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ASYMPTOTIC GROWTH OF CONTROLLED GALTON-WATSON
PROCESSES!

By PETRA KUSTER

Universitiit Gottingen

The almost sure growth behavior of some time-homogeneous Markov
chains is studied. They generalize the ordinary Galton-Watson processes with
regard to allowing state-dependent offspring distributions and also to control-
ling the number of reproducing individuals by a random variable that de-
pends on the state of the process. The main assumption is that the mean
offspring per individual is nonincreasing while the state increases. These
controlled Galton-Watson processes can be included in a general growth
model whose divergence rate is determined. In case of processes that differ
from the Galton—Watson process only by the state dependence of the off-
spring distributions, a necessary and sufficient moment condition for diver-
gence with “natural” rate is obtained generalizing the (x log x) condition of
Galton—-Watson processes. In addition, some criteria are given when a state-
dependent Galton-Watson process behaves like an ordinary supercritical
Galton—Watson process.

1. Introduction. The (Bienaymé-) Galton-Watson process (Z,,n € N) is a
Markov chain on N, the nonnegative integers, where

Z’l
ZOEN\{O}a Zyir = EXn+l,j7 n>0,
j=1

{X,, jy»n,J € N\ {0}} are iid. random variables on N. If we interpret Z, as the
number of individuals in the nth generation of a population this means: Each
individual generates, independently of all the others with identical distribution,
new particles. With u = E(X,;) < oo denoting the mean offspring, it is well-
known that (besides the trivial case X;, =1 as) u <1 e P(Z, » 0)=1, and
p>1, E(Xlogmax{X,,1})) < w0 & Z p " > W as. with P(0 < W< o0) =
P(Z, - o0). Even if the additional.moment condition fails the growth rate is
very similar to the exponential p” [c.f., Athreya and Ney (1972)].

To obtain more realistic models for population growth two kinds of gener-
alized (“controlled”) Galton-Watson processes have been studied. Some authors
[Stein (1974), Levy (1975), Roi (1975), Fujimagari (1976), Hopfner (1983, 1985),
Klebaner (1983, 1984a, 1984b, 1985)] have admitted state-dependent offspring
distributions,

z,
ZOEN\{O}’ Zn+1= EXn+1,j(Zn)" ngo,
J=1
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1158 PETRA KUSTER

{X,, (k),n, j,k € N\ {0}} are independent, { X, (k),n,j € N\ {0}} are iden-
tically distributed on N, i.e., the offspring distributions of individuals of one
generation remain independently distributed but now they depend on the num-
ber of individuals of the generation. Sevast’yanov and Zubkov (1974) and Zubkov
(1974) have retained i.i.d. offspring but have controlled the number of reproduc-
ing particles by a function ¢: N — N,

?(Zy)

ZOEN’ Zn+l.= Z Xn+1,j’ ngo'
j=1

Yanev (1975) has replaced the function ¢ by identically distributed random
functions g, that are essentially independent of {X,, ;}. Roi (1975), who has dealt
with state-dependent generalizations of multi-type Galton-Watson processes, has
considered a branching process with state-dependent emigration. Before produc-
ing offspring each individual emigrates, independently of the others, with a
probability p(Z,). This process can also be regarded as a ¢-branching process
with ¢,(k) independently b, , _,,-binomial distributed.

Most of the results obtained for these processes deal with criteria
for a.s. extinction (resp. boundedness) or divergence with positive probability.
If the (2 + 8) moments of the offspring distributions are uniformly bounded
Levy (1975) has shown that u(i) = E(X(i)) =1+ A/2i, where A <
lim inf var(X,,(n)) or A > limsupvar(X,,(n)) describes the critical boundary
between these two types of asymptotic behavior. Roi (1975) has obtained similar
results using only second moment restrictions. For the ¢-controlled branching
process Zubkov (1974) has obtained the boundary pe(i)/i =1 + A/2iu, where
A <var(X;)or A > var(X))), p = E(Xy)).

There are only a few statements on the growth rate of these processes.
Fujimagari (1976), Roi (1975), and Klebaner (1984a,b) have shown that the
state-dependent Galton—Watson processes diverge exponentially with rate p” if
u(i) = p > 1 sufficiently fast and the second moments of the offspring distribu-
tions satisfy some boundary conditions. In Klebaner (1985) these second moment
conditions are relaxed. Klebaner (1983, 1984a) and Hopfner (1983, 1985) have
described some classes of offspring distributions, where Z,/n does not converge
almost surely but in distribution to a T distribution. These cases belong to the
class of processes with u(i) = 1 + A/i and A sufficiently large. Therefore, u(z) is
close to a function that does not allow divergence. Concerning the ¢-controlled
processes Zubkov (1974) has proved that they grow exponentially if pe(i)/i
converges to a constant greater than 1 sufficiently fast.

In the following we want to study state-dependent and ¢-controlled
Galton-Watson processes:

(pn+1(Zn) :
Zo S N, Zn+1 = Z Xn+1,j(Zn)7 n ; 0’
j=1

where (X, ;(k),®,(1),n, j, k,m,l € N} are independent and { X,, ,(k), n, J €N}
respectively {¢,(/), m € N} are identically distributed on N. Using the methods
of Stein (1974) and Levy (1975) it is not difficult to obtain criteria for
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P(limsupZ, < o0) =1 or P(Z, - o) > 0 in case of deterministic ¢,. We will
confine ourselves to studying the divergence rate of (Z,, n € N). We are espe-
cially interested in the cases with u(i)E(¢,(i))/i — 1 sufficiently slowly where
we expect divergence rates which are slower than exponential. The results are
collected in Section 2. For the proofs, given in Section 4, we cannot apply any
method using the special properties of generating functions of the Galton-Watson
processes. Our proofs base on discrete Martingale theory as can be found, e.g., in
the book of Hall and Heyde (1980). The main ideas are independent of the special
model of controlled Galton—-Watson processes. We include them—after some
modification—in a more general growth model. Its divergence behavior is de-
termined in Section 3.

