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SCALING LIMITS FOR ASSOCIATED RANDOM MEASURES

BY ROBERT BURTON! AND ED WAYMIRE?

Oregon State University

The problem of estimating Prob(X(B) < x) for large regions B c R?
when X is a random measure is solved under a condition of positive depen-
dence and summable correlations. Several applications are given and, in cases
in which the applications have been examined previously, it is shown that the
results are true under milder moment conditions than known before.

1. Introduction. An important problem in the theory of random measures is
the problem of estimating Prob(X(B) < x), for large regions B C R% where
X(B) represents the mass of the set B for the random measure X. Of particular
interest to us in the applications is the case when X is a point random field; see
also Burton and Waymire (1984) for related results. Previous approaches to the
problem in this latter case have relied on various types of mixing conditions; see
Brillinger (1975), Daley and Vere-Jones (1972), and Ivanoff (1982), for example.
While the results based on mixing enjoy applications to important classes of
point random fields, for example the Poisson cluster fields, the moment require-
ments typically appear stronger than one would expect to be necessary.

In one of the truly important recent results of probability theory, Newman
(1980) has established the central limit theorem for stationary families of random
variables indexed by Z¢ under a simple “summability decay rate” condition on
the correlations by exploiting an often natural additional condition of positive
dependence (association). Newman’s central limit theorem has subsequently been
refined in several directions; see Newman and Wright (1981), Cox and Grimmett

(1984).
) In the present paper Newman’s ideas are investigated in the case of nonlattice
random fields. For this the corresponding notions of positive dependence are
introduced and then shown to hold for various important classes of random
measures. As a consequence, it is shown that one can get estimates for probabili-
ties of the form mentioned at the start under milder moment conditions than
previously established by other techniques (e.g., mixing).

Preliminary definitions are given in Section 2 as well as a precise statement of
the problem and a few references to previous results. In Section 3 the notion of
associated random measures is introduced and some basic properties are given.
The extension of Newman’s central limit theorem to the present context is stated
in Section 4 and applications are provided in Section 5. All proofs have been
relegated to Section 6.
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2. Preliminaries. Let #¢ denote the collection of Borel subsets of d-dimen-
sional Euclidean space R? The set M of all nonnegative measures p. defined on
(R %) and finite on bounded sets (i.e., Radon measures) will be equipped with
the smallest sigma field .# containing basic sets of the form {p € M: p(A) < r}
for A € 2% 0<r< co.

A random measure X is a measurable map from a probability space (2, %, P)
into (M, ). The induced measure Py = Po X! on (M, /) is the distribution
of X. In the special case when the distribution of X is concentrated on the class
N of nonnegative integer valued Radon measures we refer to X as a point
random field.

M becomes a Polish space when equipped with the vague topology and the
sigma field # coincides with the Borel sigma field for this topology (cf.,
Kallenberg, 1976). Moreover N is closed in the vague topology for M (and
therefore measurable). We shall denote the restriction of the sigma field .# to N
by A".

If X,X,(n= ..) are random measures, then we say that X, converges
in dzstrzbutzon to X as n — oo iff Py converges weakly to Py; i.e., for continu-
ous bounded functions f on M, with 'the vague topology, lim , [, f(p)Px(dp) =
[ F(B)Px(dp). In particular, if Bl, ., B,, € #% are disjoint then the multi-
variate distribution of (X,(B,),...,X,(B,)) converges weakly to that of
(X(B,),..., X(B,))inR™ as n = o0. The converse is also true.

In the case when X is a point random field the realizations of X may be
regarded as configurations of points in R ¢, together with their multiplicities, such
that there are at most finitely many points in each compact subset of R¢ by the
Radon property. We shall require regularity in the distribution of X to the
extent that for each bounded Borel set D C R¢ and nonnegative integer n there
are measurable functions r, = r{™: D" — [0, ) such that

P(X(Al) =ky,...,X(4,) = kt’)

(2.1) & ( m+k ) 1
= “o - o d
m2=0 firo kg m Ak.x/.. Xx{?;/’.XCm (m+ k) rp(X1,- s X)) dX

for disjoint measurable sets A,,..., A, in D and nonnegative integers &k, - -+ &,
¢>1, where k=%, + --- +k,, C=D\U’_|A,. The functions r;, shall be
referred to as the absolute product densities of X. We are assuming, of course,
that the probability of exactly rn occurrences in D at x,,...,x, is given by
A/nDry(x, -+ x,)Ax; --- Ax, in the limit of sufficiently small neighborhoods
Ax; of x;,, 1 < i < n, from which such a representation as (2.1) would follow.

