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THE CONCEPT OF NORMALITY FOR FUZZY
RANDOM VARIABLES!

By MapaN L. PUrI AND DAN A. RALESCU

Indiana University and University of Cincinnati

In this paper we define the concept of a normal fuzzy random variable
and we prove the following representation theorem: Every normal fuzzy
random variable equals the sum of its expected value and a mean zero random
vector.

1. Introduction. The concept of a fuzzy random variable [cf., Puri and
Ralescu (1984)] was defined as a tool for representing relationships between the
outcomes of a random experiment and inexact data. By inexactness here we mean
nonstatistical inexactness that is due to subjectivity and imprecision of human
knowledge rather than to the occurrence of random events. Fuzzy random
variables generalize the concept of a random variable as well as that of a random
set [Matheron (1975)].

To make this theory applicable to statistical analysis of inexact data, we
consider in this paper the concept of normality for fuzzy random variables. [For
the concept of normality of random sets, the reader is referred to Lyashenko
(1980). For a characterization of p-stable random sets, the reader is referred to
Giné and Hahn (1985).]

After some preliminaries on fuzzy random variables given in Section 2, we
describe in Section 3 an embedding theorem for the space of fuzzy sets with
compact convex levels that satisfy a certain Lipschitz condition. In Section 4, we
define the concept of a normal fuzzy random variable in R ? and represent such a
variable as the sum of a constant fuzzy set and a random vector in R”. This
result extends the corresponding result for random sets [Lyashenko (1980)] and,
analogous to his result, it shows that a normal fuzzy random variable is “degener-
ate” in the sense that it is a random translate of a fixed fuzzy set. Our result is
also analogous to the one given in Giné and Hahn (1985) which deals with
random sets in Banach space.

2. Fuzzy random variables. Let % (R”) denote the nonempty compact
subsets of R?, and let #(R?) denote the nonempty compact convex subsets of
R . The Hausdorff distance

d(A,B) = max{ sup inf ||@ — b]|, sup inf |ja — b||}
a€A beB beB acA
gives X (R P) a structure of a metric space. Moreover, this space is complete and
separable, and X (R ?) is a closed subspace [Debreu, (1967)].
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Denote ||A|| = d(A,{0}) for A € ¥ (RP). A linear structure is defined in
X' (R?) by the operations

A+B={a+blacA, beB), MA={AaacA},

where A, B € X (R?) and A € R. Note that X(R?) is not a vector space.
Let (2, &, P) be a probability space. A random set is a Borel measurable
function f: @ — X' (RP). The expected value Ef [Aumann (1965)] is defined by

Ef = {Eol¢ € L(2, o, P), 6(v) € f(0) ae.),

where ¢: @ — RP? is a selection of f.

Note that E|| f|| < co implies that Ef € X (R?).

A fuzzy set in R? is a function u: R? — [0,1] [Zadeh (1965)]. Denote by
L (u) = {x € RP|u(x) > &} for 0 < a < 1, the level sets of u. Further, denote by
supp u, the support of u, i.e., the closure of the set {x € R”|u(x) # 0}.

As an extension of X' (R?) we define the space F(RP) of fuzzy sets
u: RP — [0,1] with the properties:

(a) u is upper semicontinuous;

(b) supp u is compact;

(¢) {x € RP|u(x)=1} + ¢.
The linear structure in Z#(RP”) is defined by the operations (u + v)(x) =
Supy+2=xmin [u(y)9 D(Z)],

u(A"x), fA#0,
Au)(x) = .
(Au)(x) Xoy(x), iA=0,

where u,v € #(R?), A €R, and x, denotes the characteristic function of
A CRP”.

Note that L (u + v) = L (u) + L(v) and Ly (Au)= AL (u) for every 0 < «
<1

We extend the Hausdorff metric by defining d_(u,v) = sup,. (d(L,u, L);
u,v € #(RP) (see Puri and Ralescu, 1981 and 1983).

It is possible to show that (#(R?), d,,) is complete [Puri and Ralescu (1984)].

Denote by Z(RP”) the space of fuzzy sets u € #(RP?) such that L. (u) is
convex for each a > 0.

A fuzzy random variable is a Borel measurable function X: @ — (F(R?),d,).
If E|jsupp X|| < oo, then the expected value EX is the unique fuzzy set satisfying
the property

L(EX)=E(L,X), O0O<a<l1

[Puri and Ralescu (1984), Theorem 3.1]. It also follows that E|jsupp X|| < oo
implies EX € #(R?).

