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RANDOM MULTILINEAR FORMS

By WiEstaw KRAKOWIAK AND JERZY SZULGA

Wroctaw University

We study convergence of multilinear forms £ f(ny,..., n;) X, -+ X, in

svmmetric independent random variables. We show that the multilinear form
converges if and only if its “tetrahedronal” part and “‘diagonal” parts of
different orders converge simultaneously. For “tetrahedronal” forms a.s. and
L, convergence are equivalent. Moreover, they are equivalent to L, conver-
gence provided ( X,) satisfies a Marcinkiewicz—Paley—Zygmund condition for
p =2

Introduction. In this paper we study convergence of multilinear forms

= QN X)= L f(r,en)X, o X,

l<n,...,ng<n

where X = (X)) is a sequence of independent random variables and f is a real
function defined on N*.

The main applications of random multilinear forms are connected with multi-
ple stochastic integration. In fact @ is exactly a multiple stochastic integral of a
step function with respect to an independently scattered random measure. There
are nice applications of stochastic multiple integrals in statistics and quan-
tum mechanics. For further information we refer to the papers of Rosinski and
Szulga (1982), Rosihski and Woyczyhski (1984a,b; 1986), and Sjorgen (1982).
Rademacher multilinear forms have appeared in harmonic analysis, cf. Bonami
(1970); they were used by Pisier and Zinn (1977) to establish certain limit
theorems in Banach spaces. A contribution of p-stable bilinear forms to operator
theory is due to Cambanis et al. (1985) and Sjorgen (1982) (Gaussian case).

In Section 1 we introduce notation and present basic facts applied throughout.
We introduce a Marcinkiewicz—Paley—Zygmund condition which combines and
extends those of Marcinkiewicz and Zygmund (1937) and of Paley and Zygmund
(1932).

In Section 2 we deal with Rademacher multilinear forms. All finite moments
are comparable (Bonami (1970)), which is easily shown. It turns out that
Q% converges in L, if and only if its “tetrahedronal” part T}} and “diagonal”
part DF converge in L, simultaneously. The main result of this section
states the equivalence of a.s. and L, convergence of T). Moreover, every
convergent multilinear form in Rademacher random variables possesses an
exponential 2/k moment, i.e., E exp(c|@¥|*/*) < oo for a ¢ > 0 (the case & = 2
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956 W. KRAKOWIAK AND J. SZULGA

is due to Pisier and Zinn (1977)). We show that Rademacher multilinear forms
satisfy a Marcinkiewicz—Paley-Zygmund condition with all positive exponents p
(cf. also Borell (1984) if p > 2 and [ are vector functions).

In Section 3 we extend some of these results to the case of independent
symmetric random variables. A coincidence of a.s. and L, convergence still holds
in such a general situation.

We characterize the space

C(X)= {a = (a,) € R": Y a,X, converges a.s.}

as a generalized Orlicz sequence space /,. We show that for every predictable
sequence A = (A,)

{ZAan converges} ={AeC(X)} as,

which generalizes a result for p-stable random variables due to Cambanis et al.
(1985) and answers a question posed by S. Kwapieh. It allows study of a.s.
convergence of bilinear forms in terms of series of independent random variables
in an Orlicz space [,.

We obtain a useful contraction principle for multilinear forms in independent
random variables which generalizes the analogous property for the series of
random variables (cf., e.g., Hoffmann-Jergensen (1977b)).

In Section 4 we study the behaviour of tetrahedronal multilinear forms in
independent zero mean random variables which satisfy a Marcin-
kiewicz-Paley-Zygmund condition. We show that this condition is hereditary
with respect to taking tetrahedronal forms of an arbitrary order k, provided
p > 2, and bilinear forms if p = 2.

1. Notation and probability background. We denote by X =(X,) a
sequence of real r.v.’s defined on a probability space (R, %, P). The letter ¢ is
reserved for a Rademacher sequence (¢,), ie., ¢, are independent identically
distributed r.v.’s taking values +1 or —1 with probabilities ;. The following
property of a Rademacher sequence is known as the Khinchine inequality: for

any p, 0 < p < oo, there are constants £, and K such that for every integer n

p p
and for an arbitrary sequence of real numbers (c,,..., c,)
n 1/2 n P\ 1/p n 1/2
(1.1) kp( > |Ck|2) < |E| X e ) < Kp( > |Ck12) .
k=1 k=1 k=1

Let k, n be integers such that 2 < n. Given a real function f on N* a
multilinear form in X of order k is defined as a sequence of sums

(1.2) QEX)= T f(nen)X, - X,

Set f(n,...,n,)=f(n,,...,n,) if all integers n,,..., n, are different and
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f(n,...,n,) =0, otherwise. Then

