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THE SIMPLE EXCLUSION PROCESS AS SEEN FROM A
TAGGED PARTICLE!

BY PaBLO A. FERRARI
Universidade de Sao Paulo

The simple exclusion process “as seen from a tagged particle” is studied.
The set of translation invariant and invariant measures for this process is
determined in the translation invariant case on Z%. The set of all invariant
measures is determined in the nearest neighbor asymmetric case on Z. The
domains of attraction of the invariant measures are established in the
one-dimensional nearest neighbor translation invariant case.

Introduction. The well known ([18], [14]) simple exclusion process describes
the behavior of infinitely many particles moving on a countable set S according
to the following laws: At the site x € S there is a particle which, after an
exponential time with parameter one, attempts to jump to a site y with
probability p(x, y), where p(x, y) is a transition probability function for a
Markov chain on S. The jump actually occurs if the site y is empty. No more
than one particle is allowed to be at each site. In this paper we study the simple
exclusion process “as seen from a tagged particle.” We take S = Z? (although S
could be any countable abelian group) and p(x, y) translation invariant, i.e.,
p(x, ¥) = p(0, ¥y — x). For this process the origin is always occupied and, if the
site y is empty, after an exponential time of parameter one, with probability
p(0, y) a translation of the system occurs in such a way that the new origin will
be at site y. The other particles move as before. We call it the “tagged particle
process” [14].

The existence of the tagged particle process is known if p(x, y) = 0, for
|x — y| > 1, since in this case there exists a labeled probabilistic version for the
simple exclusion process [7]. For general p(x, y) one can construct the process
using Liggett’s existence criteria or, as we do, by using the fact that the
pregenerator of the tagged particle process is a bounded perturbation of the
generator of a semigroup. Then we use [5] to prove that it is the generator of a
contraction semigroup.

One of the classical problems concerning infinite particle systems is the
determination of the set of invariant measures. Since this is a convex and
compact set, it suffices to describe the set of extremal invariant measures. For the
simple exclusion process Liggett [12] (also [13] and [14]) studied some particular
cases. When S = Z? and p(x, y) is translation invariant, the set of extremal
invariant and translation invariant measures is the one-parameter family
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{»,: 0 < p < 1}, where , is the Bernoulli measure with parameter p. In Theorem
2.4 we prove the corresponding result for the tagged particle process. The
analogue of translation invariance for measures with mass concentrated on
configurations with one particle at the origin is given in Equation (2.1) following
Neveu [16]. To prove Theorem 2.4 we use a generalization of a result of Harris
[6] and Port and Stone [17], namely we establish the relationship between the
measure for the tagged particle process and the measure for the simple exclusion
process. This is established in Theorem 2.3.

More interesting is the case S=27Z, p(x,x+1)=p, p(x,x—1)=gq,
p + g = 1. Consider p > q. For the simple exclusion process the set of extremal
invariant measures is the union of two families. One is the family of Bernoulli
measures as in the translation invariant case. The other is a discrete one-parame-
ter family {»™, n € N} of “blocking measures” (i.e., measures which give mass
one to configurations with a finite number of empty sites to the right of the
origin and a finite number of particles to the left of the origin; cf. [12] for a
complete description). In Theorem 3.4 we prove that for the tagged particle
process we also have the above two classes of invariant measures as seen from
one of the particles. We also show that these are not the only ones. Other
invariant measures appear. These can only be seen from one of the particles
because under these measures the process seen from a fixed site converges to the
vacant configuration in distribution. They form a two-parameter family and
their mass is concentrated on configurations with a finite number of particles to
the left of the tagged particle. This number does not change with time (because
of the exclusion condition and the nearest neighbor jump) and it is one of the
parameters of the family. To understand the meaning of the other parameter we
describe each configuration by labeling the distances between successive par-
ticles. So, if p (0 < p < 1) is the second parameter, the distance between the mth
and the (m + 1)th particle, counting from the left to the right, has the geometric
distribution with parameter

q m+1 [ q m+ 1]
== +pl1—|= .
=3 e ()

In other words, the number of empty sites between the mth and the (m + 1)th
particle is equal to k& with probability p%(1 — p,,). Furthermore, the distances
between different pairs of successive particles are independent. The asymptotic
density for positive sites far from the origin is 1 — p. If p = 0, the measures
obtained are analogous to the “blocking measures” found by Liggett (see
Theorem 1.4 in [12]), when seen from the nth particle.

