussion. Theorem 4 provides a sufficient condition for the conver-
gence of (2), and as we showed in Theorem 1, we then are assured of the
convergence of other series such as those of the »-step linear predictors. However,
these other series may not be covered by Theorem 4 directly. For instance, if
w & L® and the Fourier series of h™! converges in L?(w), then the Fourier series
of 1 — h™! also converges. But w|1 — h™!|2 & L*, and hence 1 — h™" is not
covered by Theorem 4. It would be of interest to characterize the random variables
in # that possess convergent representations.

Little is known about necessary conditions for the convergence of (2).
Akutowicz (1957) showed essentially that if w € L*, then w™' € L is necessary
and sufficient for the convergence of (2) with Y b2 < «. Our example has shown
that w™! € L is not necessary merely for the convergence of (2), even if w € L*.
Thus we are still far from solving the problem raised by Wiener and Masani
(1958), of characterizing the spectra of processes for which (2) converges.
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