(1.3) Q, =T, + D;,

where T} = T}(f, X) = Q}(f’, X) is called the tetrahedronal part of @}, and
DF = DI f, X) = Q*f— f’, X)is called a diagonal part of Q. It is easy to see
that

(1.4) QX f, X)=Qx /[, X),
where f(n,,...,n,) = /R f(n ).+ Npry) and the summation is extended
over all permutations = of the {1,..., k}. We call f symmetric if f = f. Another
decomposition will be useful in the sequel:
(1.5) THf, X) = X TH(f, X)X,
i=1
where
75 (f, X) = > Rif(ny,...,np )X, - X, .
l<n <---<n,. <i

If X C L, is a martingale difference sequence then (T¥, n > k) is a martingale.
If X C L, consists of zero mean independent r.v.’s then T%7'X,, i = k,..., n, are
uncorrelated.

By I(A) we denote the indicator function of a set A and for a real number a
we write a* = min(1, |a|). For Z € L,, 0 < p < oo, we put || Z||, = (E|Z|?)"/? if
p > 0and ||Z||,= EZ*.

The following inequality had its origins with Paley and Zygmund (1932) and
Marcinkiewicz and Zygmund (1937) (cf. also Kahane (1968)).

LEMMA 1.1. Let 0 < g <pand 0 <t <1. Then for Z € L, we have
(1.6) P(1Z> t)Z),) = [ - ¢) "1z ,/121,]
wherel/q =1/p + 1/r.

Proor. Put Z’' = ZI(|Z| > t||Z||,). We have

, 1/r
111, < 121,[ P(121 > 41Z11,)]
by the Holder inequality and also
20 < 1Z1g" + ¢9)12)| %"
Combining these inequalities we get
* * , 1/r
(1 =) 121, <127, <1211, [ P(121 > 41ZIl,)]
and this completes the proof. O
CoroLLARY 1.2. If 0 <t <||Z||,/|Z]|, then
P(1z| > 81Z),,) = [(121,11211,) "~ ¢]

r/q*
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PROPOSITION 1.3. Let 2 C L,, p > 0. Then the following conditions are
equivalent:

thereis a 8, > 0 such that for every Z € Z
(1.7)
P(1Z] > 8,1Z1,) > 8,
thereisa q,0 < g <pandanm, ,> 0 such that for everyZ € Z
(1.8)
IZ1l,, < m, GlIZll4;
for every q,0 < q < p, thereisanm, ,> 0 such that for everyZ € &

(1.9)
I1Z)l, < m, ,lIZll,-

PROOF. (1.7) = (1.9). Suppose we are given a §, > 0 satisfying (1.7). Then the
estimate

121, = 21(1Z) > 8,1Z1l,) |, = 8+ /“IIZ1,,

gives (1.9).
(1.9) = (1.8) is evident.
(1.8) = (1.7) follows by Corollary 1.2. O

COROLLARY 1.4. If a sequence (X,) C L, satisfies one of the equivalent
conditions of Proposition 1.3 and it converges in L, (respectively, is bounded in
L,), then X, convergesin L, for every q,0 < q < p (respectively, is bounded in
L).

»

DEFINITION 1.5. We say that a family £C L,, 0 <p < oo, satisfies the
Marcinkiewicz—Paley—Zygmund condition with the exponent p (MPZ(p), in
short) if one of the assertions (1.7)—(1.9) holds.

It is worth noting the important role the condition MPZ( p) plays in probabil-
ity theory. In fact for certain p’s it has been used under different names quite
frequently (cf. Gundy (1967), Kahane (1968), Stout (1974), Hoffmann-Jergensen
(1977a), Sjorgen (1982), to name but a sample).

The collection of multilinear forms becomes a vector space. Its metric nature is
shown by means of the following results.

LEMMA 1.6. Letp > 1 and X C L, be a sequence of zero mean independent
r.v.’s. Then for every function f on N*

(1.10) R f(ny, o n) || TECE X)L X 11Xl )-

PRrROOF. A straightforward computation shows that
E(Tnk( f7 X) - k!f—(nly"" nk)Xn, T Xn,(IXn, e Xn,() =0.