Closely related are the ordinary product densities p"*)(x,,...,x,). If D is a
bounded Borel set containing x,,..., x, then define

[oe]

1 .
(2‘2) p(n)(xl""’xn) = E Z'_‘/;)krD(xli""xn+k)(ixn+l o dxn+k
: k=0 """

So p™(x,,...,x,)(Ax)" is approximately the probability that there are point
occurrences in fixed regions of volume Ax about x,,...,x, for small enough Ax.
This definition is independent of the set D containing x,...,x,.
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If X is a point random field with product densities p‘™), n = 1,2,..., then the
cumulant densities, or correlation functions, are indirectly defined by means of
the cluster expansion

(2.3) pW(x,) = ¢W(xy)

(2.4) pP(ay,2x5) = ¢®(xy, %2) + ¢P(x,)g P (xx,)
PO(x1, %5, 23) = ¢P(x1, x5, %3) + P (21, 25) gV (x5)

(2.5) +q@(x), 23)gPV(xy) + P (x5, 23)qV(x,)

+q®(x,)gM(x2)qV(xs5).
In general, the nth equation in the hierarchy is obtained by decomposing
p"™(x,,...,x,) as a sum of factorizations with respect to subdivisions of the
configuration x,,...,x,.

The product densities and cumulant densities, when they exist, are simply
densities of the factorial moment and factorial cumulant measures, respectively,
when these are absolutely continuous with respect to Lebesgue measure; see
Daley and Vere-Jones (1972). In particular, it follows that

(2.6) EX(B) = /;gp(l)(x)dx = qu<1>(x)dx, B e #¢

Cov(X(A), X(B)) = [ [q®(x,,%,) dx, dx,,
AXB
(2.7)
ifANB=¢, A,Be #¢

Var(X(A)) = Cov(X(A), X(A))
= [ Ja®Gu ) dede + [O(x)dx, A€ 2

A random measure X is stationary (or homogeneous) if for all bounded
B,,...,B, € #¢ the distribution of (X(B, + x),..., X(B, + x)) is independent
of x € R% Most random measures to be discussed in this paper will be sta-
tionary. Let I =[0,1]¢ be the unit cube, then the intensity of a stationary
random measure is E[ X(I)] (which may be infinite).

If X is a stationary random measure we say that X satisfies a classical
scaling limit if X lies in the domain of attraction of Gaussian white noise for the
scaling parameter A%/?, i.e., for all disjoint rectangles (products of finite intervals)
A,..., A

(2.8)

n’

X(A4,) - E[X(A4))] X(24,) - E[X(AA,)]
}\d/2 . L >\d/2

converges in distribution (as A — o0) to a multivariate normal with mean vector
0 and diagonal covariance matrix whose diagonal terms are ¢2|A,|,...,0%A,,]|
(where |A,| equals the Lebesgue measure of A;) for some positive parameter ol
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A natural approach to finding classes of random measures with classical
scaling limits is to investigate mixing properties. In the point random field case a
well-known mixing condition is that of B mixing (B for Brillinger). A point
random field is B mixing if cumulant densities of all orders exist and are
integrable. Ivanoff (1982) has shown that every stationary, B-mixing point
random field satisfies a classical scaling limit. In this paper we take another
approach in which we investigate positive dependence properties, such as associ-
ation, of point random fields. The underlying objective is to try to exploit ideas
behind a recent central limit theorem for associated random variables due to
C. M. Newman (1980).

3. Association of random measures. There is a partial ordering on R”

given by x = (x,,...,x,) <y =(Y---5¥,) if x; <y, for each coordinate, 1 < i
< n. Recall that an infinite family & of random variables is associated if for any
finite subfamily Y,...,Y, € & and f,g: R™ — [0,1], continuous and increasing

with respect to the above ordering on R”, the Cov( f(Y,,...,Y,), 8(Y,,...,Y,)) >
0; see Esary, Proschan, and Walkup, (1967). We want to extend this notion to
random measures.

