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PARTITIONING GENERAL PROBABILITY MEASURES!

BY THEODORE P. HILL
Georgia Institute of Technology

Suppose p,,..., p, are probability measures on the same measurable
space (2, #). Then if all atoms of each p; have mass a or less, there is a -
measurable partition A,,..., A, of @ so that p,(A;) > V() for all i=
1,..., n, where V,(-) is an explicitly given piecewise linear nonincreasing
continuous function on [0, 1]. Moreover, the bound V, (a) is attained for all n
and all a. Applications are given to L, spaces, to statistical decision theory,
and to the classical nonatomic case.

1. Introduction. The underlying space of any nonatomic probability mea-
sure may always be partitioned into n measurable subsets each having measure
exactly 1/n. More generally, if there are £ nonatomic probability measures on
the same space, Neyman [6] showed there is a measurable partition of the space
into n subsets so that each probability assigns measure exactly 1/n to each
subset, thereby solving Fisher’s “Problem of the Nile” [4]. In the case of n
continuous probability measures, Steinhaus, Banach and Knaster [7] gave a
practical method for determining a partition into n sets with the property that
the ith measure of the ith subset is at least 1/n. Extensions of these results,
many using Lyapounov’s convexity theorem [5] (“ the range of every nonatomic
finite-dimensional, vector valued (finite) measure is convex (and compact)”’) and
generalizations were obtained by Dvoretzky, Wald and Wolfowitz [2] and Dubins
and Spanier [1].

In general, all of the above-mentioned results fail if the measures have atoms,
and it is the purpose of this paper to determine some best possible partitioning
bounds as a function of the maximum size of the atoms.

Throughout this paper (2, #) = (R, Borels), but any measurable space ad-
mitting nonatomic probability measures will do; this particular choice is mainly
for notational convenience since a measure p. on (R, Borels) is nonatomic if and
only if p({x}) = 0 for all x € R.

DEFINITION. For each a € [0,1],
#(a) = {p: p is a probability measure on (2, #)
with p({x}) < aforall x € Q}.

DEFINITION. V,: [0,1] - [0, '] is the unique nonincreasing function (see
Figure 1) satisfying

(1) Vi(a)=1-k(n-1a
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F16.1. Graphs of V, and V;.

for
a€[(k+ D (k+1)n-1)"" (kn—-1)7"],
for all 2 > 1.

The main results of this paper are the following two closely related theorems.

THEOREM 1.1. Let p € $(a). Then for each n > 1 there exists a measurable
partition {A;}}_, of Q satisfying
(2) p(A;) 2 Vy(a), foralli=1,...,n;
moreover, V, is the best possible bound in (2), and is attained for all a.

THEOREM 1.2. Let p,,..., p, € P(a). Then there exists a measurable parti-
tion {A;}}_, of Q satisfying ' :

3) pi(A;) = V(a), foralli=1,...,n;
again, V, is the best possible bound in (3), and is attained for all a.

REMARK. Theorems 1.1 and 1.2 are “dual” in the following sense: the bound
(2) in Theorem 1.1 follows from (3) of Theorem 1.2 by taking p, = -+ = p,,
whereas the sharpness of the bound (3) in Theorem 1.2 follows similarly from
the sharpness of (2) in Theorem 1.1.

A “cake-cutting” interpretation of Theorem 1.2 based on a description by
Dubins and Spanier [1] is this. Suppose a cake £ is to be divided among n
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people whose values {u;}"., of different portions of the cake may differ [here
p;(A) represents the value of piece A to person i]. Then if no one values any
crumb (indivisible portion of the cake) more than a, the cake may divided so
that each person receives a piece he himself values at least V,(a), and in general
it is not possible to do better.

ExXAMPLE 1.3. Suppose three people must divide a cake, and each agrees that
no crumb is worth more than 10~3 the value of the whole cake. Then there is a
way of cutting the cake into three pieces, and giving each person a piece, in such
a way that each person values his own piece at least V,(a) = V;(10~3) = 83 /250
and in general it is not possible to do better.