This observation explains (1.10). O
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PRrOPOSITION 1.7. Let p > 1 and X be a sequence of zero mean independent
r.v’s. Then MK X) = {f: N* - R: f are symmetric and sup,|T( f, X)||,, < oo}
is a Banach space under the norm |f|, = sup,||TX( f, Xl -

Proor. Let (f,) be a Cauchy sequence in ///,’i(X). Hence f(n,...,n;) =
lim,, _,  fn,,...,n,) exists for all distinct integers n,,..., n,. Given y > 0,
there exists an M > 0 such that for m, m’ > M and for n > &

I T f = s X, < .
Hence, letting m’ — oo, we get for m > M and n > k

ITHC = £, X)), < v.
Therefore, f € #%(X) and |f - f,], > 0.0

2. Rademacher multilinear forms. In the case of a Rademacher multilin-
ear form Q( f, ¢) the diagonal form D}(f, ¢) is a finite sum of tetrahedronal
forms of lower orders. Put

KkO={(n),...,n,):1<n,,...,n,<n, #{i:n,=n;} iseven, j = 1,..., k},
gr'= % f(ny,....,ny),
Kk
and, form=1,...,kand1<i; < -+ <i,<n,
Klm(iy, oo iy) = {(ny,...,n):1 <0y, <n, 0, € (0,0, ),

#{i:n;=n;}isevenforn; & (i),...,1,},
#{i:n,=n;}isodd for n; € {i\,...,1,}, J = 1,...,k},
ghm(iy, ... i,) = Y f(ny,...,n,).

Khmi, ..., i)
Define
k,0 _ 4k,0
Tn =8n
k,om __ m k,m — k,m(; y
Tn - Tn (gn ’ 8) - Z 8n (ll""’ v )81, &
l<y< -+ <i,<n

= m=

Note that T, ™ = 0 if £ + m is an odd number. We check easily that
k=1

(2.1) Df= Y Tk™ and T}=Tk*

n
m=0

_and that Tk™ m=0,1,..., k, are uncorrelated. Unfortunately, for the most
part, (T*'™, n > k) are not martingales for m < k.

LEMMA 2.1. Let ¢ = (¢!) and ¢* = (¢?) be independent Rademacher se-
quences. Then for every function f on N*, every p > 1 and for all choices
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a,...,a;, € {1,2} we have

(2.2) T (f,e)]|, < k12

y f—(il,...,ik)ez' el

1<i< - <y<n P

PROOF. Denote by # the o-field spanned by all sums ¢! + €2, i € N. Observe
that for every Borel subset B,,..., B, C R the law
Z(e‘." sfh’*I(e' + e?l S Bl) s I(e}k + sfk) S Bk)

b i)

does not depend on a choice of (a,, ..., a;) € {1,2}*. Therefore

173

k
(2.3) E(s?ll | R) = 2—1:1—1(8: i 812)
j=1 ! /

We check that the couple (T*( f, '), T*(f, ¢ + ¢%)) forms a martingale. Using
(2.3) and the Jensen inequality we proceed as follows:

IT 1, e)ll, =ITX(f, €,
S”Tnk( f, e+ 82)”p

= k12

E( Y fiy, s ig)ef - s;jf|9?)
<y < -

S <ip<n p

< k12F Y fliy, oo ip)ef - g

<< - <i<n p

)

whatever (a,,..., a,) € {1,2}* is chosen. The lemma is proved. O

The forthcoming auxiliary statement collects results used frequently in the
sequel.

LEMMA 2.2. The following conditions are valid:

k
. D k b .
(i) IQAIE = IT1Z + D5 = X T, "1I3;
m=0
n . 9
(i) Iz = LT, m=1 ks
i=k

(ili) There is a constant a depending only on k such that
T, < ap™ 2T "3 -
(iv) There is a constant a’ depending only on k such that
1Qxll, < aP* 2117

PROOF. Since appropriate summands are uncorrelated random variables, (i)
and (ii) are evident.
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Let a, , denote the optimal constant in equality (iii) (i.e., the smallest of
numbers ¢ such that ||T% ™( f,oll, < c||Tx™(f, e)||, for all integers n and all
functions f on N*). Taking a, = --- =a,_, =1 and a;, = 2 in (2.2) and using
the Khinchine inequality we infer that

n 1/2
( )y |T,~’i’{"*‘|2)

i=k

k,m
IT5 ™, < 27K,

b

p

where 7%~ is defined by (1.5). Then a version of the Holder inequality and (ii)
of this lemma allow estimation of the latter quantity, consecutively, by

n 1/2 n 1/2
k Frk,m—1)2 k Tk, m—1)2
2 Kp( Z “71i—lm lllp) <2 Kpap,m-l( Z ”T‘i—lm l”2)
i=k i=1

k k,
<2 Kpap,m—I”Tn m”2‘

Since a,, , = 1, the induction argument yields a,, ,, < (2*K ,)™. It is well known
that the Khinchine constant K, is of order p'/? when p — oo (cf, eg,
Lindenstrauss and Tzafriri (1977), page 66); hence a,, ,, < ap™/? for a suitable
number a.

