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A LARGE DEVIATIONS PRINCIPLE FOR SMALL
PERTURBATIONS OF RANDOM EVOLUTION EQUATIONS

By CARoL BEZUIDENHOUT

University of Minnesota

We prove a result for small random perturbations of random evolution
equations analogous to the Ventsel-Freidlin result on small perturbations of
dynamical systems. In particular, we derive large deviations estimates and
indicate how they can be used to prove an exit result. The processes we study
are governed by equations of the form

de*(t) = b(x*(t), (1)) dt + Veo(x*(1)) duw(t),

where x° is already a random process. The results include the case where y is
an n-state Markov process.

In the special case 0 = Id, the proof of the estimates is a consequence of a
generalization of the “contraction principle” for large deviations: We give
sufficient conditions on a continuous function F, which ensure that if {X,:
e > 0) satisfies a large deviations principle, then so does {F(X,, Y): ¢ > 0},
where Y is independent of {X_: ¢ > 0}.

Introduction. In their study on small random perturbations of dynamical
systems, Ventsel and Freidlin [18] start with a system dx°(¢) = b(x°(¢)) dt and
perturb it by adding a small noise term, leading to the perturbed equation
dx(t) = b(x%(t)) dt + Ve o(x%(t)) dw(t). In the special case where o = Id, the
large deviations estimates, which are the essential part of their theory, follow
easily from the corresponding estimates for V& w(-) (Schilder’s theorem [14]) and
the “contraction principle” (stated as Lemma 2.3 below), because, in this special
~ case, x%(+) is a continuous function of Vew(-) (see [16,6]). Various authors,
including Azencott [1], have shown that, in the general case, x%(-) can be
regarded as an “almost continuous” function of Vew(-), and that the large
deviations result still follows from Schilder’s theorem.

This paper has two main aims. The first is to derive results, analogous to
Ventsel and Freidlin’s, for processes governed by equations of the form

(+) dx*(t) = b(x*(¢), y(t)) dt + Veo(x(t)) du(t),

where y(t) is a random process, so that x9(¢) is already random. Such processes,
known as random evolutions, and generalizations thereof, have been studied by
Griego and Hersh [8], Heath [10], Hersh and Papanicolaou [12] and others.

We show that if y(t) is a process which is independent of the Brownian
motion w(t), then, assuming that b and o satisfy certain regularity assumptions,
the solution x%(-) of (*) satisfies a large deviations principle. We give an explicit
. expression for the rate function. In the case where y(¢) takes values in a compact
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set, this rate function has an especially simple form. A precise statement is given
in Theorem 1.6, and proved in Section 5. From the large deviations estimates it is
possible to use Ventsel and Freidlin’s techniques to derive other results, for
example about exit from a bounded domain. We state such a result without
proof, as Proposition 1.10. This exit result has an interpretation as a statement
about systems of partial differential equations. See Proposition 1.13.

The second major purpose of this work is motivated by the first. In the special
case where o = Id, the solution x%(-) of (*) is, for fixed w, a continuous function
(with appropriate topologies) of Vew(:) and y(-). From this, we abstract the
problem formulated in Section 2. The study of this problem is our second main
theme. Although the author’s interest in studying this question was motivated
by its application to (*), it is hoped that the results of Section 2 will be of
independent interest. The most important result in this general formulation is
Theorem 2.15. This is the result which is specialized to yield the large deviations
result for (*) in the special case o0 = Id. This is done in Section 5. For general o,
the result can be proved by a modification of Azencott’s technique.

Although the author was not aware of this while studying these problems,
similar results had been obtained earlier by Friedlin and Gartner [5]. These
authors studied the special case ¢ = Id, and assumed that y(-) took values in
the space of continuous functions. They used essentially the same arguments as
in the original work of Ventsel and Friedlin.