2. Results on controlled Galton-Watson Processes. (Z,,n € N) is a
time-homogeneous Markov chain on N as described at the end of Section 1:

n(k) = E(X,y(k)),  »(k)=E(p(k)), 7%(k)=var(p,(k))
exist. Note that
E(Z,.\Z,) = »(Z,)(Z,).
To obtain divergence of (Z,) with positive probability we assume:
(2.1) v(k)p(k) 1isincreasing for & > x, > 0.

v(k)p(k) = k(1 + Ak™*) forsome A > 0,a € [0,1),

(2.2)
and all 2 > x,.

The lower bound in condition (2.2) is not far away from v(k)u(k)/k — 1 ~ k71,
where as well as a.s. boundedness, divergence can take place.
The essential assumption we need for most of our results is

- (2.3) v(k)n(k)/k is nonincreasing for £ > x,,.

It means that the mean increment per individual decreases while the number of
individuals of the same generation increases. Such a condition has also been
assumed for state-dependent Markov branching processes [Kiister (1983)]. As
already remarked there, condition (2.3) is—although very restrictive—natural in
many real processes. On account of limited food or other limited resources the
offspring will decrease while the population increases. Moreover, we assume that
the variances of the controlling random variables ¢,(k) are not too large
compared with their expectation,

r2(k)/v(k)’ = O(k~*"%), forsome 8 > 0, a is given
by condition (2.2).

For technical reasons we extend »(k)u(k) to a continuous differentiable function
on R*. We can do it in such a way that (2.1)-(2.3) is now satisfied for all x > x,

(x4 chosen sufficiently large). .
As E(Z,,.Z,) = v(Z,)u(Z,) we expect that the real sequence (z,,n € N),

20 = xO’ 2n+1 = V(zn)”'(zn)’ n g O’
will describe, besides a random factor, the divergence behavior of the process

(2.4)
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(Z,, n € N). In some cases it is possible to use instead of (z,,) the solution A(x) of
the corresponding differential equation,

h(0) = xo,  H(x) = h(x)log(v(h(x))p(h(x))/h(x)), x20,

which is the inverse function of

h Y (x) = /x"(flog(v<f>u<f>/f))‘1df, x> %,

THEOREM 1. Assume conditions (2.1)-(2.4), and there is B € (1 + «,2] such
that for all k > x, the B moment M(k) of X,,(k) exists and

(2.5) v(E)M(k) = O(kP~%"%) for some & > 0.
Then,

Z,/z, > W a.s., whereP(0<W < 0)=P(Z, > ) = P( limsup Z, = oo).
n— oo

If v(k)u(k)/k — 1 then P(W = 1) = P(Z, — o0) and we can replace z, by h(n).

In case of P(Z, = x, for some n € N|Z,) > 0 we have P(W > 0) > 0.

Considering the lower bound of »(k)u(k)/k we see that the growth rate can
be less than exponential. The smallest rate is of order n'/*. Except for the case of
exponential growth the limit of Z,/z, degenerates on {Z, —» «}. Regarding the
special case of the ordinary Galton—-Watson process Theorem 1 does not contain
the divergence result under the weakest moment condition, the (xlogx) condi-
tion. We need the finiteness of the (1 + §) moment of the offspring distribution.
This is remedied in the following result on processes without ¢ controls, i.e.,
®,(k) = k. One of the additional assumptions is that the offspring distributions
are being dominated by a probability distribution:

There is a random variable Y > x, such that for all x > x,
(2.6) sup P(X;,(k) - u(k) > x) < P(Y > x).

k>x,

THEOREM 2. Assume ¢, (k) =k for all n € N, k > x,, and in addition to
(2.1)-(2.3):

There is a* € (0,1) such that (u(x) — 1)x*" is nonde-
creasing for x = x,,.

Let (2.6) be satisfied and
(2.8) E(YRY(Y)) < .
Then,

(2.7)

Z,/2,> W a.s., withP(0<W<o)=P(Z,—> )= P( limsup Z, = oo).
n—oo

If p(k) - 1 then P(W = 1) = P(Z, - o) and we can replace z, by h(n). In

case of P(Z, > x, for some n € N|Z,) > 0 we obtain P(W > 0) > 0.
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The inverse of the growth rate of the process is important for the moment
condition we need for the a.s. convergence of Z,/z, - W, P(W > 0) > 0. This
result is similar to those of branching processes in varying environment [Goettge
(1976)] and Markov branching processes with state-dependent offspring distri-
butions [Kiuster (1983)], where it was also possible to show necessity of the
moment condition needed for divergence with “natural” rate. In some of the
present cases we can prove the necessity of E(YA (Y)) < oo for the convergence
of Z,/z, > W with P(0 < W < o0) > 0.

THEOREM 3. Assume the conditions (2.1)-(2.3), (2.7) and, instead of (2.6),
(2.9) kinf P(X,, (k) —u(k)>x)2 P(Y>x) forallx > x,.
2Xp

Let Z,/z, > W a.s. with P(0 < W < o) > 0 be satisfied. Then, p(x) - p>1
implies
E(Yh Y(Y)) < o0
and p(x) = 1 implies
E(Y/(u(Y) - 1)) < co.
If in addition
There is a** > 0 such that for all k > x, (u(k) — DE*" is

(2.10) . .
nontncreasing.

is satisfied, then E(Yh Y(Y)) < oo is valid also in case of p(x) — 1.

These results show that, essentially, E(YA YY)) < o is a necessary and
sufficient condition for the divergence of (Z,) with “natural” rate (z,,).