(A similar interpretation of Theorem 1.1 is also possible. Suppose a cake of
total volume (or weight) one is to be cut into n pieces so that the smallest piece
has as large a volume as possible. If each atom (or molecule, or crumb, or other
indivisible piece) has volume a or less, then in an optimal partitioning the
smallest piece has volume at least V,(«), and in general this is the best possible

bound.)
Intuitively, it is clear that the nonatomic case is the limit of the general case
as the maximum atom size approaches zero.

COROLLARY 14 ([1], [2],[7]). Suppose p,,..., i, are nonatomic measures on
(R, F). Then there exists a measurable partition {A;}_, of & so that
pi(A)=n"t, foralli=1,...,n.
This paper is organized as follows: Section 2 contains the proof of Theorem
1.1; Section 3 the proof of Theorem 1.2; Section 4 further observations about the

upper bound function V,(a); and Section 5 contains several applications to L,
function spaces and statistical decision theory.

2. Partitioning a single probability measure. The main objective of this
section is to prove Theorem 1.1. Throughout this paper, II, will denote the
collection of %¥measurable partitions of Q, where ¢ is a sub-o-algebra of %, and
o(%) will denote the o-algebra generated by %.

DEFINITION 2.1. Suppose p is a probability measure on (2, % ). Then
Uy(s) = sup{ min {u(4))}: (AP, € I}
1<i<n

and .
U,(a) = inf{U,(p): p € #(a)}.

‘LEMMA 2.2. Fix a € (0,1]. For each B € P(a) there exists a purely atomic
i € P(a) having at most 2a~" atoms, and satisfying

(4) U(p) <U,(p), foralln>1.
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ProoF. The idea of the proof is simply that collapsing mass to atoms
reduces the partitioning options available, and thus reduces U,; for completeness
the first step will be given in some detail. Let A = {x,, x,,...} C © denote the
atoms of p and A°=Q\A. If p(A°) >0, let A, A,,... be a measurable
partition of A° satisfying 0 < p(A;) < « for all i, which is possible since p is
nonatomic on A°€. For each i, fix y, € A, and let p, € #(a) be the purely atomic
probability measure defined by 4,({2;}) = p({x,}) and p,({%}) = p(A,). Since
restricted to o({x,,, A;, {x,}, A,,...) is isomorphic to [ restricted to
0({x1}, {yl}’ {x2}’ {y2}7 . -), a-nd Since (recall {xl}’ Al: {x2}’ A2’ ... are distint)
o({x,}, A, {x3}, Ay,...) CF, it follows that U,(p,) < Uy (p) for all n > 1.

The next step is to replace p, by a purely atomic measure with each atom
having mass at least a27! (and hence having at most 2a~! atoms). This is done
by first combining the tail {xy}, {¥n}, {*N+1}s {IN+1})s--- into one atom (where
Y2 vlp({x}) + pi({5)] < a) to reduce to a finite number of atoms, and then
by repeatedly combining any two atoms with mass < a/2.0

LEMMA 2.3. For each a € [0,1] and n > 1, there exists a p € #(a) and a
partition {A;}!., € I14 satisfying

(5) Ula) = p(A;) < p(4;) < -+ < p(4,).

PROOF. For a = 0 (which will not be needed in this paper) the result is an
easy consequence (taking g, = --- = p,) of Lyapounov’s convexity theorem [5].

Fix « € (0,1] and % > max{rn,2a"'}, and choose % distinct points x,,..., x,
in Q. By the definition of U,(«) and Lemma 2.2, U,(a) = inf{U, (p) € P(a, k)},
where 97’(a, k) = {(p € P(a): TE p({x;}) = 1). Since P(a, k) is compact, and
since U, is a continuous function of p € #(a, k), mf{ (1) p€ P(a, k)} is
attamed by some fi € #(a, k). Since the support of i is a finite_set (subset of
{x1,...,x}), it is clear that there is a partition {A;}.; € I satisfying (5) with
i in place of p. O

ProoOF oF THEOREM 1.1. Fix n>1 and k> 1 and let a € I(n, k), where
I(n, k) =[(k+ Dk~ Y(k+1)n—1)"Y(kn—1)"1] C (0,1).