Finally, combining (2.1) and (iii) we obtain (iv) as follows:

3 k 1/2
m 1/2
QK , < X ITH™I, < (k+1) /( )y ||Tf’mu;i)
m=0 m=0
2 2 k ,
< (k+1)all@, < (& +1)*(2*K,)"1Q%Il, < a’p*/2IQII,

for some number a’. The latter completes the proof. O

COROLLARY 2.3. Foreveryt> 0
P(|IT}™ > ¢|TF™|,) < exp(—t>™/M), m=1,...,k,
P(1Qx1 > tIQFIl;) < exp(—t**M"),
where M depends only on (k, m) and M’ depends only on k.

Proor. We apply a method invented by Pisier and Zinn (1977). By the
Chebyshev inequality and Lemma 2.1(iii) we have, for ¢ > 0,

P(IT}™ > HITF™1,) < ITF™15/(¢P1TF™18) < arpP™/2/tP,

where p > 0 (the estimate is trivial if p < 2). Setting p = (¢/ae)?>/™ we obtain
the first of the required inequalities. The second follows by a similar argument. O

REMARK 2.4. The inequality (iii) of Lemma 2.1 was originally proved by
Bonami (1970) and certain generalizations thereof are due to Pisier (1977 /78) and
Borell (1984). The present proof became simple by virtue of (2.2), which we
learned from S. Kwapien.
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LEMMA 25. If QF converges in L, then T* ™ is L, bounded, m = 0,1,..., k.
Further, T} = Tk * is L, bounded provided Q% contains an L bounded subse-
quence.

Proor. By Lemma 1.1 and Lemma 2. 2(1) and (iv) we infer that there exists a
8, > 0 such that forn > kand m =0,1,..., &,

P(1Q% > 8,ITx ™I1,) = P(1Q% > 8,1Q%,) >

Hence the statement of Lemma 2.5 follows immediately (we recall that 7% * is a
martingale). O

The following assertion may be deduced from Hilbert space theory (cf., e.g.,
Yosida (1965)), because the set {e, --- ¢, : iy,...,1, are different} forms an

m ’ m

orthonormal system in L,. We omit a standard proof.

LEMMA 2.6. If TFk™ = T.(g), €) converges in L to a random variable T™
then there exists a symmetric function g™ on N* such that

(i) gr — g™ uniformly asn - oo;
(ii) Y 18" iy)IP < o0;
lSi‘< <im
(iii) Tm = Yy 8"y, iy)E o g
l<y<---<i

m

An immediate consequence of the above auxiliary results is the main state-
ment of this section. Note that coincidence of a.s. and L, convergence was also
proved by Pisier (1977 /78).

THEOREM 2.7. Letp, q > 0 and let Q% = Q*( f, ¢) be a Rademacher multilin-
ear form. Then the following conditions are equivalent:

(i) QF converges in L,;
(ii) T}>™ converges in L toa tetrahedronal multilinear form, m = 0,1,..., k,
and T'* T}k converges a.s.

COROLLARY 2.8. A bilinear Rademacher form QX(f,e) converges in L,
0 < p < oo, if and only if Q*( f, €) converges as.

COROLLARY 2.9. The family Z= (Q*(f, ¢): f are functions on N*} satisfies
MPZ(p) for everyp,0 < p < 0.

In particular, by comparing the L, and L, norms of a Rademacher multilin-
ear form we obtain a property which should be called the generalized Khinchine
inequality: for every p, 0 < p < o, there are constants ¢, , and C, , such that
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for every n > k and for all functions f on N*

cp,k( Z
1<i;< -

c- <ip<n

) 1/2
Tl )P

(2.4) ”
snT,,’?(f,e)n,,sC,,,k( > |f'(i.,.~,ik)|2).

l<y< .- <y<n

A further consequence is a contraction principle for Rademacher multilinear
forms:

(2.5) 1QX( 17, e)ll,, < C, 5Cs pllANLIQu(f, )l

for every n > k and for all functions f, A on N* where |A|, =

sup, ... i,|A(,, ..., i), provided f = 0on K *° The proof of (2.5) is standard:
We use (2.1), Lemma 2.2(i), and apply Corollary 2.9 twice.
Concluding this section, we have to note that the present meaning of the

convergence of a multilinear form need not be unique. Quantities
fliy, s i) X, - X

Le

may also be summable according to other summability methods. At this moment
we are not able to compare them; however, the following result gives some
information in this direction.

PROPOSITION 2.10. Let f be a function on N2 Forj>2andi=1,...,j—1
set Z ; 1y ;-2s2+i = (i, J)e;e;. Then the series L, Z, converges a.s. and in L, if
and only if the bilinear form T2( f, €) converges in L.