A strong law of large numbers and a central limit theorem for fuzzy random
variables were derived in Klement, Puri, and Ralescu (1985a, b). A law of large
numbers was also given by Kruse (1982) using a different concept of expected
value.
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3. The embedding theorem. Let SP~! = {x € R?|||x| = 1} denote the unit
sphere in R 2. It is well known that X (R?”) can be embedded isometrically into
C(SP~!) (the Banach space of continuous functions on SP~1!). This result goes
back to Minkowski [see, e.g., Artstein and Vitale (1975)].

Such an embedding is realized via the support function of a compact convex
set. More precisely, if K € X (R ?), its support function is defined by

sg(x) = sup (x,a), x e8P
aeK

where ( -, -} is the inner product in R?.

In the case of the space Z(R?) of fuzzy sets, we seek a similar embedding.
However, more restrictions need to be imposed to do this.

Consider the space % (R?) of fuzzy sets u € #(R?) such that the map
a — L (u) is Lipschitz with respect to the Hausdorff distance. More precisely,
u € Z(RP) if there exists a constant M > 0, such that d(L,u, Lyu) < M|a — B
for every a, 8 € (0,1].

The following theorem gives the desired embedding, which will be used in the
next section to define and characterize fuzzy random variables.

THEOREM 3.1. There exists a function
J: Fo(RP) - C([0,1] x 8P~1)

such that:
(1) J is an isometry (i.e., || j(u) — j(v)ll,, = d(4,v));
(i) j(u + v) = j(u) + j(v);
(iii) j(Au) = Aj(u), A = 0.

ProoF. Define j(u) = s,, where
sp.(x), ifa>0,

s(a,x) = )
oo %) Seuppu(%), fa=0.

The function s, is Lipschitz on [0,1] X SP~:
s (a,x) —s,(B, 7)< |sLau(x)l_ sLBu(x)l + ‘SL,,u(x) - sLBu(y)|
(8.1) <Isp,u = Spulle + lLgullllx — i
< llull(le = Bl + llx — ¥1D),

where

d(L,u, LBu)
llull, = sup ————— + sup|| L u||
a#f |a - Bl a>0

and we have used the fact that K € ¥ (R?) — sy is an isometry, as well as the
fact that s, satisfies a Lipschitz condition with constant || K ||.
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Since any two norms in R?*! are equivalent, inequality (3.1) becomes

s.(a, %) — s,(B, ¥)| < qllull(la = B>+ llx — ¥1%)"%,

where ¢ is a constant.
Thus s, = j(u) € C([0,1] X SP~1).
It is now easy to show that j is an isometry, i.e.,
17(2) = j(0)ll = sup|s,(a, x) = s,(a, x)| = do(u,0),
a,x

as well as properties (ii) and (iii), and the proof is completed. O

NOTE. s, can also be defined on [0,1] X R? by the same formula as above,
and it satisfies the following properties

(a) s,(a, ) is subadditive, i.e., s, (&, x + ) < 5,(a, %) + s,(a, y) forx, y € R”.

(b) s,(a, -) is positively homogeneous, i.e., s,(a, Ax) = As,(a,x) for x € R?,
A>0.

(¢) s,(-,x) is decreasing.

(d) s,(-,x) is left-continuous.

Properties (a), (b), and (c) will be used in the proof of our representation
theorem in Section 4.

From Theorem 3.1, it follows that every fuzzy random variable X: @ —
Fo(RP) can be thought of as a random element of C([0,1] X SP~ 1) by consider-
ing j(X)= sy @ - C([0,1] X SP~") where sy(w) = Sx,,

The following result will also be useful.

LEmMA 3.1. If X: Q - %, (RP) satisfies E|jsupp X|| < oo, then E[sx(a,x)]
= spx(a,x), for a €[0,1], x € R~

ProoF. Let a, € [0,1] be fixed and consider the random set f = L, (X). We
first show that E[s;(x)] = sg;(x) for each x € SP-1, Indeed, it is easy to see
that this result holds if f =X} ,x, K; where A; € &/, K; € X(R”), and x4,
denotes the characteristic function of A; (i.e., if f is a simple function). The
desired formula follows by using the expected value of Debreu (1967), the fact
that K € #(RP) > sy is an isometry, and the Lebesgue dominated convergence
theorem. Thus

E[SL,,OX(x)] = SE(L‘,,OX)(x) = sLao(EX)(x) = sEX("‘Oax)’

implying E[sy(ay, x)] = sgx(ag, x), the desired result. We have used the prop-
erty E(L,X) = L (EX) of the expected value EX. O.

:4, Normal fuzzy random variables. In this section we define the concept
of a normal fuzzy random variable (by using the embedding of Section 3), and we
prove that such a variable can be uniquely represented as the sum of a constant
fuzzy set and a normal random vector in R ?.
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Before doing this, we shall need the following preliminaries: Let C(M ) denote
the space of continuous functions on the compact set M.