It first will be shown that on I(n, k), V, = U,. By Lemmas 2.3 and 2.2 there
exists a purely atomic measure p € #(a) with at most 2a~! atoms, and a
partition {A;}7., € II4 satisfying (5).

Suppose, by way of contradiction, that p(A;) <1 — k(n — 1)a. Since p is a
probability measure, p(U”,A,) > k(n — 1)a, and since the {A,} are disjoint,
this implies that for some j €.{2,3,..., n}, p(A;) > ka. Since p is purely atomic
and in #(a), A; must contain at least k+ 1 p-atoms. Let {x;} € A; be the
smallest atom in A (which exists since p has only a finite number of atoms) and
observe that

(6) l“‘(Al U {x]}) > u(A,).
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Since {x;} is the smallest atom in A;, and there are at least k£ + 1 atoms in
A, this implies

(1) w(A;\ (%)) 2 k(k+1)"'p(4;) > k*(E+1) 'a 21— k(n-1)a,

where the last inequality in (7) follows since a > (k + 1)k~ [(k + )n — 1]7 L.

If p(A,) > p(A,), then together (6) and (7) contradict the assumed optimality
(5) of p and the partition {A;},; otherwise [i.e., if p(A,) = p(A,)], repeat the
procedure with A,, etc. Since there are only a finite number of sets in the
partition, eventually such a contradiction is reached. This implies that U,(p) >
V,(«), and hence that U, > V, on I(n, k).

To show Uy (a) < V,(a),let i € #(a) be a purely atomic measure with kn — 1
atoms of mass a, and one atom of mass 1 — a(kn — 1). [Since a € I(n, k), it
follows that 0 < 1 — a(kn — 1) < a.] Clearly an optimal partition for i has

fi(A)=(k-1)a+1-a(kn—1)
=1-k(n—-1)a<ka
= i(4;) = - = i(4,),
which shows that U, = V, on I(n, k), and in fact that V,(a) is attained (by fi).
To complete the proof, observe that the value of V, at the left endpoint of
I(n, k) is the same as the value of V,, at the right endpoint of I(n, £ + 1), that
is, 1-k(n—-Dx=1—-(k+1)(n—-1)y for x=(k+ Dk '[(k+ n-1]""
and y = ((k + 1)n — 1)~. Then since V, was defined to be nonincreasing, it

must be constant on [0, 1]\ U¥_,I(n, k).
That V,(0) = n~! and V(1) = 0 are also attained is easy. O

3. Partitioning several probability measures. The main objective of this
section is to prove Theorem 1.2; the first two results (Lemma 3.2 and Proposition
3.3) concern stochastic matrices and are purely combinatorial in nature.

Throughout this section, the following notation is used:

&, 1 1s the set of n X k stochastic matrices;

n

IT, is the collection of partitions of the set {1,2,..., k}; and
P, is the set of permutations of {1,2,..., k}.

DEFINITION 3.1. Suppose A = (a; ;) €%, - Then

W) = max{ min { ¥ a, s ()T € L.

1<i<n JEJ,

LEMMA 3.2. For each A= (a;;,) €Y, , there exist m€ P, and j€
{1,..., n} satisfying both

® Wi(4) = min (0, )
and
9) Q; qy = Mmax {ak,ﬂ(j)}'

1<k<n
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PROOF. Since A € ¥, ,, it is easy to see that
w,(A) = max{ 1?32,,{““’ ai)): TE Pn}. .