The proof of this result is based on a correspondence between the tagged
particle process and the zero range process. The zero range process was intro-
duced by Spitzer [18] (see also Liggett [14]) and some of its sets of invariant
measures were determined by Andjel [2]. We introduce a modification of this
process in order to prove Theorem 3.4. The same correspondence was used by
Kipnis [9], De Masi and Ferrari [3], and Ferrari, Presutti, and Vares [4], but the
idea of this correspondence was already in Harris [6] and Port and Stone [17].
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In Section 4 we determine the domain of attraction of the invariant measures
in the one-dimensional nearest neighbor translation invariant case.

1. The tagged particle process. Let S =Z¢ and p(x, y) be a translation
invariant probability transition function for a Markov chain on S. Consider the
simple exclusion process on Z = {0, 1}" introduced by Spitzer [18]. For n € ' we
say that a particle is at x if n(x) = 1, and that the site x is empty if n(x) = 0.
We also interpret 7 as the subset (of S) of occupied sites. The existence of the
simple exclusion process was proved by Liggett [10] under the condition
sup,X, p(x, ¥) < co. This condition is automatically satisfied for translation
invariant p(x, y). The generator of the process is the closure in C(%’) (with the
supremum norm) of the following operator @ defined for cylindric f by:

(1.1a) Qf(n) = )y p(x, Y)[ F(n.y) — F(0)],
x, y: n(x)=1,7(y)=0
where
n(2), ifz#x,y,
(1.1b) Ney(2) = (n(x), ifz=y,
n(y), ifz=nx.

In order to define the tagged particle process we consider the set
F=2n {n: 9(0) =1}.
The tagged particle process has state space % and its pregenerator is
(1.2a) Q=0,+8Q,

where Q, is the operator corresponding to the shifts of the system due to the
motion of the tagged particle:

(1.2b) Qf(m)= X O, »)[F(no,—¥) — f(m)]

y:n(¥)=0
(the configuration n — y is defined by (7 — y)(x) = n(x + y)) and @, is the
generator of the motion of the other particles:

(1.2¢) Q.f(n) = Y p(x )| f(n,) - f(0)]-
x, y#0
n(x)=1,7(y)=0
By Liggett’s existence criteria [10], 2, is the generator of a contraction semi-
groug; meanwhile Q, is a bounded operator. Then, by Theorem 2 of Gustafson
[5], € is the infinitesimal generator of a contraction semigroup, which we call

S(¢t). f’zl‘his implies that there exists a unique Markov process on £ with gener-
ator (2.

REMARK. The arguments above prove the existence of a Markov process on
4 with generator . But, is this the same process that one obtains by tagging a
particle in the simple exclusion process, following it, and describing the system as
seen from it? The answer is yes and the proof is not difficult: One introduces an
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auxiliary process (7,, X,) where 7, is the simple exclusion process (with generator
Q) and X, is the position of the particle initially at the origin. Then the process

- X, (where (n — x)(2) = n(x + 2)) has @ as generator. An earlier version of
this paper contained this construction which is straightforward but tedious. We
are indebted to the referee who suggested the perturbation argument used above.

Let A (Z)[#(Z)] be the set of probability measures on % [£] Let 9=
(peM(X): pS(t)=p) and I = {p EJ/[(Q’) pS(t) = p} be the sets of in-
variant measures for the processes with senugroups S(t) and $(¢), respectively.
These sets are nonempty, convex, and compact in the weak topology. Thus, by
the Krein—Millman theorem, in order to describe them it suffices to determine
their extreme points 7, and .7' We determine .7' in some cases in the following
sections.

2. The sets of invariant and translation invariant measures. In this
section we take S, p(x, y), S(t), and S(¢) as in Section 1.

Let ¥ A (Z) be the set of translation invariant measures on Z = {0, 1)5. Let
p € & be such that p{n(0) = 1} > 0. Define ji € #(%) as the Palm measure of p
by

fi=p(-n(0) =1).

We can define i in this simple way because we do not allow multiple

occupancy at the sites of S. The general way to define the Palm measure can be

found in [16]. An alternative (and equivalent on &) way to define {i is, for p € &%,
a(p) = p{n(0) = 1} > 0 and all ﬁnite A C S and f continuous,

Jan i = 7 ( TAiaGy J#(@) L (0= 2)n(x).

x€A

If p is the point mass on n = 0 (the vacant configuration), we define fi as the
point mass on the configuration n = {0} (the configuration in which only the
origin is occupied).