PROOF. Denote S, = X}_,Z,. Now we have
m
— 2 :
S(n—l)(n—2)/2+m - Tn—l + Z f(l7 n)etsn’
i=1

where n = 2,3,...,m = 1,..., n — 1. In particular (7)?) is a subsequence of (S,)
and hence the “only if” part follows. On the other hand

s P 1/p
(E max lS(n—l)(n—2)/2+m_ Tn—l‘ )

l<m=<n-1
n)l/p

by the Lévy and the Khinchine inequalities. Let now T,%( f, €) converge in L,. By
Theorem 2.7 T( f, €) converges in L., or equivalently, ¥%_,Y" | f(i, n)|* < oo.

m

Z f(l) n)ei

i=1

E max
l<m<n-—1

n—1 1/2
< 2K,,( > 11, n)|2)
i=1
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Therefore T/ /'|f(i, n)|> > 0 and thus S, converges as. and in L,, which
concludes the proof. O

3. Multilinear forms in independent symmetric random variables.
Throughout this section X = (X,,) denotes a sequence of independent nondegen-
erate symmetric random variables. Let us denote

Cc(X) = {(an) € RM: Y a,X, converges a.s.}.

It is well known that C(X) =/, if X, are Gaussian or Rademacher random
variables (see Hoffmann-Jergensen (1977a) and Section 4 for other examples);
C(X) =1, if X, have p-stable distribution, 0 < p < 2. We introduce functions

6,(T) = E(t3X,2)*, t>o0.
It can be immediately checked that they have the following properties:

(a) ¢,(¢) = 0 if and only if ¢ = 0;

(b) ¢, are continuous and nondecreasing;

(c) ¢,(ct) < c?¢,(¢) for ¢ > 1;

(d) o (t) = 2E| X, I(|X,| <t )+ P(|X,|>t").

Therefore a modular

p(a) = Lo (le,), a=(a,) <R,

determines a generalized Orlicz sequence space
l,={a € R": p(a) < o}.

Let e, = (0,...,0,1,0,...), with 1 in the nth place.

PROPOSITION 3.1. [, is a complete metric linear space under the F-norm
llaf| = inf{c > 0: p(a/c) < c}, (e,) is a Schauder basis of l,, and continuous
linear functionals form a separating set. Moreover, if (¢,) is equivalent to a
sequence of convex functions (¢,) (in the sense of Musielak (1983), Definition
8.16), then the functional |a| = inf{c > 0: p'(a/c) < 1} defines a norm on .

The proof can be found in Musielak (1983), which is our general reference
concerning generalized Orlicz spaces.

ProrosITION 3.2. C(X) = [,.
ProoF. It suffices to apply the Kolmogorov three series theorem. O
Recall that a sequence A = (A,) of random variables is said to be predictable

(with respect to X) if each A, is .%,_, measurable, where %, = {3, Q} and %,
is the o field generated by X,,..., X,,.

n
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THEOREM 3.3. For every sequence X = (X,) of symmetric independent ran-
dom variables and for every predictable sequence A = (A,),

{Zn:Aan conuerges} ={AeC(X)} a.s.

ProoF. The truncated random variables Y, = A, X, I(|A,X,| < 1) are
martingale differences by the symmetry of X. Since

¢n(|An|) = E( IYn|2|‘g’;z~1) + P(IAanl > 1|Z_1)
then by the conditional three series theorem (cf. Stout (1974)) we obtain

(AeC(X)}c {ZAan converges} a.s.

On the other hand, by a conditional version of the Borel-Cantelli lemma (cf.
Stout (1974)) we infer that, almost surely,

{ZA,,X,, converges} - {ZY,, and Y} P(|A,X,|> 1%,_,) converge}.

n

Since |Y,| < 1 as,,

Y'Y, converges) € { Y E(|Y,|?%,_,) < = a.s.
n nI I n

n

(cf. Doob (1953), page 311; also Stout (1974)). Therefore
{ZAan converges} c {Z¢n(|An|) < OO} = {A = C(X)} a.s.,

n

which concludes the proof. O

Cambanis et al. (1985) proved the p-stable counterpart of Theorem 3.3 using
the idea of “conditioning” due to Hill (1982). Our extension answers a problem
posed by S. Kwapien.

By examining the proof we see that for independent random variables (not
necessarily symmetric)

{AeC(X)} c {ZAan converges} a.s.

The above relation continues to also hold for arbitrary martingale differences X,
and A such that |A,X,| < c a.s. On the other hand, the converse inclusion fails
in general, when avoiding the symmetry assumption, as the following example
(essentially due to S. Kwapien) explains:

ExampPLE. Let X,,_, be independent standard Gaussian random variables
and let X,, take 1 with probability 1 — 1/k% and 1 — k% with the remaining
probability. Then it can easily be checked that

C(X)= {a €RM: Y |a,, | < 0 and Y a,, converges}.

n n
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Let us choose nondegenerate A, such that

1. Y14, |12 <o as.,
n
2. Ay 1 Xy, 0 as,
2n—1
3. A, =— Y AX, as.
k=1

Then ¥,A, X, converges a.s. but still A & C(X).