Let #* € P, satisfy (10) and (11),
(10) W,(A) = 1mjn {ai,ﬂ*(i)}’
<i<n

n n
(11) 2 Qi priy = max{ Z Qi) TE Pn»lm.i;ln {ai, w(i)} = W;z(A)}
i=1 i=1 <t

Renumbering if necessary, assume #*(i)=1i for all i=1,...,n, and
W, (A)=a,,<ay,< -+ <a, , It will now be shown that

(12) a;=

;= max a, ;, forsomeje {1,...,n},

1<k<n
which, with (10), will complete the proof.

To establish (12), suppose by way of contradiction that foreach j € {1,..., n},
a;; < max, _; (@, ;}- Then thereexist i}, iy, ..., i, € {1,..., n} satisfying (with
ig:=1)

Wi(A) =a, ; <a;,
(13) @iy < @i
aiu-l»in—l ain’in—l.

Since i,,...,i, € {1,..., n}, the ordered (n + 1)-tuple (i, i,,..., i,) contains
a primitive cycle, that is, there exists j € {0,...,n — 1} and k € {0,...,n — j}
such that i;,i;,,,...,i;,, aredistinct and i; =i, , ;.

Next consider the permutation 7 € P, defined by #(i;, 1) = i}, for m =
0,1,...,k, and = 7* otherwise. By (13),

2a,,= W,(A),

Uiema1s T(Ejama1) = aij+m+1:ij+m > aij+m,ij+m
for m = 0,1,..., &, so the definition of # implies that W,(A) < min, _; . ,a; s
and hence by the definition of W,(A) that
(14) W;(A) = min a; #(i)*
l<i<n

But (13) and the definition of # also imply that ¥_,a; ;, > L_1a; .«
which, with (14), contradicts (11). This completes the proof of (12), and the
lemma. O

The next proposition states that there is always an optimal partitioning of a
stochastic matrix in which the “cooperative value,” that is, the sum of the
partition-assignment values, is at least one.

ProrosITION 3.3. For each A = (a; ;) € S, ,, there is a partition {J;}]_, €
I1,, satisfying both

(15) W,(A) = min { X ai,j}

1<i<n jed:
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and

n
(16) Y Ya, ;=21

i=1j€d;

ProoF. Fix A =(a;;) €S, ,. By the definition of W,, there exists a
partition {J;}7, of II , satlsfymg (15). f m>n,let A = (@, ;) €8, , be the
matrix defined by d; ; = X< ;@; 1, and observe that both

(17) W,(A) = W,(4) = min &,
<i<n
and
(18) Ea” Z 2 a
i=1 i=1jed;

By (17) and (18), it is enough to establish the proposition for n X n stochastic
matrices A (if m < n, simply add n — m columns of zeros to A). The proof will
proceed by induction on n; for n = 1 the conclusion is trivial, so assume it holds
for1,2,...,n—1andlet A =(qa;;) €S, ,.

By Lemma 3.2 there exists # € P, and j € {1,..., n} satisfying (8) and (9).
Reordering if necessary, assume j = n = m(n), and observe that by (9) the
(n —1) X (n — 1) matrix A obtained from A by deleting the nth row
and column is substochastic with row sums X?"la;, ;>1-a, , for all i=
1,...,n— 1. It follows easily from the 1nduct10n hypothesns that there exists
7 € P  _1 satisfying both

(19) m—l(‘&) mln {al ﬂ(t)}
l<i<n-1
and
n—-1
(20) X e pm=zl—a,,
i=1

Defining # € P, by #(i) = #(¢) for i < n and #(n) = #(n) = n, (8) and (19)
together imply that

(21) vv;t,(A) = min{m—l(A')’ an,n} = m.in {ai, ﬁ(i)}:
1<i<n
and (20) and the definition of # imply that
n
i=1

The induction conclusion then follows from (21) and (22) by taking J; = {#(i)}
fori=1,...,n. 0

Not all optimal partitions [partitions achieving W, (A)] satisfy (16).
* EXAMPLE 34. Let

03 03 04|

03 03 0.4]
03 04 03
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The partition {J;} = {i}, i = 1,2,3, satisfies
W(4)=03= min { T a, |
1<i<3 jEe’;
= min{al,v Qs ;s a3,3},

but Z?=IZjEJiai,j = 0.9 < 1.