REMARK 1. We obtain similar results for inhomogeneous controlled
Galton-Watson processes. The conditions have to be valid for all functions
pa(k), v, (k), 12(k), where p, (k)= E(X, (k)), etc. In addition we need an
assumption like inf{»,(k)u, (k)n € N} > &, for all 2 > x,, as we cannot consider
a slowdown of the growth rate on account of inhomogeneity. Therefore we cannot
include the results of Goettge (1976) on inhomogeneous branching processes.

Let (Z,,n € N) be a state-dependent Galton-Watson process without ¢
controls and p(k) —» p > 1, not necessarily in a monotone way. An ordinary
Galton-Watson process with u(k) = p diverges like p”. Now, we can ask, how
stable is this result when the basic assumption of i.i.d. offsprings is relaxed, i.e.,
when is the growth rate of the state-dependent branching process p”? Klebaner
(1984b, 1985) has studied this problem in detail for L" convergence, 1 < r < 2.
A necessary and sufficient condition for a.s. convergence is given in our next
theorem. :

THEOREM 4. Let (Z,,n € N) be a state-dependent Galton—-Watson process,
¢, (k) = k and p(k) — p > 1, where the convergence is not necessarily monotone.
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Assume that, for k = x, sufficiently large and some B € (1,2], the B moment
M(k) of X,,(k) exists and satisfies

(2.11) M(k)E'~R*® s uniformly bounded for some 6 > 0.
Then, for € > 0 arbitrary,

Z(p—¢€) "> as, Z(p+te) >0 a.s.on{limsupZ, > x,)
and

{0|Z(w)p™ > W,0< W< o0} = {w| Y logp(Z,(w))/uis convergent} a.s.

n=1
In case of u(k) = p monotone ( from above or below) for k sufficiently large,
Zu "> W as. and P(0< W< )=P(Z,> )

n

if and only if

2 = p(n)|/n < .
n=1

3. An auxiliary growth model. If the second moments of the offspring
distributions exist we can regard the controlled Galton-Watson process satisfy-
ing conditions (2.1)-(2.5), B = 2, as a special case of a more general growth
model: (X,,n € N) is a sequence of nonnegative random variables that are
related recursively by

X1 =8(X,)+ &+ R,y
The function g: R*—> R ™" satisfies
(3.1) g(x)>x forx>=x,>0.
(3.2)  g(x) isincreasing,  g(x)/x isnonincreasing for x > x,.
In case of controlled Galton-Watson processes (3.1) and (3.2) are satisfied for
&(x) = v(x)p(x) on account of (2.1)-(2.3). The random variable £, is mesurable
with respect to %, D #(X,,..., X,) and
(3.3) E(¢,1%,-,) = 0.
The second moments of the {£,} exist satisfying:

There is a function 6% R*— R * such that

E(&7 I(X, = x)|#,) < o (X )I(X, 2 xy) as.,
(34) o’(x) = o(1)g(x)*log(&(x)/x) <

(2671 + 2(1 — 3b) %) 'g(x)%log(g(x)/x) for some

b€ (0,1/3) and all x > x,,.
I(A) denotes the indicator function of the set A. The sequence which seems to be
suitable to describe the asymptotic behavior of (X, n € N)is (x,, n € N), where

xn+1=g(xn)’ neN.

Note, that we have x,, - oo for n — o0. Suppose x,, > x’ < co; then g(x’) = x’,
as g is continuous due to (3.2). But this is a contradiction to assumption (3.1).
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The variances of the {£,} are related with (x,) by:

If (y,, n € N) is a sequence with
liminf(log y,)/(logx,) > 1 then
(3.5) n= e

0

Y 02(5,)/8(5,)* < oo.

n=1

In case of controlled Galton—-Watson processes with second moments (3.3)-(3.5)
are satisfied due to the assumptions (2.2), (2.4), and (2.5), R, = 0. The same is
true for Galton-Watson processes with weaker moment conditions, considering
proper truncation. Remainder terms are collected in R,.

ProPOSITION 1. For the process (X,,n € N) as given above assume
(3.1)-(3.5). The random variables (R,, n € N) satisfy

(3.6) S IRg(X,) " I(X, 2 x0) < w0 as.

n=0

Then,
X,/x,—> W as. withP(0<W< )= P( limsup X, > xo).

n—oo

If g(x)/x — 1 then P(W = 1) = P(limsup, _, ,X,, > x,) and we can replace x,,
by h(n), where

h(0) = x,,  h'(x) = h(x)log(g(h(x))/h(x)),  forx 2 0.

The main idea of the proof is to examine log X, instead of X,. On {X,, = x,)
we can write

lOan+1 = IOan + lOg(g(Xn)/Xn) + IOg(]‘ +(£n+1 + Rn+1)/g(Xn))
and
logx,,, = logx, + log(g(x,)/x,).

As log(g(x)/x) is nonincreasing log X, , ; is expected to grow faster than logx,,  ,
if X, <x, and slower if X, > x,. The following theorem shows that, with some
additional assumptions, such property leads to convergence of log X,, — logx,,.

PROPOSITION 2. Let (X,,n € N) be a stochastic process on R™,
X1 =X, +m(X,) + 6,0+ Ry, n €N,
where m: R*— R\ {0} is a function with
(3.7) m(x) is nonincreasing,  x + m(x) isincreasing.
£, is measurable with respect to %, ., > F(X,,..., X, ,,) and

: E(£n+1|‘%¢) =0,
(3.8)
E(|,.171%,) = 0()m(X,)?,  forsomel <d<p < 2.
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The random variables {R,, n € N} satisfy

n
(3.9) lim x,;' > [R;|=0 a.s,
n—oo j=1
where (x,,n € N) is the real sequence defined by the recursive relation
Xpi1 =%, +m(x,), neN.
Then,
lim X, /x, =1 a.s.
n—oo
-If in addition
0 0
(3.10) Y E(l¢,.071%) < o a.s., Y IR, < a.s.,
n=0 n=0
is valid, then

lim X, —x,=W a.s.
n—oo

W is a finite random variable. If m(x) — 0 then W = 0 and we can replace x,,
by f(n), where f(x) is the function given by

f0) =z, f(x)=m(f(x)), x20.

