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NONCENTRAL LIMIT THEOREMS AND APPELL
POLYNOMIALS

By FLORIN AVRAM AND MURAD S. Taqqu!
Purdue University and Boston University

Let X; be a stationary moving average with long-range dependence.
Suppose EX; =0 and EX?" < oo for some n > 2. When the X; are
Gaussian, then the Hermite polynomials play a fundamental role in the study
of noncentral limit theorems for functions of X;. When the X; are not
Gaussian, the relevant polynomials are Appell polynomials. They satisfy a
multinomial-type expansion that can be used to establish noncentral limit
theorems.

1. Introduction. Let G(x) be an entire function, X, a random variable and

let
x=X¢J.

Surgailis (1982) considered a strictly stationary moving average sequence
Xy, X;, X,,... with EX; = 0 and moments of all order that exhibits a long-range
dependence. Assuming some additional analytic conditions on G, he proved that
if e, = 0 for £ =0,1,...,n — 1, with e, # 0, then ZI¥]G(X,), properly normal-
ized, converges weakly to the Hermite process Z,(t) (see Section 3 below for
details).

We shall focus on the simplest function P,(x) that is in the domain of
attraction of Z,(¢), i.e., a function for which e, = 0 for all 2 # n, and which is
‘ normalized to satisfy e, = n!. This function is a polynomial of order n, with
leading coeflicient 1, and it can be defined recursively by

(1.2) Pi(x) = nP,_y(x), Pyx)=1,
(]"3) EPn(X) = 80,n9

where X has the same distribution as X,,. The function is known as the Appell
polynomial (of order n) associated with the distribution of X. It is also known as
a generalized power, because it shares many properties with the usual powers.
[The Appell polynomials become the powers P,(x) = x™ when X = 0.]

An important particular case, and in fact the first for which limit theorems of
the type considered by Surgailis have been established, is X ~ N(0,1) [see
Taqqu (1975) and (1979) and Dobrushin and Major (1979)]. When X ~ N(0, 1),
the Appell polynomials reduce to the Hermite polynomials and in that case

k

(1.1) e = E| —56(x)
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768 F. AVRAM AND M. S. TAQQU

EP,(x)P,(x) = 0 for n # m. The polynomials P,, however, are in general not
orthogonal.

Some of the properties of the Appell polynomials are reviewed in Section 2.
We show that they satisfy a multinomial-type expansion and we use that
expansion in Section 3 in order to provide a convenient alternative approach to
Surgailis’ result concerning the convergence to the process Z (t). For P,(X;) to
satisfy such a noncentral limit theorem, it is not necessary to require that all of
the moments of X; be finite.

2. Wick products and Appell polynomials. Let X, X,,... be random
variables. Following Surgailis (1986), define the Wick powers (X, X,,..., X},)
inductively on % as follows:

Start with (X;, X,,..., X;) =1 for 2= 0. Then for any £ > 0,
(X, X,,..., X;,) is defined recursively for & = 1,2,..., by

(2.1) E(X,,...,X,) =0
and

Xy, Xp)
(2.2) _la_)?__ = (X0 Xi 1, X Xiny e, X3,

where X ; denotes the absence of the X; variable. The Appell polynomials P,(x)
are then defined by

(2.3) Py (X)=P(X)=(X,...,X).
n times
Relations (1.2) and (1.3) are an immediate consequence of (2.2) and (2.1).
The Wick product (X, ..., X, ) is well defined if the joint moments ETI; . 4 X,
.exist for all A € {1,..., 2}. When considering (X, ..., X,), we shall implicitly
suppose that the corresponding joint moments exist.

It is easy to see that (X,..., X,) is a symmetric multilinear form of order %,
which involves the random variables X,..., X, and their joint moments up to
order k. The first two Wick products are

(Xy) = X, - EX,,
(X, Xy) = X, X, - X,EX, - X,EX, + 2EX,EX, — EX, X,.

Denote by X’ the sequence (X, X,..., X) of length n. We start first with a
factorization lemma for Wick powers.

FACTORIZATION LEMMA. If X,, X,,..., X, are independent random varia-
bles, then '

(2.4) (X{™, Xim oo, Xy = (XM )X o (X)),
PRrOOF. For the sake of brevity, we shall prove the lemma in the case where

both the generating function (defined below) and the moment generating func-
tion Eexp(Xk.;s;X,) exist and have a positive radius of convergence. The result
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holds even if not all moments exist and this can be verified either by induction or
by using the algebraic interpretation of generating functions [see Niven (1969)].
Let A = {(1,..., k}. Then the generating function of (X{™,..., X;") is