ProorF oF THEOREM 1.2. That V, (a) is attained for all a follows from
Theorem 1.1 by taking p, = p,= -+ =p,,.

Fix a € (0,1] and p,,..., 8, € #(a). By an argument directly analogous to
that in the proof of Lemma 2.2, it may be assumed without loss of generality
that {u;}?_, are purely atomic each with at most m < 2na~! atoms. In other
words, it suffices to show that if

A=(a;;)€S,, and q; ;<a

(23) T

foralli=1,...,n and j=1,...,m,
then
(24) W(A) 2 V().

Fix A satisfying (23). By Proposition 3.3 there exists a partition {J;}7., € II,,
satisfying (15) and (16). To prove (24), fix n > 1, £ > 1, and

a€I(n k) =[(k+1)k (k+1)n-1)"(kn-1)""].

Suppose, by way of contradiction, that ;. ;a; ; <1 — k(n — 1)a. By (16),
X! oY jcg@; ;> k(n—1)a, so for some i€ {2,...,n}, ¥;c;a; ;> ka. The
argument now proceeds as in the proof of Theorem 1.1, the key difference having
been the use of Proposition 3.3 (which is trivial for the p, = p,= -+ =p,
context of Theorem 1.1). O

4. Several remarks concerning V, (a). The following proposition is an
easy consequence of the definition of V().

PROPOSITION 4.1. For each n > 1, V,(-) is continuous and nonincreasing on
[0,1], piecewise linear on (0,1], and satisfies

(i) V.(0)=n7t, V(1) =0;
(i) V(a) < Vi(a), i Vy(a) >0, and
Vori(a) = Vy(a), if V(a) =0;
and '
(iii) V(a)=n'—(n-1)n""a.

The critical points at the left-hand endpoints of the intervals where V, is
constant are local minima. For example, V, has local minima at 1/3, 1/5,
1/7,...; and for the first of these, one interpretation is that in the case of
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bisection (n = 2), atoms of mass exactly 1/3 are locally the worst—in general
atoms slightly less than or slightly greater than 1/3 allow better partitions.

5. Applications to L, spaces and statistical decision theory It is easy
to translate the settings of Theorems 1.1 and 1.2 to the theory of L, spaces, the
next theorem is the analog of Theorem 1.2.

THEOREM 5.1. Suppose \ is a Borel measure on R. If f,, fy,..., f, € Ly(A)
satisfy

G f;,z0,i=1,...,n
(i) [f,dA=1,i=1,...,n; and
(i) A{x}f(x) < a, forallx €R,

then there exists a measurable partition {A;)*_, of R satisfying
/ f,dA >V, (a), foralli=1,...,n
4

Moreover, this bound is best possible, and is attained for all a and n.

The final theorem is an application of Theorem 1.2 to statistical decision
theory which is related to similar applications of partitioning inequalities in [2]
and [3].

Suppose there is an Q-valued random variable X which has one of the known
distributions p,,...,p, (but it is not known which one). A single observation
X(w) of X is made, and then it is to be guessed from which of the distributions
Pys---5 b, the observation came. A decision rule is simply a (measurable)
partition {4}, of @ (“if X(w) € A;, then guess distribution p,;”). A minimax
decision rule is a partition which attains the “minimax risk” R given by

(25) R(ps,- -, n,) = inf{ max P(X & Adist(X) = p.): {41, M.
Since
R(py oy ) = inf{ max {1 - pi(4)}: (A}L, € Ty
=1 - sup{ min {s(4))}: {4)7, € ILs),
l<i<n
Theorem 1.2 has the following immediate consequence.

THEOREM 5.2. Let p,,...,pn, € P(a). Then
R(l"la'_"’ ra) <1 = V(a),
and this bound is attained for all a and all n.

A similar application (see [2]) can also be made to the theory of zero-sum
two-person games.
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