We shall apply Theorem 3.3 at the end of this section to establish equivalence
between convergence of bilinear forms and certain Orlicz space valued series of
independent random vectors.

THEOREM 3.4. Let X = (X,) be a sequence of independent symmetric ran-
dom variables. The following statements are equivalent:

(i) QX(f, X) converges in L,
(i) T"( f, X) converges a.s. and D¥(f, X) converges in L,,.

Proor. It suffices to show that T* converges a.s., provided @* does in L,,. To
this end, assume that X is defined on a probability space (£,, #,, P,) and choose
a Rademacher sequence independent of X, say, defined on (2,, %,, P,). Let E,
and E, denote the expectations for P, and P,, respectively. Being symmetric, X
and Xe = (X,e,) are identically distributed. Suppose now QX( f, X) converges
in L,, hence Q*(f, Xe) does in L(P, X P,) to a random variable Z. Then
E V. (t) - 0 as n — oo for every ¢ > 0, where

V,(t) = V,(t,0,) = Py {wy: | Z(01, 0,) — QE(f, X(w))e(w;)|> t}).

In particular, V(¢) - 0 in Ly(P,) for every ¢> 0. Hence we can find an
Qm € &, with P(Q,,) = 1 and an increasing sequence (n;) of integers such that
V, (¢ w ) — 0 as i — oo for every w, € Q,, and for every rational ¢ > 0. It means
that Q"( fX(w,), €) converges in L(P,) for every w, € Q). We deduce from
Theorem 2.7 that there exists an Q, = Qpy(w,;) € £, with P(Q(,2) = 1 such that
for every w, € Q, and for every w, € Ry, T [X(w)), &(w,)) =
T f, X(w,)e(w,)) converges. By virtue of the Fubini theorem T*(f, X) con-
verges a.s. The other implications are obvious and the proof is complete. O

COROLLARY 3.5. The following properties of tetrahedronal multilinear forms
Tk f, X) in independent symmetric random variables are equivalent:

(i) T*(f, X) converges in L;.
(i) sup,|TX f, X)| < o0 a.s.;
(iii) Tk(f, X) converges a.s.;
(iv) |T’*(f X?)|'/2 converges a.s.;
(v) T*(hf, X) converges a.s. for every bounded function h on N*. k
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More information can be obtained when dealing with bilinear forms.

THEOREM 3.6. The following properties of bilinear forms Q*( f, X) in inde-
pendent symmetric random variables are equivalent:

(i) Q,",( f, X) converges in L;
(ii) Q (f X) converges a.s,; )
(iii) T 2(Z i, k)X )X, and D? = Z7_, f(k, k)X}? converge a.s.;
(iv) for every JE N u;= (O 0, f(J, 7+ 1), f(J, ]+ 2),...) are vectors
in l,, the series ¥ u;X; converges a.s. in l, and the series ¥, f(k, R)X? ;. con-
verges a.s.

Proor. Equivalence of (i), (ii), and (iii) is a consequence of Theorem 3.4.
(iii) = (iv): Let A, =0 and A, = Zf;l'f_(j, k)X;, k> 1. Suppose T? con-
verges a.s. Then ¥,A4,X, converges a.s.; hence, £, A,e; € [, a.s. by Proposition
3.2. Setting u;, = L} +,1+1 f(j, k)e,, we get by Theorem 3.3 the following equality:
n+1

(3.1) Z an.Xj = Z Akek.
J=1 k=1
It suffices now to multiply the Lhss. in (3.1) by X; and to use the symmetry

of X to see that u;, X 2 converges a.s. as n — oo. Therefore there exists

u,=lim,u; = Zk_jﬂf(j, k)e,. Finally, since
p ZuJ-Xj >t)=limP Zuanj >t)
J=m n J=m
m’
<2limPl|| ¥ u in X > /2],
n j=m

X,u;X, converges in L, or, equivalently, a.s.

(1v) (iii): Suppose that u; €/, and ¥ u;X; converges as. in /,. Let R,
denote the projection in [, with the range spanned by {€,.9 €43 ). Since
R, — 0 pointwise,

ntl oc o oc
’Z Ae, = Z (uj - Rn(uj))Xj = Z quj - Rn( Z quj)
=1 j=1 j=1 Jj=1

converges a.s. in /,, which concludes the proof. O

The above result in the case of p-stable random variables was proved similarly
by Cambanis et al. (1985).