PROOF OF PROPOSITION 2. Using the recursive relations of (X,,) we can write
n

X, =X, + Z m(Xj) + Z (£j+1 + Rj+1)’

Jj=0 Jj=0
By (3.8) and Jensen’s inequality we obtain
n J P n d J Y -p/d
£ Blg5)| Lmx| = £ owm(x)’| £ mix?) "
j=0 k=0 Jj=0 k=0
The convergence of these series is a result of the theorem of Abel and Dini [cf.,
Knopp (1928)] that says: If (a,, n > 0) is a sequence in R "\ {0}, then
. Jj —-c| < 00, ife>1
EofLa) {_u -
j=01k=0k =00, ifc<1and Zaj—oo.
Jj=0

But,

) J P

> E(|§j+1|p|g’;)( > m(Xk)) < 00,

Jj=0 k=0
and the strong law of large numbers (SLLN) for martingales [Hall and Heyde
(1980), p. 35] leads to

(3.11)
g:om(Xj)

Xo+ X (m(X))+&,,)+ X Ry +0(1), on Y m(X;) < .
Jj=0 Jj=0 Jj=0

; (1+o(1) + Zn:RjH, on E:m(Xj)= 0,
Xy = /=0

n+1
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Now we compare X, with x,. Note that x, — oo, as m(x) is continuous and
strictly positive due to (3.8).

Xn+1 T Xp+1 = (Xn - xn)(l + I(Xn # xn)(m(Xn) - m(xn))/(Xn - xn))
+§n+1 + Rn+1

n+1

U, T (44 R/,

with
U,, = jI:_[()(l + I(X, # x,)(m(X;) — m(x))/(X,; - x;) — (X, = x,)27"),

R, = X, — %, £, = 0. U, is a positive random variable, measurable with respect
to F,_,, (U,, n € N) is nonincreasing. Hence, we obtain similarly to (3.11)

e o( zm(Xj)), on ) m(X;)= o,
—i it
Un+1 Z gj/l]j= ! n Joo
/=0 o(1) + lim U, }_ ¢,/U,, on ) m(X;) <o
R =0 Jj=0

Using (3.9) and (3.11) this results in the first statements of the theorem. If we
assume condition (3.10) we obtain U, ,X?*;R,;/U; is as. convergent and the
SLLN for martingales yields also the convergence of U, . ,X};¢,/U,. Therefore,

X, — x, has to converge a.s. In case of m(x) — 0 the limit is 0. We obtain this

result by the relations
(61X, () =, 0) 3 (U, = 0} > fu] T [m(X, () = m(x)| = o)
n=0
and the following lemma.

LEMMA 1. Let m(x) be a function on R*\{0} satisfying (3.7). (x,,n € N) is
the sequence with x, ;= x, + m(x,), n = 0. If m(x) > 0 then

Y |m(x,) —m(x,+ c)|= o0 forallc+O0.

n=0

ProoF oF LEMMA 1. Suppose, L, |m(x,) — m(x, + ¢)| < co for some c # 0.
We can assume ¢ > 0. We can write

o> Y m(x,) - m(x, +c)

n=0

vV

Y (m(logj + 1) — m(c + log j))card{n|log j < x,, < log j + 1}
Jj=1

(\%

0(1) + 3 (mllog j + 1) ~ m(c + log ) sm{log /).
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As the last sum is finite we obtain for n > k&,

Y m(c + logj)/jm(log j) = v, + X m(logj + 1)/jm(log j)
Jj=k Jj=k

2v,+ ) (logj)/jlogj+1,
Jj=k

where (y,) is a sequence which is independent of n and y, - 0 for & — oo.
Hence,

n
(3.12) Y. m(c + log j)/jm(log j) = (logn) —(logk) + v, + vk~ 'logn,
Jj=k
for some constant y > — co. Now we can write
[jec—1]

%> Y (m(logj)) " L (m(logh) — m(logk + 1))

j=1 k=j+1
> Y (m(logk) — m(logk + 1))(m(logk))
B k—1
Y m(c+logj)/jm(logj).
J=[(k+1)e°]

Considering (3.12) we obtain
o> 3 (c+ o(1))(m(logh) — m(logk + 1))/m(log k),
k=2
which is, in case of ¢ > 0, equivalent to
0< If[2m(logk +1)/m(logk) = nh—r»I:o m(logn)/m(log2).
But the limit is 0, if m(x) — 0. Hence, ¢ = 0, which proves our lemma.

To finish with the proof of Proposition 2 we only have to show that x, — f(n)
— 0, if m(x) — 0. Considering the definition of f(x) and the monotonicity of

m(x) we obtain
f(n) + m(f(n) + m(f(n))) < f(n+1) <f(n)+m(f(n)).
As x + m(x) is increasing and x, = f(0) this implies
x,2f(n) foralln>0.
If x, > f(n) + m(f(n)), then
0<x,,,—f(n+1)zx,+m(f(n)+m( f(n))) f(n+1)<x,—f(n).
If x, < f(n) + m(f(n)), then
0<x,,, — f(n+1) = f(n) +m(f(n) + m(f(n) +m(f(n))) —f(n+1)
< m( f(n)).
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As m(x) — 0, these inequalities imply the convergence of x, — f(n) to a constant
¢ = 0. But ¢ > 0 is impossible, because in this case

s = 0 1) 550 f(0) + £ () = m( 1)+ m( (7))

<0() + ¥ m(x,) - m(x; - ¢/2)

Jj=0
converges to — oo, according to Lemma 1. Therefore,
(3.13) x,—f(n)—>0.