Let & be the set

= {wet(#): [u(dn) Entx)1(n, %)
(2.1) *
= fﬂ(dn)Zn(x)f(n — x, —x), for all nonnegative f € C(4 x S)}

In the next proposition, due to Neveu [16], we see that the set & is the set of
Palm measures of translation invariant measures.

PROPOSITION 2.2 (Proposition II-11 of [16]). The transformation p — i is a
function from & onto &.

REMARK. The function of Proposition 2.2 is not one to one. Take for instance
p € & such that a(p) > 0, and p, as the point mass at n = 0. Then {i is the
Palm measure of ap + (1 — a)u, for0 < a < 1.
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The results of this section are the following theorems:

THEOREM 2.3. If p € %, then for all t > 0, pS(t) € & and
p8(t) = [wS(8)]".

THEOREM 2.4. The following holds:
(INP), = {$,:0<p <1},

where 9, is the Palm measure of v,, the product of Bernoulli measures with
parameter p.

REMARK. Theorem 2.3 is an extension (in one way) of Theorem 6.5 of Harris
[6] and Theorem 6.5 of Port and Stone [17], for a process constructed without
identifying the particles. In [6] and [17] the particles are identified but, in
compensation, the result holds for a more general kind of state space. Theorem
2.3 gives a simple way to compute, in the translation invariant case, the measure
of the tagged particle process at time ¢ as a function of the measure of the simple
exclusion process at the same time. The set of invariant and translation in-
variant measures has been determined in [12] for the simple exclusion process on
Z°%. We use [12] and Theorem 2.3 to obtain an analogous result (Theorem 2.4) for
the tagged particle process.

PROOF OF THEOREM 2.3. Define the operator T: C(£) — C(Z) by
Tf(n) = n(0) f(m).

Then one can see that

(2.5) f TOf dp = f QT dp
for all p € & and f cylindric. We can rewrite the conclusion of Theorem 2.3 as
(2.6) j TS(¢)fdp = fS(t)den.

But (2.5) implies (2.6) as follows from the computation:
¢ d .
TS(2)f — S(t)Tf = fo = S(t = $)TS(s)f ds
= f‘s(t — $)[T® — QT18(s)fds
0
and

JIT8(2) - 8(6)Tf ] dp
- fo‘{j[m — T18(s) fd(pS(t - s))} ds

= 0. m|
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PrROOF OF THEOREM 24. First observe that, since », € (IN ), ([12))
Theorem 2.3 implies that 7, € (In .7)8, 0<p<1 On the other hand, take
ye(In y)e Since y ESP by Propos1t10n 2.2 there exists a measure p € &
such that y = fi. Since y € 7, ¥S(t) = v, i.e., iS(t) = fi, and by Theorem 2.3,

(2.7) [wS(2)]" = &.
Furthermore, since p € & and p(x, y) = p(0, y — x),
(2.8) a(pS(t)) = a(p).

Equations (2.7) and (2.8) and Proposition 2.2 imply that p = pS(¢) and so p € 7.
Now, if p € 7N & then p = [v,g(dp), where g is a probability measure on [0,1]
(Liggett [12]). If a(p) = O, then fi = #,. If a(p) > 0, then

p={  5,(p/a(n)e(de).
(0,1]

This implies that i is a convex combination of #,, p € (0,1]. But =y is
extremal by assumption. Then y = 7, for some p € [0,1]. O

3. The nearest neighbor one-dimensional case.

3.1. Main theorem. In this section we consider S =7, p(x,x+ 1)=p,
p(x,x —1) =g forallx €Z, p + g =1,1> p > g. Under these conditions the
generator § of the tagged particle process assumes the form

Qf(n) = X {n(x)[1 —n(x+ D] p[f(n,c40) — F(n)]

(3.1) +n(x)[1 = n(x = D]g[f(n,,.-1) — f(n)]}
+ [1 - ﬂ(l)]P[f("lo,l -1) - f("?)]

