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TANAKA’S FORMULA AND RENORMALIZATION FOR
INTERSECTIONS OF PLANAR BROWNIAN MOTION!

By JAY ROSEN
University of Massachusetts

We use a Tanaka-like formula to explain Varadhan’s renormalization of
the formally infinite measure of Brownian self intersections given by

fOTfOTs(W,— W,) dsdt.

1. Introduction. It is well known that a Brownian path in the plane must
intersect itself. A measure of such self-intersections is formally given by

(11) [, Jo(W.— W.) dsat,
where § is the “delta-function.” Somewhat more precisely if

e—s/2e—|x|2/2e
(1.2) q(x) = ————

then by (1.1) we mean the formal limit

27e

(1.9) tim [ [a.(W,— W,) do.

If B C R? is away from the diagonal we have shown (Rosen, 1983) that (1.1) is
the value at x = 0 of the (continuous) local time a(x, B), of the random field:
(s, t) > W, — W,. The precise definitions will be recalled below.

When B intersects the diagonal, the limit (1.3) is infinite. Varadhan has shown
that we can find a (nonrandom) constant c¢(¢) — oo as ¢ — 0 such that

(L4) tim [ g (W, ~ W,) dsdt — ()T
e—=0J0 Yo

is a well-defined random variable (Varadhan, 1969). Although once described as
“the most interesting property of the Wiener process which has been discovered
in recent years” (Nelson, 1973), it has had little impact on probability, and in fact
is unknown to most probabilists. [The situation is now improving. See the recent
articles by Le Gall (1985), Yor (1985a, b), and Dynkin (1985).]

The purpose of this paper is to explain Varadhan’s result in terms more
familiar to probabilists. We will show how it follows naturally from a Tanaka
formula.
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Let
(15) K'(x) = [Tq/x) dt,

€

which is a C* function of x. If we apply Itd’s formula to the nonanticipating
function of ¢ and «x:

ftK"’(x — W,)ds ontheinterval0 < ¢t < T
0

and use the formula (—A + 1)K %(x) = 2¢(x) we obtain
[TK Wy = W) ds — 0~ ["K(W,~ W,) ds
0 0

- [, [vEW.~ W,) dsaw,
T

(1.6)
1 [, [K(W.— W) dsde

==, JaW.- W) dsde,

where Dy = {(s,t)[0 <s <t < T}. We recognize the right-hand side as the
integral in (1.3), so we must consider how the left-hand side behaves as ¢ — 0.
The second term is TK 4(0) ~ T/2x In(1/¢) as ¢ = 0. We will show in Section 2
that the other terms on the left-hand side all have “nice” limits as ¢ — 0.
Dropping the second term, TK ¥(0) is precisely Varadhan’s renormalization.

To better appreciate the nature of the term which is being dropped, let

Dr ., ={(s,t) € Dylt — s > v}.
Apply 1td’s formula to the nonanticipating functional of ¢ and x
ft—yKe(x — W,)ds ontheintervaly <t< T
0

and then take the ¢ — 0 limit, which we later justify, to find
[T KWy - Wy ds -0 - ["K(W, - W,_,)dt
0 Y

(17) [, [vEW.- W) dsaw,

—éfDT,ny(Wt— W,) dsdt = —a(0, Dr,,).

The last two terms on the left-hand side are “area terms” which behave nicely as
y — 0, converging to the corresponding terms in (1.6). The first two terms are
“boundary terms”; the first has a nice limit as y — 0 — while the second, which
in the limit corresponds to the “information from the diagonal”, is precisely the
term which we drop in renormalization. This is as it should be — for this
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troublesome term corresponds to ¢ = s in (1.1) which is registering as a “spurious”
intersection.
(1.7) in turn can be thought of as a special case of

o(0,6) = [ K(W,— W,)ds + [ [VK(W,~ W,) dsdW,
(1.8) 3G G
+§foK(W;— W,) ds dt.

This formula is certainly true if G is a finite union of rectangles in some
D, ,— but in this paper we do not attempt to establish a general version of (1.8).
All our formulas extend to a(x, Dr ,) and a(x, Dy) where we replace q(y) by
4. .(y) = gy — x): simply replace K (y) by K{(y) = K*(y — x).
In the next section we will show that the integrals

[ KeWr = Wyds, [ [KiWi— Wydsat, [ [IKAW,~ W) dsaW,

converge as ¢ — 0 to random variables jointly continuous in x, T. Furthermore,
we establish (1.7), defining its terms along the way, and show that its “nice”
terms converge as Y — 0 to the corresponding limits of (1.6) just described. This
shows that dropping the second term in either (1.6) or (1.7) gives the same
renormalization.

The idea of using Ito’s formula to understand renormalization goes back to
Symanzik (1969), albeit in a different form. Our contribution is to carry this out
rigorously in a way which we feel is understandable.

The situation in three dimensions is more complicated. We refer to Symanzik
(1969) and Westwater (1980). Speaking very roughly, the contribution from the
line y = x + vy, the second integral in (1.7), is O(K(y)) = O(In(1/v)) in two
dimensions, so that the area terms are O( /- In(1/y) dy) < oo — while in three
dimensions K(y) = O(1/y) so that even the area terms are infinite.

We refer the reader to recent work of Dynkin (1983) for a different attempt to
put Varadhan’s result, and the quantum field theory which gave rise to it, in a
more general probabilistic setting, and to Frohlich (1984) for a survey on recent
progress in implementing Symanzik’s ideas relating Brownian intersections and
quantum field theory.

2. Let us introduce the notation
(2.1) Iz, T,e) = [K(x - W,) ds,
0

(22) G Ty, e) = [ [KAW,- W) dsa,
Dy,

I, T,v,e) = [ [VEAW,~ W,)dsaW,

(2.3) TT N

= [ [ oKW~ W,) ds ) aw,
Y 0
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These are well defined for ¢ > 0.