REMARK 2. If in Proposition 2 only an inequality
X+1;Xn+m(Xn)+§n+l+Rn+1’ ngo

n
is valid, then

liminfX, /x, > 1 as.
n—oo

Instead of (X, n € N) we have to regard (Y,, n € N) with
YO = XO’ Yn+l = Yn + m(Yn) + §n+1 + Rn+1: nz 0.

As E(|¢,..71%,) = O01)m(Y,)? and Y, < X, due to the monotonicity of m(x)
and x + m(x), we obtain Y, /x,, - 1 a.s. and liminf X, /x, > 1 as..

REMARK 3. We can generalize Proposition 2 by replacing the function m(x)
by random functions m,(x) each satisfying (3.8), m,(x) has to be measurable
with respect to %, _; and has to satisfy (3.9). In the results the real sequence (x,,)
will be replaced by a random sequence Y, ,, = Y, + m,, . (Y,). It is clear that we
obtain statements on inhomogeneous processes (X,,) in particular.

Now we can start with the proof of Proposition 1.

PRrROOF OF PROPOSITION 1. We want to apply Proposition 2 to the process
(log X,,, n € N). log(g(e*)e™*) satisfies condition (3.7), but it is not clear how to
split log(1 + (£,,, + R,.,)/8(X,,)) in terms satisfying (3.8) or (3.9). The main
difficulty is that 1 + (§¢,.; + R,.,)/8(X,,) does not have to be bounded away
from 0. We enforce this by regarding special partial sequences. Let (T(n), n € N)
be a sequence of stopping times on N U {00},

T(0)=0, T(n)=inf{k>T(n—1)|X,2 (1 — b)g(Xr, 1) Xi 2 %},
. nx>0,
where b € (0, }) is fixed by assumption (3.4), inf @ = co. We define

T _ . T _
Fn - FT(n)’ Xn - XT(max(k§n|T(k)<oo))’

o | 8(x), if T(n) < o,
8a(x) = {x if T(n) = .



1168 PETRA KUSTER

We divide the proof of Proposition 1 into four steps. We will show:

Step 1. liminf, , (log XT)/(logx,) = I(T(n) < o for all n) as.
Step 2. P(T(n+ 1)# T(n)+ 1i0)=0

Step 3. {T(n) = oo for some n} C {limsup X, < x,} as.

Step 4. Conclusion.

STEP 1. We define
:Iz‘+1 = I(‘fT(n)H = bg(X,’f))max{ _b,gT(n)H/g(XyT)},
RT,, = I(f:ﬂ > _b)max{_2baRT(n)+1/g(sz‘)}’

where §, = R, = 0. As (¢£,, + R”, ) is bounded from below by —3b Taylor’s
formula leads to

log X7, , > log X7 + log(gZ(XT)/XT) + ¢7,, + RT,,
—(¢7,,)°(1 - 36) " —(RZ,,)°(1 — 3b) %,
Using (3.3), which implies E(£7,,,,,|%,") = 0, and (3.4) we can write
|E(8T, 1 FT) | = bP(&rgny 1 < —b&(XT)15T)
+| E(1(1 gy o1l > 08(XT)) ey o1 /8( XTNET)|
<2b %% X7)g(X7) *I(T(n) < ),
Similarly,
E((¢0,,)17) < 20%(XT)g(XT) " I(T(n) < ),
and by (3.4) there is ¢ € (0,1) with
(3.14) | E(¢0,1%T) +(1 - 30) E((¢1,,)1%7)| < clog(gX(XT)/X).
Now, we define a martingale difference sequence by
Moot = €00y = E(ELIFT) +((60.1)" = B((€1.,)"1%7))(1 - 30) ~*
and we know that
E(n2,,| %) = O(1)log(gX( X )/XT).
Therefore, .
log X1\, 2 log X +(1 — c)log(gr(X\)/X) + npi
+RT,, — (R, ,)'(1 - 36) "

is an inequality which satisfies the assumption of Proposition 2 modified by
Remarks 2 and 3, (R? + (RT)%(1 — 3b)~?2) satisfies (3.9) on account of (3.5).
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Hence, we obtain for the sequence (y,, n € N), where

1—-c
Yo = X, Vi1 = YA 8(3,)/ 5, ) nz0
(5.15) 0= %0 et = 2(8(%)/2)

liminf (log XT)/log y, = I(T(n) < oo forall n) as.
n—oo

As y, - oo (X]) is divergent on {T(n) < oo for all n}.
Next, we compare (y,) with (x,). Iteration of the recursive relations yields

n
logx, , —logy,., = 4,y Z C(IOgg(yj)/yj)/uj:
J=1

where (u) is positive and nonincreasing. Hence,
0 <logx, — logy, < c(1—c) 'logy,.

As (XT) diverges on {T(n) < oo for all n} we can choose ¢ > 0 in (3.14) arbitrary
small, for n sufficiently large. Therefore, we can replace log y, in (3.15) by logx,,,

(3.16) liminf (log X7 )/logx, = I(T(n) < o forall n) as.
n— oo

STEP 2. Using (3.16) and (3.5) we obtain

f oX(XT)/g(XT)’ I(T(n) < ©) < 0 as.

n=1

This implies
> P(£T(n)+1 < _b2_18'(X,?)|3—‘;,T) < o0 a.s.
n=1

and the conditioned version of the Borel-Cantelli lemma [cf., Hall and Heyde
(1980), p. 32] yields

P(£T(n)+1 < —b2“g(X,,T) i.O.) = 0.
By (3.6),

I(Rpny 1 < —20g(XT)) < 0 as,

1

I8

therefore, considering the definition of T(n),

(3.17) P(T(n + 1) # T(n) + 1i.0.) = 0.