1. A large deviations principle for random evolutions.

Definition of the process. Let (2, F, P) be a probability space, and {F;
t > 0} an increasing family of sub-o-algebras of F. Let X(¢) be an F,-adapted
Rvalued Brownian motion. Let Y(¢) be an Fadapted process which is indepen-
dent of X(-) and takes values in R™. Suppose that b: R X R™ — R? has the
property that b(z, y) is jointly measurable in (z, y) and suppose that there
exists a constant C so that

(a) [b(z,5)|<C, VyeKk,
(1.1) (b) |b(z, ¥) — b(25, ¥)| < Clz, — 2], VyeR" z,z, € R
(¢) |b(z, 31) = b(2, 3)| < Cly, — 3l VzeR, y, % €R™
Fix x € R? Define an F,-édapted R%valued process Z(t) by
(1.2) Z(t) =x + jo ‘b(Z(s), Y(s)) ds.

For fixed w € Q, (1.2) has a unique solution. This follows, for example, from a
theorem of Carathéodory. See Hale [7, Theorem 5.1, page 28].

Suppose that o: R* - M, ,, the space of d X d matrices, has C2(R?) entries.
For & > 0, define Z(t) by

(1.3) Z(t)=x+ /0 ‘b(Z(s), Y(s)) ds + Ve jo ‘o(Z,(t)) dX(s).
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- The existence of a unique solution of (1.3) which is F,-adapted and has continu-
ous sample paths is ensured by our assumptions on b and o, and standard results
on existence and uniqueness of solutions of stochastic differential equations with
random coefficients. See for example Gikhman and Skorohod [5, Section 5,
Theorem 1].

For g € C([0, T],R?, x), define

(14) L(g) = }int{ [0~ (e(e))[&(0) - be(e), h(e))] [ dt: h = Supp¥ )

if g is absolutely continuous and I(g) = + oo otherwise. Let I* be the lower
semicontinuous regularization of 1. See (2.8).

Our aim is to establish that, as a family of random variables with values in
C([0, T1,R? x), {Z,: € > 0} obeys a large deviations principle with rate I*.

ExampLE 1.5. This includes the case where Y is an n-state Markov process.

Statement of resullts.

THEOREM 1.6. Let I be defined by (1.4) and let I* be the lower semicontinu-
ous regularization of I. Then I'* is a rate function, and if Z, is as in (1.3), then
{Z,: € > 0} obeys a large deviations principle with rate I*. Further, if SuppY =
LY[0,T], K), where K C R™ is compact, then

w7 He) =4[ inf |0~ (a(1)[&(s) - b(a(2), ][ d.

The proof of Theorem 1.6 is given in Section 5.

For the following two results, which are given without proof, their proofs
being standard, we specialize to the case where Y is as in Example 1.5 and
o = Id. The first is an exit result which can be proved from Theorem 1.6 using a
modification of the Ventsel-Freidlin technique. The details for n = 2 were
written out in [2]. The second is the interpretation of the first in pde terms.

Suppose that Y is a time-homogeneous n-state Markov process with
states 7 = 1,2,..., n and suppose that there is a positive probability of going
from each of the states to each of the others. Assume ¢ = Id. Suppose b: R? X
{1,2,...,n} - R? is bounded and Lipschitz continuous in both variables. Sup-
pose further that for i = 1,2,..., n,

(1.8) b(0,i) =0, x-b(x,i)<-8<0, VxeR%

This hypothesis ensures that energy increases linearly with time for trajectories
staying inside a compact set not containing 0. For T > 0 and g € C([0, T'], R?, x),
define I(g) by (1.7) with K = {1,2,..., n}. For x € R?, define

(1,9) V(x) = inf{I(g): g € C([0, T],R%0), g(T) = x}.

PROPOSITION 1.10 (An exit result). Suppose D C R? is an open bounded set
with smooth boundary dD, such that 0 € D. Let K C 9D be the set of y in dD
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for which

(1.11) V(y) = inf{V(w): w € dD}.

For ¢ > 0, define Z, by (1.3) and let 7§ be the time of first exit of Z, from D. Then
if N € 4D is a neighbourhood of K, for every x € D,

(1.12) P(15eN)—>1 ase—0. _

In particular, if there is a unique point y, on dD for which (1.11) holds, then
Z(1h) = Y, in probability as ¢ — 0. In this case, more can be said. If also there
is a unique path ¢ joining 0 to 3D which realizes the infimum in (1.11) (this
path ¢ will in general be defined on a semiinfinite interval (— 0,0]) then with
probability approaching 1 as € — 0, the trajectories of the process starting at
any point in D will exit through a “tube” of fixed radius about ¢.