+[1 = n(-1)g[f(no,—1 + 1) = f(m)]

for f cylindric on £.
Define the following partition of %

£,={nes: Tax) =, L a(x) = o},

x>0 x<0

£ ={ned: Tn(x) =, L 1) < o),

x>0 x<0

= (ned: Tax) < w, L a(x) =,

x=0 x<0

A

{
£, = {n e%: §n(x) < oo}.

Call # [ M}, M, ] the family of probability measures with mass con-
centrated on £, [4, €=, %,]. The following lemma allows us to study the set of
invariant measures separately for each of these families.
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LEmMA 32. IfyeH [ M, M, #,], then forall t > 0,
YS(t) €M [ M, M, Ao

ProOF. Let By = {n: X, on(x) < 0}, D, = {m: n(y) =0, y <x}. Fix e >
0, t,n € D,. There exists n, (< x) such that for all n < n,, 6, S(¢)(D,) > 1 —e.
Since B; = UD,, 8,8(t)(By) = 1forall n € B;.

Now let Bo; = {"73 Z:lc<0"7(x) = 00}, Br.n- = {n: Zx<0"7(x) > m}’ Dx,m =
{n: Z,<,<om(y) > m}. Fix ¢ ¢, € B;. For each m there exist x <0 and n,
(< x)suchthat n € D, ,, and for all n < n,, 8,5(¢tXD,, ,) > 1 — e This implies
that §,S(¢)(B,,) = 1 for all m, hence §,5(¢)B, = 1.

Obtain the lemma by proving the analogous results for By = {n: £, m(x) <
o} and B} = {n: L, m(x) = 0}. O

Let J be the set of invariant measures for the tagged particle process. Define
I NI, I, 9)=INM[INM, TOM, TNM] Tt follows from
Lemma 3.2 that

Jo=(9.). V(). 0(97). U(Ts)

where U means disjoint union of sets.

e

DEFINITION 3.3. For each nonnegative integer n let B, = {n € 'y o
L.<om(x)=n}Ifne %7, then there exists r > 0 such that # € B,. In this case
we represent 7 by the sequence {x(—r),...,x(0),...}, where x(0) =0 and
x(i) <x(i + 1) for all i > —r. In this representation the integer x(i) is the
position occupied by the ith particle. Let p € [0,1). Define v,’, € #, as the
measure satisfying:

@) ¥, (B = 1,

(b) the random variables [x(m + 1) — x(m)], m > —n, are mutually indepen-
dent, and

©) Yo au{m: x(m+1) —x(m)=Fk+1} = ek — p,,), where k is a nonnegative
integer, m > —n, and p,, (m > —n) are defined as functions of p, p, and n
in the following way:

q m+n+1 q m+n+1
Pm=1|— +p|1—|— .
p b

For p € [0,1], #, is the Palm measure of the Bernoulli measure with parameter p.
Recall that for p = 0, 7, is the measure with mass concentrated on n = {0}.

The result of this section is:

THEOREM 34. Let S=12, p(x,x+1)=p, p(x,x—1)=q, p+tqg=1,
g <p<1, and p(x,y) =0 if |x —y| > 1. Then the set of extremal invariant
measures J, for the tagged particle process is

(3.5) Io=(95).Y (%)Y (F). v ().

o0
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where
(a) (%5)eV (Z)e= (50 p <1},

(3.6) (b) (F)e={3"n0<p<1,n20},
(c) (I5).=2.

REMARK. For p = 0 the measures vy,", correspond to the measures »™ of
Liggett [12] but as seen from the rth particle.

In Section 3.2 we prove part (a) of Theorem 3.4. We prove parts (b) and (c) in
Section 3.3.

3.2. Correspondence with the zero range process. The zero range process
was introduced by Spitzer [18]. The process was first constructed by Holley [8]
for a one-dimensional case (which includes the one studied here) and then by
Liggett [11] in a more general context. Sets of invariant measures were studied
by Andjel [2]. An intuitive description of the process is the following:

At each site x of a countable set S there are a finite number of particles. Let g
be a nonnegative function on the nonnegative integers. At rate g(k) a particle,
chosen at random among the 2 particles at x, jumps to another site y chosen
according to a transition probability function p(x, y). The destination site is
chosen independently of the number of particles at x and y. We consider the case
S=1 gk)=1, px,x+1)=gq, p(x,x—1)=p, p+qg=1,1>p>q. The
state space is # = NZ, and the generator of the process is defined for cylindric
and bounded A € C(%) by

AR(§) = ¥ 1{&(x) > 0} [g(A(£, 211) — ()

(3.7) x€Z
+p(h(£, 1) — h(§))],
where
£€(2)-1, ifz=ux,
(3.8) (., ,(2)=(¢&2)+1, ifz=y,

£(2), ifz+#x, y.