STEP 3. Obviously,
{T(n) = oo for some n} C {limsupX, < oo}.
On {limsup X, > x,} we can define stopping times {T'%(n),n > —1},

T°(-1)=0, T%n+1)=inf{k>T%n)X,2x,}, nz-L
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Then we can write on {limsup X,, > x,} N {sup{X,|n > 0} < M}
XT()(n+1) = XT"(n) + XTO(n)(_ 1+ g(XTo(n))/XT“(n)) + gT()(n)+1
> Xpogny + %o(—1+ &(M)/M) + &po(nys1

n
>n xo(—l + g(M)/M) +n! Z gT()(j)+1 .
j=0
But n7'E?_oé70j,+1 — 0 as. by the SLLN for martingales as the conditioned
variances of £70;,, are bounded by (267" + 2(1 — 3b)"2)"'g(M)?
-log(g(x,)/%,). Therefore, X o, diverges on {limsup X, > xo} N {sup{X,|n =
0} < M}, which is a contradiction. As M has been chosen arbitrary this means
P(x, < limsupX, < o) = 0.

STEP 4. On {T(n) < oo for all n} which includes {limsup X, > x,}, accord-
ing to Step 3, we write
log X,,.,, = log X,, + log(g(X,.)/X,) + log(1 +(&,.1 + R,.1)/8(X,)).
As (3.16) holds true for log X, instead of log X,T, on account of (3.17), (3.5) and

(3.6) imply that ¢, ., ,/8(X,) and (log(1 + £, + R, 1)/8(X,)) — §,+1/8(X,))
satisfy (3.9) or (3.10) on {T(n) < o for all n}. The arguments are the same as in
Step 1. Applying Proposition 1 proves Proposition 2.

Instead of log X, one can also study the transformation G(X,),
G(x) = [(&(») -y "dy, xzx,
X0

to get results as in Proposition 1. Keller et al. (1984) have used this approach. If
we do not consider rest terms Taylor’s formula leads to

G(Xn+1) = G(Xn) + 1 + §n+1(g(g(Xn)) _g(Xn))ﬁl’
an expression which is easy to handle compared with
log Xn+1 = lOan + log(g(Xn)/Xn) + §n+1/g(Xn)'
But when we use the transformation G(X,,) we need more restrictions on g(x) as
G depends on g.

REMARK 4. Remarks 2 and 3 in connection with Proposition 2 are also valid
for Proposition 1. For example a recursion inequality leads to

liminfX,/x, >0 a.s.on {limsupX, > x,}.
n— oo
4. Proofs of the theorems 1-4. PROOF oF THEOREM 1. We want to apply
Proposition 1. As the variances of {X, ;(k)} might not exist we have to use
truncated random variables. Define

X, (k) = X, (R)I(X, (k) <k), E(k)=E(Xy,(k))

Then,
Pt 1(Zy)

Zn+1 = Z Xn+1,j(Zn)

J=1

\
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and by (2.3)-(2.5)
Pn+1(k)

Var( > Xn+l,j(k)) = v(k)var)_(u(k) + Tz(k)ﬁ(k)z
(4.1) j=1

< v(R)M(R)O(k*F) + r*(k)p(k)" = O(R* *?).
We can assume a > 0. If & > y,, y, = x, sufficiently large, (2.5) and (2.2) imply

E(Z,,,|Z, = k) = v(R)a(k) = k(1 + k™"A/2).
Then (3.4) and (3.5) are satisfied with g(x) = x(1 + x *A/2) and x,.; = g(x,).
Hence, we obtain by Proposition 1, considering Remark 4,

liminfZ, /x, >0 a.s.on {limsupZ,z > yo}.
n— oo n— oo
As Z, is a homogeneous Markov chain on N with E(Z,,, - Z,|Z,)> 0 on
{Zn ; xO}
{limsupZ, > y,} = {limsupZ, > x,} = {limsupZ, = o} as.

Thus, considering the growth rate of (x,,),
(42) Z;9(Z, 2 x,) = O(n" /%),
Now, we write

(pn+l(Zn)

_”(Zn)ua(zn) + Z )_(n+1,j(Zn)

J=1

Zn+1 = V(Zn)I’L(Zn) +

(4.3)

q)n+1(Zn)

_”(Zn)(,"‘(zn) - E(Zn)) + ; Xn+1,j(Zn)I(Xn+l,j(Zn) > Zn)

Define the second term as £,,;; then (4.1) and (4.2) imply (3.4) and (3.5),
g(x) = v(x)u(x). Now, we only have to show that the last two terms in (4.3) can
be collected in a random variable R, satisfying (3.6):
o0 Pn+1(Zn)
Z p Xn+l,j(Zn)I(Xn+l,j(Zn) > Zn) > O|Zn
n=1

j=1

I(Zn é xO)

0 0
é Z v(Zn)P(Xll(Zn) > ZnIZn)I(Zn ; xO) é Z V(Zn)M(Zn)Zn_BI(Zn g xO)’
n=1 n=1
which is finite by (2.5) and (4.2). Therefore, the last term of (4.3) becomes 0
eventually. Similarly we can show, using (2.5), that

[oe]

Y (Z,)(1(2,) ~ K(Z,)(»(Z,)u(Z,)) ' I(Z, 2 x,)

n=1 .
=Y 0(Z,*I(Z, 2 x,) < 0.
n=1 ’ ‘

Hence, we can apply Proposition 1.