A random element f: Q@ — C(M) is Gaussian if the vector ( f(¢,),..., f(¢,)) is
normal for any ¢,,...,¢t, € M.

DEFINITION 4.1. A fuzzy random variable X: @ — %, (R?) is normal if sy
is a Gaussian random element of C([0,1] X SP™1).

This definition and the comment above imply that (sx(a;, x,),..., sx(a,, x,))
is normal for every a,,...,a, €[0,1] and x,,...,x, € SP~. Since sy(a,x) is
positively homogeneous in x, it follows that (sx(a;, x,), ..., sx(a,, x,)) is normal
for every a,,...,a, € [0,1] and x,,...,x, € R?. It also follows from Definition
4.1 that if X and Y are independent normal fuzzy random variables, then X + Y
is normal. Also A X is normal whenever X is normal and A € R.

REMARK. This definition of normality for fuzzy random variables is an
extension of the concept of normality of random vectors in R” as well as the
concept of a normal random set [Lyashenko (1980)]. Definition 4.1 is a natural
one, in view of the embedding Theorem 3.1, since in this way, normality is
defined via the random element s, that takes values in the familiar Banach
space C([0,1] X SP~1).

We now prove the characterization theorem for normal fuzzy random vari-
ables.

THEOREM 4.1. Let X: Q - %, (R?) be a fuzzy random variable with
E|lsupp X|| < oo. The following statements are equivalent.

(1) X is normal.
(2) X = EX + (£} where £ is a normal random vector with mean zero.

PROOF. (2) = (1). It is easily seen that if «;,...,a, € [0,1] and x,,...,x, €
SP~1 then (sy(a;,x;),...,8x(a,,x,)) = M¢ + b where M is a constant matrix
and b is a constant vector. Since M£ + b is normal, it follows that s is Gaussian
in C([0,1] X SP~1).

(1) = (2). Let sy be Gaussian. Fix w € @ and a € [0,1]. Define y(w,a) =
Sx(o(@ ) — Sgx(a, +). Thus Y(w,a): R? - R.

CrAamM 1. yY(w,a) is linear.

Let A,p > 0, and x,,x, € R” be fixed. Then
(4.1) Asy(a,x,) + psy(a,x,) — sy(a,Ax; + px,) >0,

since sy(a, x) is positively homogeneous in x as well as subadditive [properties
(a) and (b) of Section 3]. '

By hypothesis, the vector (sy(a, x,), sx(a, x,), Sx(a, Ax; + px,)) is normal,
which implies that Asy(a, x;) + usy(a, x,) — sx(a, Ax; + px,) is a normal ran-
dom variable. From (4.1), it follows that this random variable is degenerate, i.e.,
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AsX(a’ xl) + #Sx(a, x2) - sX(a’ >\x1 + nu'x2) = E[Asx(a, xl) + I"‘SX(a9 x2) -
sx( Axy + pxy)] = Asgx(a, x,) + pspx(a, x,) — spy(a, Ax; + px,). The last
equality follows from Lemma 3.1. In terms of our function ¢(w, ), this implies
that Y(w;a)(Ax; + pxy) = AM(w, a)(x,) + py(w, a)(x;). Since P(w,a)0) =
this proves the linearity of y(w, a).

It is well known that such a linear map from R? into R can be represented as
Y(w,a)(x) = (x,£{(w)), x € R? for some {(w) € RP.

CLAIM 2. £ (w) does not depend on a € [0,1].

Let a,8 €[0,1], a < B fixed. From property (c) of Section 3, it follows
that sy(a,x) > sx(B,x) for every x € R?. But (using the same argument as
before) sy(a,x) — sx(B,x) is a normal random variable, which implies that
sx(a, x) — sx(B, x) = E[sx(a, x) — sx(B, x)] = sgx(a, x) — sgx(B, x). Thus
Y(w,a)(x) = Y(w,B)x) for every x € R?. This shows that ¢ (w)= £&(w) is
independent of a.

Thus we have the representation y(w, a)(x) = (x, {(w)). Since (x, £) is mea-
surable for each x € R?, it follows that ¢: @ — R? is measurable. Now, from the
representation (x,£) = sy(a,x) — sgx(a,x), it follows that (x,£) is a normal
mean zero random variable for each x € R?. Thus ¢ is a normal mean zero
random vector.

To conclude the proof of the theorem, we write sy(a,x) = spx(a,x) + (x,§)
= spx(a,x) + s(a,x) = Sgx, (@, x), implying that X = EX + {¢}. O
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