DEFINITION 3.1. A random measure X is associated if and only if the family
of random variables § = {X(B): B a Borel set} is associated.

There is a natural partial ordering on M given by p < » for p,» € M if for
every Borel set B we have pu(B) < »(B). In the point random field case this
amounts to stipulating that every occurrence in p also be an occurrence in ».

THEOREM 3.2. A random measure X with distribution Py is associated if
and only if whenever F,G: M — [0,1] are increasing with respect to the ordering
on M and are Py-continuous (i.e., the set of discontinuities for the vague
topology on M has Py-measure 0) then Covy(F,G) > 0, where

Covy(F,G) = [ F(u)G(w)Px(dp) = [ [ F(\G(s)Px(dN)Py(dp).

As will be seen, the following result provides a useful means for checking
association in the case of point random fields.

THEOREM 3.3. Suppose a point random field X has piecewise continuous
absolute product densities that satisfy

(3.4) rp(xy, .2 )rp(%5, o, %) 2 (X, 0, x)rp( X, .0, X,)
for all cubes D ¢ R?, all x,,...,x, € R% and 1 <i <j < n. Then X is associ-

ated.

One consequence of the above theorem is that a renewal process is associated
(as a point process) if the lifetime density is log convex. Details will appear in a
separate publication as an application of the results given here.
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We list the properties of association for random measures.

(3.5) If X is Poisson then X is associated.
(3.6) If X,Y are independent and associated then X + Y is
’ associated.

If X is a random measure and F: M — M is increasing
then F(X) is associated.

If X, converges to X in distribution and if each X, is
associated then X is associated.

(3.7)

(3.8)

To see (3.5) suppose X is Poisson and take A4,,..., A, € #¢ bounded. We must
show the random variables X(A,),..., X(A,) are associated. Disjointify
A, ..., A,; ie, find disjoint sets B,,..., B,, so that each A, is a union of B;’s.
Then (X(B,),..., X(B,,)) are independent, hence associated, and each X(A,)is a
sum of some of the X(B;)’s so the X(A;)’s are associated because they are
increasing functions of associated random variables. (3.6) and (3.8) follow directly
from the corresponding properties for associated random variables. (3.7) follows
directly from definition.

4. A classical scaling limit. In 1980 C. Newman proved that the renormal-
ized block sums of stationary associated random variables indexed by the lattice
Z? converge in distribution to iid Gaussian random variables if the covariance
function is summable. We extend this to random measures as follows.

THEOREM 4.1. Suppose that X is a stationary associated point random
measure such that EX?(B) < oo for bounded B € #¢ and

(4.2) Y Cov(X(I),X(I+Kk))=n< oo,

kez?
where 1 is the unit cube. Then X satisfies a classical scaling limit with parameter
n. Moreover the assertion remains true if X is a stationary associated (finitely
additive) random interval function satisfying (4.2).

The notion of random interval functions is discussed in Daley and Vere-Jones,
Definition 2.12, page 317, (1972). ;

Notice that because X is associated we have n > 0 for nondegenerate X. We
will say that a random measure X that satisfies (4.2) has a summable second-order

correlation.

In the case when X is a stationary point random field with cumulant densities
q® and ¢, then by (2.7)—(2.9), the condition (4.2) is satisfied if A = [,¢V(x) dx
< oo and

Y= qu(2)(x1,0) dx, < o0 withn =X+ yin (4.2).
R

As pointed out to us by the referee, the result of Theorem (4.1) can actually be
strengthened to get a functional scaling limit in dimensions one and two by an
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application of the results in Newman and Wright (1981, 1982). For this one
defines the rescaled random field indexed by a multidimensional parameter
t=(t,...,ty), d=1,2, by

(4.3) X,(t) = A2 X((0,A8,] X -+ x(0,At,]) — Not, -+ t,].

Then X, converges for the Skorokhod topology on the approprlate function space
to the d-parameter Brownian sheet as A — oo under the conditions of Theorem
4.1, for d = 1,2.