As (Z,,n € N) is a time-homogeneous Markov chain and Z, - o on
{limsupZ, > x,} we obtain by standard argumentation that P(Z, > x, for some
n|Z,) > 0 implies P(Z, — o0) > 0.
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Before starting with the proof of Theorem 2 we collect some properties of z,
and A(n) in a lemma.

LeEMMA 2. Let v(x) = x and assume (2.1)—(2.3) and (2.7). Then
(4.4) (u(x) 1) = O(h"!(x)).
(45) M, < card{n|z, < k}/h" (k) = M,
forsome 0 < M, < M, < o andallk = 1.
If (y,,n = 0) is a real sequence with y, > cz,, ¢ > 0, then

(4.6)
Yy I(y, 2 k) = O(h~'(k)/k).

ProoF. In case of p(x) > p > 1 it is easy to prove (4.4) and (4.5). Let
p(x) = 1. Then, by (2.7)

(n(x) = 1) [ (elogu(1)) "at = [ (u(x) = () = 1)) (1 + o(1))

X0

> /xxx—“"t-”“*(l +o(1))dt = (1 + o(1))/a*,

which proves (4.4).
Note, that z,/k(n) — 1 in case of p(x) — 1, this result corresponds to (3.13),
where x, = log z,,. Then, we obtain (4.5) as

AR+ 0(1)) — 27X (R) | < 0(1) /(p(R) — 1) = o A7 (k).
To prove (4.6) we split the sum into two terms,
Yy Ny, 2 k) < X(ez,) 1z, 2 k/e) + Lk (2, < k/c).
Now, using (4.5),
Yk U(z, < k/c) = kcard{n|z, < k/c} = O(h~*(k/c)/k).
If u(x) = u > 1, define k, = inf{n|z, > k/c}, and we can write

Yz, Uz, 2 k/c)= ¥ 2, < ck™' X phm=0(k).

n=k, n==~ky

If u(x) - 1, then z,/h(n) — 1 and we only have to show
f°° n(t) 'de = O(h~\(k)/E).
h™Y(k/c)

By substitution and partial integration we can write

/w h(t) 'dt = fwt‘z(logp(t))‘ldt
h™(k) k

= (klogn(k))' = [" 7w (2)(log(2)) " d.
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As
w(t) 2 —a*(u(t) — 1)/t = (—a* + o(1))(log u(t)) /¢

and a* < 1 we obtain
/°° () 'dt = O((klogu(k)) ") = O(h~'(k)/k).
h™N(R)

Now, statement (4.6) follows from A~ '(k/c) = O(h~'(k)).

PROOF OF THEOREM 2. Let )—(n’ ;(k), (k) be defined as in the proof of
Theorem 1. First we examine the case p(x) — 1. For fixed ¢ € (0,1), cz; = x,, we
define stopping times {#(n),n € N} on N U {0} by

t(0)=0, #n+1)=inf{k>tn)|Z,2cz,.,}, n=z0.
Define
Z, = Zysup(k 2 nitth) < 0} X1, j (k) = Xynyr, j(R)I(t(n) < ),
X1 (k) = Xynyir, (R)I(H(n) < 0),  n20.

We can write
Zh 2 1(tln) < )| Zin(20) + T (Kol 20) - H(2)
(4.7) -z!(u(2t) - i(2}))

n

+ X Xl 2) I(X;..,(27) > Z1) |,

with equality if #(n + 1) = {(n) + 1 < co. We want to collect the last two terms
in a random variable R, satisfying (3.6).

Zn

Y P| X Xf W21 X0 i(20) > 22) > 012
n=1

J=1

< f K(t(n) < )ZLP(X, 1 1(22) > Z4125)  O(1) & E(YI(Y > e2,)

n=1

= io: E(YI(k <Y < k + 1))card{n|z, < k/c}

- O(l)E(Yh‘l(Y)) <

by (4.5) and assumption (2.8). This means that the last term on the r.h.s. of (4.6)
becomes 0 eventually. Similarly we can show that

X (W(2) - HZ)H(en) < 0) < oo
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Thus, the last two terms in (4.6) satisfy (3.6). As

k pa—
Var( Yy X, (k)

J=1

< RE(Y’I(Y < k)) + R?P(Y > k) = o(1)k%log p(k),

(3.4) is satisfied for £ sufficiently large.
To show (3.5) note that, by (4. 6), for (y,) with liminf(log y,)/(logz,) > 1

> i E(YHYsy))s ¥ BV -1<Y <J))Zyn (5, 2 7)
n=1 J=1
= O(1)E(YR (Y)) < 0.
Therefore, we obtain by Proposition 1 together with Remark 4:
(4.8) liminfZ! /z, > I(t(n) < oo forall n) a.s.
It is clear that {{(rn) = oo for some n} = {limsupZ, < oo}. We will show that

t(n+1)=t(n)+1 < o eventually on {liminfZ!/z, > 1}. It is sufficient to
show that for some 1 > ¢’ > ¢

> P

Z el k(Zt)<cz \Z,

I(Z‘ >c'z ) < o0 a.s.

But the nth term of this sum is bounded by

P|(zt)"

Zt

Y (Xi,(20) - B(2))

j=1
=0(1)(2!) 'E(YU(Y 2 21)|2.)[(Z} = ¢z,),
and by (4.6) we obtain

Z (2) E(YL(Y £ 2;)12,)1(Z} 2 cz,)

21—c/c|Zt |2 2 c’zn)

< Y E(YU(j-1<Y<))Y(2) 12 2 max{j,c'z,})
J_ n
= 0(1)E(YA X(Y)) < 0.
Therefore P({t(n + 1) # t(n) + 1 < o0} i.0.) = 0 a.s. and, on {#{(n) < oo for all
n}, (4.7) is an equality almost every time. Thus, we can replace (4.8) by
lim Zt/z, = I((n) < oo forall n) = I( limsupZ, = oo) as.,
where we can replace Z! by Z, as lim,_, 2,,,/2, =1 for all n’ € N. This

proves Theorem 2 for p(x) — 1.
In case of p(x) — p > 1 we-can show, applying Proposition 1 again, that for all

c € (0,1)

v

liminfZ, /25> 0 on limsupZ, > x,.