. 2sp s
(2.5) ou(s;, X;,i€A) = E P '(X{ Loy XY,
Nyyeee, np=0 "°1° k*
It satisfies
eXp(Zfﬂsixi)
2.6 s X, LEA) = .
26) #also %10 € A) = FlopTE 5,X,)
To see this, note that (2.1) and (2.2) yield
a
(27) Ex_q)A(sia Xis i€ A) = 51¢A(3i, Xiy i€ A)
1
and
(2.8) E¢A(3w xi, i (=] A) = 1.
Then integrate (2.7) to get
k
O4(s;,x;,i €A) = exp( Y sixi)C(sl,..., s;)
i=1

and use (2.8) in that last relation to determine C(s,,...,.s;). This proves (2.6).
Now, if A = {1,..., £} has a decomposition A = A, U A, with {X,, i€ A}
and {X;, i € A,)} independent, then it follows from (2.6) that

ba(si,x;, i€ A) = ¢'Al(si’ X, 1€ A1)¢Az(si’ x;, i €A,).
Identifying the coefficients of (sj* - - sg*)/(n,! - -+ n,!) yields the result. O

NOTE ABOUT GENERATING FUNCTIONS. If the generating function does not
have a positive radius of convergence or has undefined coefficients, it cannot be
interpreted as an analytic object. However, it can be defined as a formal series,
i.e., an algebraic object which allows differentiation, exponentiation, etc. The
algebraic structure of formal power series is isomorphic to that of sequences
endowed with the convolution product, each series corresponding to the sequence
of its coefficients. Thus, equality of two formal power series is interpreted as the
equality of their corresponding coefficients. If the coefficients are defined only up
to some finite M, then one works with sequences of M elements only.

In the following, we gather some properties of the Appell polynomials
P(X)=<(X,...,X)=(X'") which are scattered in the literature [see, for
example, Rota (1975), Feinsilver (1978) and Roman (1984)].

FACTS ABOUT APPELL POLYNOMIALS.
* (1) In view of (2.6), the generating function for the Appell polynomials P(X),

o0

oe(s,2) = ¥ R (),

n=0 ""*
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satisfies
sx

= pSx—%(s)
sX e ’

¢P(s’ x) = E

where ¢,(s) is the generating function of the cumulants «, of X, i.e.,

|

=17 n=0
2) If m, = EX™, and m, = EX = 0, then (1.2) and (1.3) yield

Py(x) =1,

P(x) =x,

Py(x) = x* — my,

Py(x) =x® — my; — 3m,x,

P(x) =x*— 6myx? — dmyx + 6m2 — m,,

Py(x) = x° — 10m,x® — 10mgx? + 5x(6m2 — m,) + 20m,m, — m.
(3) One has

Poo(x) = 2P(%) = ¥ (7 JoncisPulx)

k=0
and
xt= 3 (Z)mn—kPk(x)‘
k=1

(4) If X ~ N(0,1), then all the above relations reduce to the familiar relations

characterizing tzhe Hermite polynomials. The generating function becomes
9nl(s, ) = e */2,

We now establish a multinomial-type expansion.

THEOREM 1. Let M > 1 be an integer and let {\ )., be a sequence of real
numbers satisfying 2. ,A\2 < co. Let

=1
X = Z A

where the ¢; are i.i.d. with E|£M < co. [If mﬁmtely many of the \,’s are not
zero, assume also E£;=0 and E{M < «0.] Let P(x) and Q,,(x), n<M,
denote the Appell polynomials associated with X and ¢, respectively. Then

P(X) = z(pl,.’.‘.,p,)T,,
(2.9) ’

=X Z @, (£,)-

 SURRR JLpe 5| ’
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Here ¥, runs over all # = (p,,..., p,) where p,,..., p, are integers satisfying
1<p,< ‘- <pyandp,+ - +p,=n. The sum L{;, runs over all l-tuples

('il,..‘., i;) such that i; # i, for all j # k, and, in addition, if p; = p;.,, then
i<,
J J+1

EXAMPLE.

3
PyNgy + Aoky + Agks) = L NQs(5) +3 X ANI(£)@:(8))

i=1 i#J

+6X, 050 3@1(£1)@x(£2)Qs(£5).
Here « is in turn (3), (1,2) and (1,1, 1).

Proor. We consider first the finite case
N
Xy = )> A
i=1
and we let Py , denote the nth generalized power associated with the distribu-
tion of Xy. The multilinearity and symmetry of the Wick product imply

PXn,n(XN) = <XN’ ceey XN>

n times

n ’
= Z(pl,...,pl)lei)ll e Afy(&;’l""’gil’gizvﬂ’giz’*”’gi,’°°°a§i,>-
ki @) [
P, times P2 times p; times

Since the £; are independent, we have by (2.4)
<£i,""’gil’giz””’giz"“’ £i1,000,£il>

N ——

P, times D2 times p; times

= <£il""’£i1><£i2’”°’£i2> <£i,’"°"§i,>
e N — e D
p; times D, times p; times

= Qpl(gl)Qp2(£2) e Qpl(gl)’
and thus
(2.10) Py, o(Xy) = E(pl,.'.l., pl) Z)' jl—[l}\P!'Qp.(gij).
L () =
iyee, G<N

We now show that expression (2.10) continues to hold as N — o if E£; =0
and E¢2M < oo.
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Note first that X, is a martingale in N, and for any even & < 2M,