5. Applications.

5.1 Poisson center cluster random measures. Let U be a Poisson random
field with intensity p and let V be a random measure with EV(R?) = y. The
random measure X is defined by letting the occurrences of U act as centers or
initiators and then superimposing iid random measures distributed as V' but
centered at the occurrences of U. More precisely, let U have occurrences {x;} and
let {V;} be iid random measures independent of U and distributed as V. For
bounded B € #? we set

(5.1) X(B) = Z V(B + x,).

We denote X by [U, V] and observe that X is a stationary random measure with
intensity pvy.

The most studied class of such random measures is the case where V is
required to be a point random field. A particularly tractable special case was used
by Neymen and Scott (1958) to model clusters of galaxies. Cluster point random
fields with Poisson centers have also been used to model earthquake occurrences
by Vere-Jones (1970) as well as space-time rainfall by Waymire, Gupta and
- Rodriquez (1984). Foundational calculations for these models appear in Westcott

(1971).

Also worthy of note is the case where the random measure V is assumed to be
absolutely continuous. These models are referred to as smoothed Poisson random
fields and arise in the theory of shot noise (see Vanmarcke, 1983) and in the
description of gravitational fields as in Feller (1966) and Daley (1971).

We have the perhaps surprising theorem.

THEOREM 5.2. X defined as above is a well defined stationary random
measure that is associated.

Combining theorems 4.1 and 5.2 we get

THEOREM 5.3. If X =[U,V] as above with V a poi‘nt random field such that
E[V(RY)?] = ¢ < 0, then X satisfies a classical scaling limit with parameter pé.

Using mixing techniques G. Ivanoff (1982) proved Theorem 5.3 in the case V is
a point random field with E[V(R?)3] < co and whose first four cumulant
densities exist.
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5.2 Critical branching point random fields. This much studied example is an
evolution of point random fields. X, is a Poisson point random field on R where
d > 3. The occurrences in X, undergo independent Brownian motion. Each
particle independently of the others is either erased or splits into two particles
(each with probability 1) after an exponentially distributed length of time. X, is
the evolved field at time ¢. Since X, is a Poisson center cluster point random field
it is associated and has a classical scaling limit. X, converges to a steady state
distribution X as ¢ - oo (Dawson, 1977) which must also be associated by (3.8).
However, X, has a nonclassical scaling limit (the so-called massless free field);
see Dawson (1977).

5.3 Dependent thinning. Let X be a Poisson point random field with param-
eter A. We define a derived point random field as follows. Let f: R¥ — [0, c0) be
Borel measurable and have compact support. Define F: N — N (recall N is
identified with the set of countable subsets of R¢ with the property that only a
finite number of points may belong to bounded sets) by F(w) = @ where w = {x;},
©={x),and ¥, € w o X, € w and ¥ ,f(x; — x;) = 1 [> 1 would also do]. Then
set X’ = F(X). Roughly speaking, X’ is obtained from X by deleting all
occurrences that do not have “enough” nearby occurrences. For example, if f is
the indicator function of the closed unit ball then X’ is obtained by deleting all
occurrences whose nearest neighbor is further away than one unit.

Since F is increasing on N it is immediate by (3.7) that X’ is associated. Also
since f has compact support and X has independent increments there is a
finite subset J C Z¢ so k & J = Cov(X'(I), X'(I + k)) = 0. Then using
Cauchy—-Schwarz we have

Y Cov(X'(I),X'(I+k))= ) Cov(X'(I),X(I+k))

kezd ked
< Y E[X(I)X(I+kK)]
kedJ
kZJ(E[X'(I)“’]E[X'(I + &))"

Y E[x(1)"]E[x/(I+ k)]
ked

=|J|(A + A?) < 0.

IA

IA

Thus X’ has summable correlations and we get the following theorem.

THEOREM 5.4. X' defined as above is associated and satisfies a classical
scaling limit. .

5.4 Doubly stochastic point random fields. Let A be a stationary, associated
random measure and let Z be doubly stochastic with environment A; that is Z is
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conditionally Poisson with intensity measure A. Then we have the following
theorem.

THEOREM 5.5. Z is associated. Further if A has summable correlations then
so does Z, so in this case, Z satisfies a classical scaling limit.

A more general version of this theorem is given in Burton and Waymire.(1984).