R— n— oo
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This follows from the inequality

le
Zn+1 ; Znﬁ(Zn) + Z (Xn+l,k(Zn) - E(Zn))7
k=1

as p(x) = p(x)° for all x sufficiently large. Now with similar arguments as can be
found in Asmussen and Hering [(1983), p. 43], in the case of ordinary
Galton—-Watson process, we can prove that

YZ,1(Z,<k)=0(k) and Y.(Z,) 'I(Z,zk)=O0(k").

Thus, using only E(Y) < oo, we can replace (4.7) by

le

(4.9) Znir = Z(2,) + kg(fnﬂ,k(zn) - 1(Z,))

+Rn+l - Zn(p’(Zn) - FL(Zn))y

where the second term on the r.h.s. satisfies (3.4) and the third (3.6). Considering
the stronger moment condition E(YA™%Y)) < oo [« E(YlogY) < oo] the last
term can be included in R, , and, applying Proposition 1, we have proved
Theorem 2 also in case of p(x) = u > 1.

PrOOF OF THEOREM 3. Let u(x) = p > 1. We obtain from (4.9), similarly as
in the proof of Proposition 1, the equation

10gZ,,, —logz,,; = 0(1) + ¥ (logn(Z,) — logu(2,))I(Z; = x,)
Jj=0

- (4(2) - K21+ o)

By (2.9) we can write

- f w(Z)-u(z) = - éOE(YI(Y> Z,)\z;),

J=0

and as

i E(YI(Y > we;)) = E(YA™Y(Y))/0(1),

for all w > 0, using (4.5), it is sufficient for the proof of E(YA~(Y)) < oo to show
that

io: (log,u(Zj) - logu(zj))I(Zj >x,) <o as.
Jj=0
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on {liminfZ, /z, > w > 0}. We can assume that w < 1, then
I(limintZ,/z, > w} Y (logu(Z;) - logn(2,))I(Z; = x,)
j=0
<0(1) + ¥ (logp(wz;) — logpu(z,)).
j=0

As z;,, 2 1z, for all j > 0, there is k, € N with wz, > 2;_y, for all j= k&,
(choose k, with wu*o > 1). Therefore,
ko—1 n

> (IOg#(wzj) - lOg#(zj)) = X logp(wz;)) — X logp(z;) < 0.
j=0 j=0 J=n—ko+1

Now, let u(x) = 1. For M > 0
ZnP(Xn+1,l(Zn) > M2n+1|Zn)I(Zn/zn - W)
é anr:-ilM_lp’(Zn)I(Zn/zn - W) - WM_II(Zn/zn - W)
and

Z,
p Z Xn+1,j(Zn) > Mzn+1|Zn

=1

= (W= WM +0o(1)2,P(Y > Mz, )I(2, /2, > W).

I(Z,/z,—> W)

Therefore,

Zy,
> Xpv1,;> Mz 1|2,
j=1

0 > 1(Z,/2, > W<M) ¥
k=1

21(Z,/2,>W<M)} P(j<Y=<j+1)
J=1

-Zk;zkz(zk <J/M)(W - WM~ + o(1)).

Now, by (2.7), .
j;h_l(j)h(t)dt - fj(logp.(t))_ldt > (logpu(/)) (1 — a* +0(1)) ",

and we obtain
0 > I(Z,/z, > W)I(0 < W< M)E(Y/(p(Y) - 1))/0(1).

Hence, as M is arbitrary, P(Z,/z, - W > 0) > 0 implies E(Y/(u(Y) — 1)) < oo.
If*in addition (2.10) is valid we can show similar to (4.4) that

h7(x) = 0(1)/(p(x) - 1).
Thus, E(Y/(u(Y) — 1)) < oo just implies E(YA™X(Y)) < oo.
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PROOF OF THEOREM 4. Choose 0 <e<pu— 1. As p+ e > p(n) = p — ¢ for
all n sufficiently large, we obtain by Theorem 1, considering Remark 4,

(4.10) liminfZ,(p—¢) ">0, limsupZ,(p+e) "<oo as.on{Z,—> o).

e > 0 arbitrary proves our first statement. Now, write

(411) Z,., = 1(Z, > 0Zp(Z,)|1 +(Z(2,) " L Ko (2,) - 0(Z,)|.

We can prove similarly as in the proof of Theorem 1 that
Y logZ,,, - logZu(Z,) < o as.on{Z,— ),
n=0

where we use (2.11) and (4.10). Hence, regarding (4.11),

Z(o)p "> W, 0<W<oo, ifandonlyif ) logu(Z,(w))/p converges.

n=1

This proves the second statement of Theorem 4.
For the last result assume w(k)1 p, the other case is similar. Due to the
monotonicity we obtain

Y logu —logu(Z,) < o ifandonlyif Y p—p(Z,) < .
n=1 n=1

Assume Z, p~" converges to a positive limit on a set A with positive probability.
This is equivalent to %_,p — u(Z,)) < oo on A. Hence, using the monotonicity of

w(x)
Y p—p(p"w) < o for some w > 0.
n=1

As card{n|p’w < n < p’"'w} < p/w(p — 1) we obtain, using again the monoton-

icity of p(x),

0> ¥ wt W S (- () s n < p w) 2 X (5= w(n))/m.
Similarly,
o > i (p = pn(n))/n 2 i p—p((p—2"),

and, using (4.10), this implies

Y u-u(Z)<ow on{Z, -}
j=1
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