We call R(t) the semigroup generated by A. Let #(%) be the set of
probability measures on # and J(A) = {B € #(¥): BR(t) = B} be the set of
invariant measures for the process.

As a consequence of Theorem 1.11 of Andjel [2] we have that for ;< p < 1,

(39) [7(A)]. = (B:0<p <1},
where B, is the product measure on % with marginals

B¢ &(x) =k} =p*(1-p), k20,x€1.
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Now we define a bijection between é’w and ¥. Let £ € #. Define n(¢) € é’w
as the configuration satisfying

1, if3n>0st. Y (&(y) +1) =nx,
y=0

(810)  ((®)(x) = {1, itIn<0st. T (&(y)+1) = —x,

y=n
1, ifx=0,
0, otherwise.

On the other hand, let 7 € £, and {x,}, ., be the ordered sequence of sites
occupied by 7 such that x, = 0:

_[min{x >x,_;:q(x) =1}, ifi>0,
T max{x < x, :q(x) =1}, ifi<0.

Then we define the configuration £(n) € ¥ as

(3.11) [e(m](u) =201 —2,-1, wez.
If f: éf’oo — R is a cylindric function, define f" ¥ » R as
(3.12) f7(¢) = f(n(£)).

Note that f" is cylindric and bounded on %.
The relationship between & (equation (3.1)) and A (equation (3.7)) is given by
the following lemma:

LEMMA 3.13. Let f be a cylindric function on 9?00 and f" as defined in
equation (3.12). Then

Qf(n(8)) = Af(%).
PROOF. Rewrite the generator  for the {x,}, ez representation of 5 € .‘fw:

Qf(n) = L {PL{%ner = 20 > 1} F(ns,,2,41) = F(0)]

U, = 20y > 1) [0 20) — F(0)])
+pl{x, > 1}[f("70,1 -1) - f("?)]

+ql{x_, < =1}[f(no,_, + 1) — f(n)]
and, if 9 = n(§),

Qﬂn@»==Eﬁpﬂﬁn)>ﬂlﬂﬂgmq»—fh@»]

+q1{&(n = 1) > 0}[ f(n(£,-1,,)) — F(n(£))])
+p1{£(0) > 0}[ f(n(£o,_1)) — f(n(£))]
+q1{&(=1) > 0}[ f(n(¢_1,0)) — F(n(£))]
= Af7(8). O
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REMARK. If in the zero range process the site u is not empty, then particles
u and u + 1 of the tagged particle process are not neighbors (i.e., x,,; — x, > 1).
With rate p a zero range particle jumps from site u to the left, which is
equivalent to a jump to the right of the (z + 1)th exclusion particle (occupying
site x,,,). With rate ¢ a zero range particle jumps to the right which is
equivalent to the left jump of the uth exclusion particle.

The corresponding relation between .//l(.%’ ) and A (%) is given in the
following lemma. For p € .//{(.‘2’ ) define A, € #(%) as the measure satisfying

(3.14) A f7=npf forall fe C(%£,).

LEmMA 3.15. If p€J, then \, € T(A).

PRrOOF. We have that (see [14])
= (pe#(Z,): pQf = 0, for all cylindric f },
.?'(A) ={AeA(¥): A\Ah = 0, for all cylindric and bounded A}.
The lemma follows from Lemma 3.13 and equation (3.14). O

PROOF OF THEOREM 3. 4(a) It is easy to check that f {?y}. Suppose then
that p > 0, thus 7, E./I{(J‘l’ )- Since », are invariant for the simple exclusion
process ([12]), Theorem 2.3 implies that », are invariant for the tagged particle
process. Use equation (3.9) and Lemma 3.15 to complete the proof. O

3.3. The semiinfinite case. In this subsection we introduce a modified zero
range process on #* = NN, We assume that at the “site” —1 there are infinitely
many particles which have the same behavior as the other particles, i.e., particles
jump from and to “site” —1 with the same rates they do at the other sites. The
generator A of this process is defined on bounded cylindric functions by

AYR(E) = gl{s(u) > 0}{p[ (&4, u-1) — ()]

+q[h(£,, 1) = B($)]}
+q[h(§_1 ) — R(£)],
where, for u, © + 120, §, , ., was defined in equation (3.8) and

_ [&(u), ifux>1,
bo,1(u) = {g(u) -1, ifu=0,

(3.16)

(3.17)
_ [&(u), ifu>1,
£-10(2) = {g(u) +1, ifu=0.