Proposition 1.10 has an interpretation in term of systems of partial differen-
tial equations.

Let Y be as above, ¢ = Id, and suppose b satisfies (1.8). Let D be a bounded
open subset of R? with smooth boundary dD and assume that there is a unique
point y, on dD such that (1.11) holds with y = y,. A

Let @ be the generator of the Markov process Y. (If p,i(¢) = P'[¥(¢) =]
then ¢;; = p/;(0) and @ = (g;;).) The process

£.(2) = (Z(2), Y(2))
is a Markov process with state space R? X {1,2,..., n} and generator
Leu(z,i) = b(z2,i) - vyu(z,i) + eAu(z, i) + Qu(z,i).
Let 7/ be the first time of exit of Z(¢) from D. Let D=Dx {1,2,..., n}. Then
Th=inf{t: £(¢) € ﬁ}. If g is a function which is continuous on 3D, and & is
defined on 3D by g(z, i) = g(2), then it follows from general Markov process
theory that
u(z, y) = B> [&(£(r5))] = E*[g(Z(r5))]

solves the Dirichlet problem

Ltut =0, in D,

u¥(z, y) = g(z), on 3D.
This can be interpreted as a system of n equations.
The following result follows from (1.12).

ProposITION 1.13 (Pde interpretation). With the above notation,
u(z,y) > &(%) ase—0, forevery(z,y)inD.

2. Formulation of a “contraction” problem and statement of results.

Preliminaries. Following Varadhan [17], we define the following:

If E is a complete separable metric space, then a function I defined on E is
called a rate function if it has the following properties:

01 (a) I: E - [0,00], I # +o0, Iislower semicontinuous.
(2.1) (b) If0<a< oo,thenCi(a)= {x € E: I(x) < a} is compact.
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If E is a complete separable metric space, B is the Borel o-field on E, {p,:
¢ > 0} is a family of probability measures on (E,B), and I is a function defined
on E and satisfying (2.1), then we say that {u,} satisfies a large deviations
principle with rate I if:

(a) For every open subset A of E,
liminfelogp (A) > —I(A).
(2.2)
(b) For every closed subset A of E,
limsupelogp (A) < —I(A).
Here, and below, if I is a function defined on a set E and A is a subset of E,
then I(A) is defined to be the infimum of I on A. Unless otherwise stated, all
lim infs and lim sups are as ¢ = 0.

A family {X,: ¢ > 0} of random variables with values in E is said to obey a
large deviations principle with rate I if the corresponding distributions satisfy
- (2.2).
: For future reference, we quote the following well-known result, sometimes
known as the “contraction principle.” See [17, page 5].

LEMMA 2.3. Suppose E and E’ are Polish spaces, I is a rate function defined
on E, {X,: e > 0} is a family of E-valued random variables satisfying a large
deviations principle with rate I and f: E — E’ is continuous. For ¢ > 0, define
Y, = f(X,). Then the family {(Y,: ¢ > 0} of E’-valued random variables satisfies a
large deviations principle with rate I' defined for y € E’ by

I'(y) = inf{I(x): f(x) =y}.

Here and below we shall use the convention
(24) inf @ = +o00.

Formulation of the problem. To formulate the problem to be studied here,
let Ey, Ey and E, denote complete separable metric spaces. Suppose {X:
¢ > 0} is a family of random variables with values in Ey satisfying a large
deviations principle with rate function I, and Y a random variable with values
in Ey. We shall always assume

(2.5) X, is independent of Y for & > 0.
F will denote a function F: Ey X Ey — E, which is continuous if Ex X Ey is
given the product topology, and for ¢ > 0, we shall define
(2.6) Z,=F(X,Y).

We investigate the problem of whether the family {Z,: ¢ > 0} defined by (2.6)
satisfies a large deviations principle.

Heuristic considerations lead one to conjecture that a possible rate function
for the family {Z,: ¢ > 0} is

(2.7) I.(Z) = inf{Iy(x): 3y € SuppY > F(x, y) = 2}.
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I; is not always lower semicontinuous (see second remark after (5.2) below); in
case it is not, we introduce the lower semicontinuous regularization I} of I,
defined by

(28) 14(2) = lm I,(By(z,7)),

where B,(z, r) is the ball of radius r in E, centred at z. Since I, is a decreasing
function on sets, the limit in (2.8) exists.