LEMMA 1. For any meven, a < §,i=1,2,3

E(J(x,T,y,¢) — J(x', T", v, ¢ "
(2.4) (=, T,v,8) — Ji( Y, €))

< l(x, T,v,6) — (2, T, v, &),
uniformly on each
E,= {x,2,T,T" € {|lyl < n}, v,y €[0,1], ¢, ¢ € (0,1]}.

Using this lemma with the multidimensional version of Kolmogorov’s lemma
(Meyer, 1980) we find

(2'5) IJL(x’ T’ Y 8) - Ji(x” T” Y” 8/) I < cw|(x, T’ Y E) - (x’, T” Y” 8/) Ia

for all rational points in E,. In the case of J; and J,, which are continuous in
E,, (2.5) must then hold for all points in E,. From this we see that the ¢ » 0
limit of J; and o, is jointly continuous — but K ¢(x)1 K(x) for all x so that by
the monotone convergence theorem

(2.6) lin})Ji(-,s) =J(-,0), i=1lor2.

The stochastic integral J; is in any event defined only almost surely — so if (2.5)
holds for rational points in E,,, we can find a version of <J; with (2.5) holding for
all points in E, (including ¢ = 0, ¢’ = 0).

In particular we can interchange the ¢ — 0, y — 0 limits in all our J;, which is
precisely what is needed to justify the considerations of Section 1.

ProoF oF LEMMA 1. We first consider the easiest case Jy(x, T, €). Of course,
we have

E(Jy(x, T, &) — Jy(x', T, &))" < cE(Jy(x, T, €) — Jy(x/, T, &))"
(2.7 +cE(Jy(x', T, e) — Jy(x', T, &))"
+cE(Jy(x', T, &) — Jy(x', T, &))",
We use the identity

—&(|lpI*+1)/2
(2.8) K¥(x)=2 / erel d?p
R? Ip|® +1

to rewrite

e—epP+1)/2

T .
= ip(x-W)/2_____ g2
(2.9) Jy(x,T,¢) 2[0 fRQe SErT s
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Using this, the first term in (2.7) becomes
E(Jy(x, T, e) — Jy(x’, T, €)™

e—«Ip'P+1)/2
=9m ezp X _ etp ex'y___
(2.10) f[o T]'"—/R‘“" I- 1( ) P! +1

xIE(exp[i ﬁ p- VVSD dsdp.
=1

Let 7 denote a permutation of {1,2,...,m}; and A(7) = {(83,..., 8,,)|8,) <
Sp+1))- On A7)

(2.11) (exp[ Y pt- ]) = exp[— §1|u’|2§,/2],

where

(2.12) u'= ij, 5= Saty — Sai-1)-
Jj=1l

In (2.10) we first use the bounds, for any a« < 1

(2.13) le??* — e *| < ¢ | p|¥x — x7|*
then integrate ds, using
n 5 C
2.14 e Uds < —;,
(2.14) -’;) 1+ 02

to bound (2.10) by
E(Jy(x,T,e) — Jy(x', T, €)™

(2.15) < dx = 2" /. mflllp’l“(l +1pY7) (1 + ul?) " dp
< clx — x’|*™,
since
L TR+ 1917) 7+ ) do
(2.16) ”

mpe N\ hoy-2
S(fg(l+|p,|2)2dp) (/}]1(1+|u|) dp
<o ifa<l.

[By (2.12) the u’ form a linear set of coordinates for R?™]
The second term in (2.7) is handled similarly. We use

|e71Pfe — e < ¢ (| pIle - &)

in place of (2.13).
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To handle the third term in (2.7) we return to (2.10) and bound
m
[ exp[— )3 |u’|2§l/2} ds
[T, T’'1™NA(w) -1

m 1/q
< |T = T |\™/9 l
<|T- T (f[o,,,]mm(,,> [ a L |sl/2] )

m _ 1
<cT - T'|'"/‘1']_[ (1 + [uf?) " if = + i 1.

From (2.16) we see that the third term will be bounded if 1/q > },i.e,1/q’ < 3.
This proves Lemma 1 for oJ;.
Writing

—e(|pI*+1)/2
J(xflya)—2/ // ip-(x— (W, W, &
2 b b R2

2
lp|® +

and arguing as above, we see that it suffices to bound

d?pdsdt

@) [ ., zm[ﬂ(l + |p’|2)‘1]E(exp[il§1p’- (W, - W)]) dp ds dt.
Let

r,=s;, Tigm =1L
Let now 7 be a permutation of {1,...,2m} and let

A(y) = {(rl’ r2m)|rw(l) = w(l+1)}
On each A(7)

)

(exp[ S ot (W, - W)]) =exp[—2':‘=fl|ﬁ’|2f~l

where 7, = w@+) ~ T and p’ is some linear combmatlon of the p’. Each p'
must appear in at least one p’—let v’ be the first p’ containing p‘. Then
integrating out dsdt and using (2.14) we see that (2.17) is bounded by

m
cof TT+1p'2)7"(1 +10') " dp < o,
R™ =1
using Cauchy-Schwarz as in (2.14) since the set {¢',..., v™} forms a nonsingular

set of coordinates.
To handle J; we use the well-known inequality [see Ikeda and Watanabe

(1981), page 110]
E((/ftth)m) < cm((/f; dt)m/2)
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to see that it suffices to bound

L]WWQJMMUHpH
exp[ rr-(w,, - s,)])dpdgdt

and again we need only bound

[ TR + 1Y) (1 + 10%7) " dp
R*™ =1

/H 3@ (/nu+m>”2)”<w

This completes the proof of Lemma 1. O

(2.18)

IpI
1+|p
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