REMARK. Since g(k) = 1 is bounded and the birth rate at the origin (i.e., the
rate of jump from —1) is bounded by ¢ < 1, one can use Holley’s techniques [8]
to prove the existence of a semigroup R*(¢) generated by A*.
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Now we establish relations between the sets #*and B, = {n € £}: X, _ gn(x) =
0}. Represent n € B, by the sequence {x,, x;,...} C N, where x,=0 and
x; > x,_,. Let £ belong to #*. Define n(£) as the sequence {0, x,, x,,...} such
that x; = X 4(é(u) + 1). If f € C(B,) is a cylindric function, define f " € C(¥*)
(which is cylindric too) as in equation (3.12). If p € #(B,), define A, € #(%™)
as in equation (3.14). Now, if J(A™*) is the set of invariant measures for the
process with generator A*, we have the analogues to Lemmas 3.13 and 3.15:

LEmMA 3.18. Let f € C(B,) be a cylindric function. Then
(a) f(n(£)) = A*F(8);

(b) if pedy nM(B,), then\, €T (A*).
ProOOF. The proof is similar to those of Lemmas 3.13 and 3.15. O
We characterize J(A*) in the following theorem:

THEOREM 3.19. Let J(A™) be the set of invariant measures for the semiin-
finite zero range process with generator A* defined in equation (3.16). Then:

(a) If p<q, thenJ(A") = 0.

(b) If p>q, then[T(AY)].={A,:0<p<1]},
where A, is the product measure with marginals

(3:20) A(&(m) =k} = op(1 = pp), k20,

and p,, is the following function of p, p, and m:
q m+1 q m+1
e (4] (4
p b
REMARK. Part (a) of Theorem 3.19 says that for p < § there are no invariant

measures, for the tagged particle process, which concentrate on configurations
with only a finite number of particles to the left of the tagged particle.

PrROOF. (a) Suppose that p < g and that there exists a measure A € (A ™).
For each x € N consider the cylindric function A,(¢) = £(x). Since A is in-
variant, fA*h,dA =0 for all x € N. Rewrite this expression to obtain the
equations

ax =pax+1 + qax—l’ X 2 0’
where a, = AM{{: §(x) >0} forx >0and a_, = 1.
Hence
a, = q + pa,,

S -

k=0
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and, since 0 < a, < 1 forall x € Z*,

5_1(a/p)" 1 .\ Ti(a/p)*

<ap< .
i-o(a/p)" io(a/p)"  Zioa/p)
But g > p implies a, =1, thus a, =1 for all x and A{n: n(x) =0} =0.
Hence A{n: n(x) =k} =0 for all x, all 2. Then A cannot be a probability
measure on ¥,

(b) Consider p > g. To prove the invariance of the measures A, one first
observes that for all x > 0:

(3:21a) 0,19 — p.p = p(q — p),

(3‘21b) p(px+l/px) + q(px—l/px) =1

(with the convention p_; = 1).

Now consider the family of cylindric functions A(£) = 1{{(x) = k(x),
0 <x <n}, k(x) 20, n>0. This family generates a dense subset of C(Z).
Then

MATE= [Tk - p,)

X[Z:‘, {k(x)>0}( Prs1 qp"“-l)

x x

+ppy + g0, — q —pp,,“] =0

by equations (3.21). Thus A,A*f = 0 for all bounded cylindric f, which implies
(see [14]) that A, are mva.mant for the process with generator A™*.