LEMMA 3.7. Let 0 <p < . Thereisana, > 0 such that for every sequence
X of independent symmetric random variables and for every function f on N* we
hdve
max [T/( f, X)I

k<j<n

= ap“f[‘nk( f’ X)”p
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Proor. It suffices to limit ourselves to the case p < 1 because for p > 1 the
result follows from martingale theory (cf., e.g. Doob (1953)). Let ¢ be a Rade-
macher sequence independent of X = X(w) and let E, denote the expectation
with respect to e. Since Rademacher multilinear forms are martingales, using the
generalized Khinchine inequality we get, for w € £,

p/2
E, max [TH(], X)|7 < | By max |TA(7, X(w)e)][)
v p<n <Jjsn

< 27(ByITA(f, X(w)e))”” < 27¢, 2, By|TA(f, X(w)e)|.
Taking the expectation with respect to X and using the symmetry of X we

derive the required inequality with a, < 20;‘1,?. O

LEMMA 3.8. For every p, 0 <p < o0, and for every multilinear form in
independent symmetric random variables we have

T"k( f_2, X2)1/2“p S”Tnk( f X)”,, < Cka”Tnk( f_Q, X2)1/2“p'

cll kR

Proor. The inequalities follow from the generalized Khinchine inequality
and the Fubini theorem. O

LEMMA 3.9. For everyp, 0 < p < o0, for every multilinear form in indepen-
dent symmetric random variables, and for every bounded function h on N we
have

”Tnk( hf_’ X) ||p < ”h”oocp,kcfj,lk“Tnk( f, X)”p

Proor. This follows from Lemma 3.8. O

THEOREM 3.10. Let 0 <p < o0 and let X be a sequence of independent
symmetric p-integrable random variables. The following properties of tetra-
hedronal multilinear forms in X are equivalent:

(i) T} f, X) is L,-bounded;
(i) sup,|TX(f, X)| € L,;
(iii) sup,||T,'(f2 X*)'/%, < oo;
(iv) T*(f, X) converges a.s. to a T* € L,
(v) T*(f, X) converges in L,

Proor. (i) = (ii) follows by Lemma 3.7.

(i) = (iii) applying Lemma 3.8.

(iii) = (iv) is a consequence of Corollary 3.5 and of the Fatou lemma.
“ (iv) = (v): By the symmetry of X there is Q, € © with P(Q,) = 1 such that
for every w € €, T(f, X(w)e) = T*(f, X(w)e) a.s., where T* is an infinite
multilinear form (which exists by Theorem 2.7) and ¢ is a Rademacher sequence
independent of X. Hence TX( f, X(w)e) converges in L, to T* f, X(w)e) for
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every w € . The contraction principle (2.5) for Rademacher multilinear forms
yields

”Tnk( f’ X(w)e)“p =< Cp,2C2,p”Tnk( fa X(w)e)”p, wE Q()'

From the Fubini theorem we derive L -boundedness of T*(f, X) and hence
sup, |T/(f, X)| € L, by already proved implication (i) = (ii). Finally, (v) follows
by the Lebesgue dominated theorem.

Since (v) = (i) is obvious, the proof is completed. O

Now we extend the domain of those p for which the statement of Proposition
1.7 is valid.

ProrosiTION 3.11. Let 0 <p <1. Let X be a sequence of independent
symmetric random variables. Then M k(X )={f: N*> R: Tk(f, X) converges
in L)} is a complete metric lznear space under the F norm |f|, =
SupnllT"( £, XOl15-

ProoF. We repeat the same argument as the one used in the proof of
Proposition 1.7, applying Lemma 3.9 instead of Lemma 1.6.

REMARK 3.12. A sort of unconditional convergence of multilinear forms
Q’(f, X) in symmetric independent random variables was defined by Rosmskl
and Woyczynhski (1984b): T*(f, X) is said to converge unconditionally (a.s.,
L,, p > 0, respectively) if Tknf, X) converges (as.,in L,, p>0, respectively)
for every +1-valued function n on N* However, thls simply means that
TX(|f|, X) converges in a suitable meaning.

4. Multilinear forms with Marcinkiewicz-Paley-Zygmund condition.
In this section we study the behaviour of certain transforms of random multilin-
ear forms similar to those investigated by Burkholder (1973).

PROPOSITION 4.1. Let 0 <p < oo and let X C L, be a sequence of indepen-
dent random variables. Assume that for a function f on N* (Tk(f, X), n> k)
satisfies MPZ( p). Consider the following properties:

1. T*(f, X) admits a bounded subsequence;

2. TH f, X) converges;

3. Tr(f?2, X?)'/? is bounded;

4. T"( hf, X)) converges for every bounded function h on N*.

Then

(i) Properties 1-4 are equivalent provided X,, are symmetric, 0 < p < o0, or
EX,=0,p=>2

(ii) Properties 1 and 2 are equivalent provided EX, = 0, 1 < p < oo, where
the concepts of L a.s. or L, convergence (boundedness, respectively) may be
used exchangeably.
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PROOF. The first part follows by an immediate combination of Corollary 3.5,
Theorem 3.10, and Corollary 1.4. We need more details to prove that existence of
an L,-bounded subsequence implies L ,-boundedness. For this purpose suppose
that T/( f, X) contains an L-bounded subsequence. From the condition MPZ( p)
we derive its L, boundedness and next, choosing a suitable function 4 in Lemma
3.9, we infer that T,*( f, X) is L,-bounded.