6. Proofs of preceding statements. In several of the proofs below the
following approximation will be used. Suppose X is a random measure. Partition
the half-open cube [ —n, n)? into half-open cubes A,,..., A,, of side length ()"
(so m = (2n2")%). Let D, = {x,,...,x,) be the set of lower left hand corner
points of A,,..., A,,. Define the random measure X, by

X(B)= Y X(4)

i:x,€B

for each bounded Borel B ¢ R Intuitively, X, is obtained from X by erasing
all the mass outside of [ —n, n)? and moving the mass in each A; down to the
point x,. Clearly, since X is a.s. countably additive, X, converges to X in
distribution. Each X, is an easier object to analyze because it only depends on
the finite number of random variables X(A,),..., X(4,,).

ProoOF oF THEOREM 3.2. If X satisfies the conditions of the theorem then it
is easy to see that X(B), for bounded B € %, is an associated family of random
variables because if f,g: R” — [0,1] are continuous and increasing then both
f(X(B,),..., X(B,)) and g(X(B,),..., X(B,)) are increasing with respect to the
ordering on M and are Py-continuous so their Py-convariance is nonnegative.
Conversely suppose X(B), bounded B € #¢, is an associated family of random
variables and F,G: M — [0,1] are increasing and Pjx-continuous. Then, if X, is
the random measure that approximates X as in the preceding discussion we have
Covy (F,G) = 0 because with respect to the measure induced by X,,, the distribu-
tion of F depends only on the random variables X(A,),..., X(A4,,) and is
increasing in these values. Further, since F,G are bounded and Py-continuous
Covy (F,G) converges to Covy(F, G) which is thus also nonnegative. O

ProOF oF THEOREM 5.2. If X =[U,V] with U Poisson with parameter p
and E[V(R?)] < oo then X is associated: this statement is proven in stages.
First suppose V is deterministic and atomic with a finite number of atoms, that is
V=1 a8, with a;> 0 and where §, is the Dirac measure concentrated at
x; € R Then {X(A))} is associated because X(A) = X" ,a,U(A — x;) which is
an increasing function of random variables from U(B), bounded B € #¢, which
are associated because U is Poisson. Next suppose V is discrete, that is V=V,
with probability p;1 < i < k (L*p, = 1) and where V; is deterministic and atomic
with at most a finite number of atoms. Now for each i, 1 < i < &, let U, be an
independent Poisson point random field with parameter pp;. Set X, = [U, V,].
Then X,,..., X, are independent and each is associated. Then X, + --- +X,



LIMITS FOR ASSOCIATED RANDOM MEASURES 1275

has the same distribution as X which is associated by property (3.6). Now
suppose V is any random measure satisfying E[V(R?)] < co. Let V be the
random measure approximating V as in the discussion preceding the proofs. Set
X™ =[U,V,]s0o X™ is associated. We show X (" — X which will complete the
proof because association is preserved under convergence of random measures
(Property 3.9). Let A, be the intensity measure of V, and A be the intensity
measure of V (i.e., A(B) = E[V(B)]). Let B, be the open ball of radius s and
center 0 in R¢ and B its complement. By Fleischman, (page 54, 1978) it is
enough to show lim, _, ,sup, [g-A (B, — x) dx = 0. But

fBCA,,(B, - x)dx
= fB;fRdl{B,_x}(y)An(dy)dx = fRde:IB,(y + x) dx A (dy)

= [, [ 1a(y+m)ash (@) < [ 1B (dy)

= lBrIAn(BSC—I') S IBFIA(BSC"'—‘/J) - O

as s — oo since A is a finite measure. O

PROOF OF THEOREM 3.3. As before partition K = [—n,n)? into half-open
cubes of side length (1)" and volume Ax = (1)"“. Let D, be the set of lower left
hand corner points of the partition sets. We put a measure P, on the power set
P(D,), the lattice of configurations consisting of points from D,, by P,(R) =
k,r(xy,...,x,)(Ax)™ for R = {x,,...,x,) C D,. k, is a normalizing constant
chosen to make P, a probability measure, so 2,, — 1. Then (3.4) implies P,(R N
S)P(R U S) = P(R)P,(S) which is the log convexity condition in Proposition
3.1 of Fortuin, Kastelyn, and Ginibre (1971). This proposition then shows that
the Bernoulli random variables { X;: i € D,},