N k
EX} - E( 5 x,.zi)

i=1
N B
(2.11) = k! Z —E(g )P
it - +py=k =1 D)l
DPiyeees pN20
< k!a*E|¢|*1,,

where a = max, _, X% |A;?, and [, is the number of partitions of the integer
k. Thus, the martingale X, converges almost surely and in L*,

It is sufficient to check that both the left-hand side and right-hand side of
(2.10) converge a.s. as N — o0. Focusing on the left-hand side, we note that since
P, = Py , is a polynomial in the n + 1 variables EX, EX?,..., EX" and X,
then the random variable Py Xy) converges as. as N > oo to the random
variables Py ,(X). As for the nght-hand side of (2.10), note that

Z AP ... }“ip,'Qpl(‘Eil) Qm(gil)
il,..ff)il,sN
are martingales in N. A computation similar to (2.11) shows that they are L2
bounded since E{?M < oo and n < M. Therefore the right-hand side of (2.10)
also converges a.s., and this concludes the proof. O

3. Noncentral limit theorem. Let n > 1 be an integer and let {£;} be an
ii.d. sequence of random variables with E{, = 0 and E¢{?" < 0. Let 1< B <
11+ 1/n), L(x) be a slowly varying function as x — oo, and consider the
moving average

E
X, = Z Cr—ibis

i=—o0
with
c, ~ kPL(k)
as k& — o0. Such a moving average is said to exhibit a long-range dependence. Let

»+ denote convergence in the CADLAG space D[0,1] endowed with the
topology induced by sup-norm convergence.

-

THEOREM 2. Let P, be the nth Appell polynonual associated with the
distribution of X, and let
H=1-n(B-1).

Then as N — o0,
[N¢]

W(N)ZP(X")_’ + Z,(2),
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where Z (t) is the Hermite process defined by
Z,(t) =n!
n( ) " '/'/;—oo<ul<u2< s <u, <t}

< J{ [T {0 =) ) do) dB(wr) dBus) - dB(u,)
0, =1
and B(-) is standard Brownian motion.

Theorem 2 follows from Surgailis (1982), but it can also be understood in
terms of the multinomial formula as follows:

STEP 1 (multinomial formula). Let
Tk,?r = Zcfl—il e ck l[Qpl( 1) ) Qp[(gll)
@)
and let
UM =n! Y Cr—iy *** Cr—ifi, " &y

y<---<i,

be the T}, , that corresponds to the = given by p, = --- = p, = 1. Denote this
o as 7w = (1,...,1). The multinomial expansion formula (2.9) becomes

n n
P(X,) =Um+ X (pl,...,p,)Tkw
a+(1,...,1)
STEP 2 [Surgailis (1982), Lemma 5].
[Nt]

(3.1) Z, o(t) = NN > z U™ —,. Z,(t), asN > co.

Surgailis establishes only convergence of the finite-dimensional distributions.
However, weak convergence in the w* sense can be easily established by proving
that

E|Z, n(t,) — Zn,N(tl)'la_" < M|t, — t,|HE@,

where 7 is small enough so that H(a — ) > 1 and M is a constant. For more
details, see Fox and Taqqu (1985), Section 5.2.

STEP 3. Using computations similar to those in Lemma 2 of Surgailis (1982),
we get

(3.?:) E[ % T,e’,,]2 =O(N),
k=1

for all # = (p,,..., p)) With p; <p, < -+ <p,and p, > 2.
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Indeed, since L;c? < o0 and E£2" < oo, it is enough to prove that as N — oo,

N N
(83) F= X ( ) g P - - |Ck—i,|p')( )> lep—i, [Pt =+ |Ck—i,|p"’) = O(N),
k=1 k=1

(@),
for every (o, ..., 0;) which is a permutation of (1,..., /). But

N 2
’
F< ) [m;ax( > g [Por =+ |Ck—i,|p"’)]

@),

zmax(zck . )(z n)

@ % \k=1 k=1J=1

where j, is an index such that Py, = 2, and

[Py forjti
Bo; = Py, — 1, forj=j,.
Assume now w.l.o.g. that Z-c-2 < 1 (and hence |¢;| < 1). Then, we also have

N 1
FsT'T [eys ¥ (Sa) <.
@iy k=1J=1 k=1" i
and thus (3.3) holds.
Since H > 3, relation (3.2) implies

1
N”L”(N) Z Thn 20,

in probability as N — oo, and therefore P,(X,) satisfies the same noncentral
theorem (3.1) as U{™. This establishes Theorem 2.

CoroLLARY. If a,,a,,,...,a, are real numbers with n+ 0, then
X ntnPu(X,), a,P(X,) and a, U™ all satisfy the same noncentral limit
theorem.

REMARKS. (1) For more information about the limiting process Z,(¢), see
Taqqu (1981). (2) Recently Giraitis (1985) and Giraitis and Surgailis (1986) have
used Appell polynomials to establish convergence to the finite-dimensional
distributions of Brownian motion, in the case where the random variables
X,, X,,... are weakly dependent.
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