For the second part it sufﬁces to recall that TX(f, X)is a martlngale O

REMARK 42. If p=1 and EX, =0 then Properties 1 and 2 are still
equivalent under a slightly stronger assumption:

(THf, X) - THf, X):m,n> k} satisfies MPZ(1).

The only nonimmediate case concerns the implication: existence of an L -bounded
subsequence = L -convergence. Corollary 1.4 gives L -boundedness and L,-con-
vergence of T*. Now the assumption yields

”Tnk - Tnf”l =< Cl,q”Tnk - Tn,z?”q
for every g < 1 (Proposition 1.3). Thus T)¥ converges in L,.

The result below can be formulated and proved in a ntore general case of a
Hilbert space valued function f (cf. Borell (1984)). Borell’s proof utilized some
harmonic analysis arguments. The claim needed for our purpose can be proved in
a simple way. We include its proof for the sake of completeness (consult also
Bonami (1970) for the case of symmetric X and even p).

LEMMA 43. Let XC L,, p> 2 be a sequence of independent zero mean
random variables. If X sansﬁes MPZ( p) then so does = (Tk(f, X): n>k, f
are functions on N*}.

Proor. It is enough to prove
ITECE XD, < d, TECE X,

where a constant d, , depends only on p and k.
Put d,=d,(X) = sup,|| X, |l ,/l X, ||, Using (1.5) and a square function in-
equality due to Burkholder (1973) we obtain

n 1/2
171, )1, < 0| 1w

i=k

p

/ n 1/2
< b,,( ) uT,»’::‘uf,nX,u?,) < b,d,dy, 1| T, X)),
1=k
where b, is the Burkholder constant. Since d,, , < b,d,,, the induction argument
concludes the proof; moreover d, , < (b,d,)". O
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At this moment we are not able to extend Lemma 4.3 completely to the case
p = 2. However, we have the following partial result:

LEMMA 4.4. Let X C L, be a sequence of independent random variables with
MPZ2). If X, are symmetric or if EX, = 0 in case of bilinear forms (k = 2)
then &= (Tk(f, X): n > k, f are functions on N*} satisfies MPZ(2) as well.

Proor. Suppose first X, are symmetric. Let ¢ be a Rademacher sequence
independent of X and let E, denote the expectation with respect to e. We write
EX?:=(E|X,|*) and E|X| = (E|X,). Set dy = sup,||X,,lo/I|X,|l;- We have

ITrCF, X) |, = (ETHF2,1X1%)) = (TA( 2, EX?))"”
< dyTH( 2, (Eix)Y)
< C2,ld2E2lTnk( f,eE|X|)| < C2,1d2E2E|Tnk( f 8X)|

It

which proves the first part of Lemma 4.4.

Now, let 2 = 2 and let us drop the symmetry assuming only that EX, = 0.
We may normalize X,’s in order to have E|X,|* = 1. Let X’ be an independent
copy of X. If T?( f, X) converges in L, then (being a martingale) it converges a.s.
Applying Gundy’s result (1967) we infer that

= C2,1d2”Tnk( f, X)

o [J-1 2
> ( > f(i,j)Xi) < oo as.
J=2\1=1

and further,

J=1
)y f(i,j)Xi)X/
i=1

£

converges a.s., because C(X) = C(X’) = [,. Therefore the symmetrized bilinear
form

ii (i f(i, j)(Xi - Xi/)(Xj - Xj/)

converges a.s. as well. As already shown, the first part of Lemma 4.4 for
symmetric random variables yields L, convergence of T*(f, X — X’). Since

|T2Cf, X)), = 27| T f, X = X7)

27

the proof is completed. O

CoroLLARY 4.5. If X C L,, p > 2, is a sequence of independent zero mean
random variables and if additionally X,’s are symmetric in the case p = 2 and
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k > 2, then the properties listed in Proposition 4.1 are equivalent, whichever
concept (convergence or boundedness) is used, provided X satisfies MPZ( p).

REMARK 4.6. All results contained in this paper continue to hold for random
variables assuming values in a Hilbert space. We need only infinite dimensional
counterparts of classical probability theorems, like the three series theorem, the
Burkholder and Khinchine inequalities etc., which do extend to the Hilbert space
case. A generalized Orlicz space £,(H ) can be derived as well in such a situation.
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