{1 ifieR

Xi=\0 ifieR

l

are associated (where R C D, is chosen according to the distribution P,). This
extends to a point random field X, defined by X,(B) = X, g X,, for bounded
B € #<, which is also associated by (3.7). The proof will be complete if we show

X, converges to X in distribution [because of (3.9)]. By Kallenberg (page 22,
1976) it is enough to show (X, (A,),..., X, (A,)) = (X(A)),..., X(A,)) where
A,,..., A, are disjoint and for some N, each A;C [—N, N)¢ and each A, is
made up of the partition elements of [ — N, N )¢ (i.e., the half open cubes of side
length (3)"). Set C= K, — U;A,. We show (X, (A,),...,X,(4,), X,(C)) -
(X(A)),..., X(A,), X(C)). Fix nonnegative integers m,,...,m, , and set m =
Y/_,m,. Then because the absolute product densities can be approximated by
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Riemann sums and %, — 1 we have
Prob[ X, (A,)=m;,1<i<?¢; X,(C)=m,,]

1
T m e m !
1 /+1°
w\mtme
X Z Z knr(xl""’xm+m,ﬂ)(Ax)
x,€AND,;1<i<m, x,€CNDy; m<i<m,,,
1

pra sy RIS S CNSHE PO LRI
= Prob[X(A,))=m;,1<i<?¢; X(C)=m,,,|]. O

LEMMA 6.1. Suppose that X is a stationary associated random interval
function such that Var X(I) = 0% < oo where I is the unit cube. If

Y Cov(X(I),X(I+Kk))=¢<o0
kez?
then for B = U, c \(I + k) where A C Z< is finite and I + k is a translate of I
for k € A, we have

VarX(B) < card(A) - (o2 + ¢).

Proor. The proof is the simple computation
VarX(B)= Y VarX(I+k)+ Y  Cov(X(I+k),X(I+1))
keA LkeA; /+#k
<oc%ard(A)= ), Y Cov(X(I),X(I+k))
leA kez?

=(0o?+ {)card(A). O

PROOF OF THEOREM 4.1. Let I =[0,1)% Let X denote a random interval
function subject to the conditions of the theorem.
Consider first the distribution of

X(NI) — EX(AI)
) )\d/2
as A > oo. Let Z, = X(I + n), n € Z% Then {Z,: n € Z%} is an associated
family of stationary random variables for which

n=) Cov(Z,,2,) <

nezd
From Newman’s Theorem [see Newman (1980)], it follows that
Sk — ESk
{—nﬁr:nEZ‘i} - {Wye:neZ ask- o,

in the sense of convergence of finite dimensional distributions, where
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(W,: n € Z%) are iid mean zero, variance 7, Gaussian random variables and

Si= L 2
ve[k(I+m)]
where
[B]={n=(ny,...,n,)€Z%ne B} =ZnB.
Let

Dy={nez%T+nc[A]-1=[([A] -1)I]},
where [A] denotes the greatest integer in A. Also let
I? = AI\[A]I

Then
X(A\D) =X(I))+ X Z,
neD,
Moreover,
X(M) - EX(\I) = X(I?) - EX(IR) + X (Z,— EZ,).

neD,
However, by Lemma 6.1, since I? C ([A]+ 1)I\ [A]] and Cov(X(A), X(B)) = 0,
Var X(IY) = 0(A4"?) as A - co.
In particular, it follows from Chebyshev’s inequality that
x(19) - BX(1})
}\d/2

Since [A]¢ ~ A? as A — oo the result follows from Newman’s central limit
theorem in the case of the marginal distribution of X(AT), centered and scaled.
For arbitrary disjoint unit cubes I,..., I, the same considerations may be
applied to the random vector (X(AI)),..., X(AL,,)) centered and scaled. O

— 0 in probability as A — oo.

PrOOF OF THEOREM 5.3. In view of Theorems (5.2) and (4.1), it suffices to
show that

Y Cov(X(I),X(I+Kk))=pé<oo.

kez?
To see this simply note

Cov(X(I), X(I + k)) = fR;E{V(I +x)V(I +k + x)}pdx
so that

2COV(X(1),X(I+k))=Zf E{V(I+x)V(I +k + x)}pdx
k k "R

= fRdE{V(I+ x)V(R?)}pdx

= pEV3(R?) =p{ < o0. O
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