The proof that {A,: 0 < p < 1} are the unique extremal invariant measures is
analogous to that of Theorem 1.11 of Andjel [2], and so we only sketch it. As in
[2] we define a coupling on the space #* X #* in such a way that each marginal
has R*(t) as semigroup. In this coupling, particles occupying the same site in
different marginals jump together. The aim of this coupling is to prove that for
each invariant measure A € [7(A™)], and p € [0,1), there exists a measure A,
on #* X #*, invariant for the coupled process, with marginals A and A, such
that A oA 2 5 or £ > {} = 1. Then, the characterization of A asa A, measure for
some p = p, follows. The generator of the coupled process is

Rt = % {1{¢(x) > 0, &(w) > O} D[ F(§4, w1 bu,umr) — F(8, 8)]

+ @[ Fuusrs Eu,usr) — 1 O] + 1{8(u) > 0, &(u) = 0}
X[ Pl (80 ue1s ) = FE O] + @[ F(uurrr §) — (85 6)]]
+1{8(w) = 0, £(u) > 0} [ P[F($, &4, ur) — 1(5,6)]
+q[ (8, 60 urr) = 1O} +al G100 6-1,0) = 155 8)],

where {, ., and £, ,,, are defined in equations (3.8) and (3.17). The existence
of the measure }\ on #* X ¥*, invariant for the process with generator A* and
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marginals A and A, is easily proven following [2]. To prove that A oA = & or
¢ < £} =1, one considers the function f,({, £) == number of changes of sign of
§(0) — £(0), (1) — £Q1),...,§(n) — &(n), n=1,2,..., and the sequence A, =
J(fns1 — fn) dA,. As in Lemma 7.1 of [2] one proves that there exists a subse-
quence of A, converging to 0. Now we use this fact to prove that the probability
that there is any change of sign is zero. We argue by contradiction:

Suppose that there exist ¢ < b € Z* such that

A {$(a) > £(a), §(b) < £(b), §(x) = &(x)
for0<x <a,a<x<b}>0;

then an inductive argument shows that
(3:22) A,{1 =¢(0) > £(0), {(x) = £(x),1 < x < b,4(b) < ()} > 0.

Now take A, — 0. Since }\ is invariant, fAf d}\ = 0. The positive terms of
this integral are bounded by pA and therefore go to 0 as [ goes to c0. But (3.22)
implies that the absolute value ‘of the negative terms is bounded below by a
positive constant for n > b. This contradiction proves that

(3.23) Aff=gorg=¢) =1 O

Notice that we are using that (a) new changes of signs cannot be generated by
the creation of particles at the origin and (b) the destruction of particles at the
origin can only decrease the number of changes of sign. This allows us to give a
proof of equation (3.23) which is simpler than the one given by Andjel for the
doubly infinite case.

PRrOOF OF THEOREM 3.4(b) AND (c). First, it follows from Theorem 3.19(a)
and Lemma 3.18 that .7;_ = @. This proves (c). To prove (b) write 4! =
U,>0%, where %, is the set of measures concentrating mass on the
set B, = {n efé’ Zx<0n(x) = n}. From the proof of Lemma 3.2, we have
that if Yy € Q then yS(t) € #, for each t > 0. Then
(.7' e =U,s (LS A 4%,),. From Theorem 3. 19 and Lemma 3.18 we know that
7, A N By, = {yp 00 < p <1}. To complete the proof of part (b) it suffices to
change the origin of coordinates for the process R*(¢) in Theorem 3.19 in such a
way that birth and death of particles occur at the site —n (instead of the origin)
and so one obtains that (4, N #,), = {(v,0<p<1l}forn=0.0

4. Domains of attraction. In this section S = Z, p(x, y) =p and q for
y=x+1 and x — 1, respectively. Let ¥ be the set of translation invariant
measures and & be as defined in Section 2. If p € &, the intensity of u is
a(p) = [m(0)dpu. As in the previous sections, S(¢) is the semigroup for the
simple exclusion process and S(t) the one for the tagged particle process.

THEOREM 4.1. Let p be an ergodic translation invariant measure on {0, 1}*
with intensity a(p) = p; then uS(t) =7, Le, pS(t) converges weakly to the
Palm measure of v, (the Bernoulli measure of parameter p).
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PrOOF. The case p = 0 is trivial; we then assume p > 0. It is proven by
Andjel [1] that pS(¢) = »,. Let o= {u: p{n(x) = 0V x} = 0}. Then the map
from N« to SN deﬁned by p — fi is a homeomorphism of &N &/ onto
#N o in the weak topology (Theorem 7.6 of [17]). Since by ergodicity p € &,
[#S(t)] "= 5,. The proof follows from Theorem 2.3: [nS(¢)] "= AS(t). O
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