Statement of results. We answer the question of whether the family {Z:
¢ > 0} defined by (2.6) satisfies a large deviations principle negatively by giving a
counterexample. This is the content of Section 3. However, under certain
conditions on the function F, a large deviations principle does apply. The
principal results, whose proofs appear in Section 4, are listed below. For the
application to the motivating problem of obtaining a large deviations theorem
for random evolutions, the most important result is Theorem 2.15.

Let Ex, Ey, E;, {X,: ¢ >0} and Y be as above. Suppose (2.5) holds and that
F: Ex X Ey — E, is continuous. For ¢ > 0, define Z, by (2.6).

LEmMA 2.9 (Lower bound). If A C E, is open,
(2.10) liminfelog P(Z, € A) > —Iz(A).

LeEMMaA 2.11 (Upper bound). If A C E, is closed, then

(2.12) limsupelog P(Z, € A) < —I,(T14(A)),
where
(2.13) Ny(A)={x€ E4x:3yecSuppY > F(x, y) € A}

ProposITION 2.14. If Y has compact support, then {Z: € > 0} satisfies a
large deviations principle with rate function I.

THEOREM 2.15. Let I}* be as in (2.8). Suppose I;* is a rate function, i.e.,
satisfies (2.1). Suppose F has the following two properties:
(2.16) (a) {F(-, y)},esupy is an équicontinuous family of functions.
' (b) If K C E, is precompact, then F(K X SuppY') is precompact.

Then {Z, ¢ > 0} obeys a large deviations principle with rate I;*.

It is natural to ask what happens if Y is also allowed to depend on e In
answer to this, we have the following result.

PROPOSITION 2.17. Let Ey, Ey, E;, F: Ex X Ey > E; and {X,: € > 0} be
as before and let {Y: e¢> 0} be a family of Ey-valued random variables
satisfying a large deviations principle with rate function Iy. Suppose for each
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¢ > 0, X, is independent of Y,. For ¢ > 0, let Z, = F(X,, Y.)). Define
(2.18) Ip(z) = inf{I,(x) + Iy(y): F(x, y) = z}

for z € E;. Then {Z: &> 0} satisfies a large deviations principle with rate
function I.

3. A counterexample. In this section, we give an example in which a large
deviations principle does not apply. In fact we shall construct closed subsets A of
E; for which P(Z, € A) tends to zero arbitrarily slowly, although I*(A) > 0.

In this example, Ey = C([0,1],R,0) is the space of continuous real-valued
functions defined on [0,1] and taking the value 0 at time ¢ =0, with the
topology induced by the uniform norm

IF1l = sup{| f(¢)|:0 < ¢ < 1}.
X, = Ve X, where X is a one-dimensional Brownian motion on [0, 1]. It is known
(Schilder [14]) that {X,} satisfies a large deviations principle with rate function
given by

(3.1) (D= [li@fa

if f is absolutely continuous, and Iy(f) = + oo otherwise. Here T = 1, but we
shall need formula (3.1) later for arbitrary T > 0 and f € C([0, T],R?0) for
dx>1.

Ey is the set {1,2,3,...} with the discrete topology. Y is a fixed random
variable taking values in Ey and independent of X. Define

(3:2) p, = P{Y = n}

and assume that p, > 0 infinitely often. (Otherwise Y has compact support and,
as stated earlier [(2.14)] a large deviations result does hold.) E, is the space
Ey X Ey with the produce topology and F is the identity map.

We shall need the following fact. See Orey [13, Theorem 2].

LEMMA 3.3. There exists a constant m, 0 < m < oo, such that
p’inf{Ix(f): |If - Xl <p} > m

almost surely as p - 0.

For 0 < a < o0, let C(a) = C;,(a) where the latter set is as in (2.1)(b). We
claim:

LEMMA 34. Let {p,} be a sequence of nonnegative numbers with p,>0
infinitely often and Lp,=1. Let H: [0,0) — [0,00) be a continuous nonde-
creasing function with H(0) = 0. Then there exists a nonincreasing sequence of
Dpositive numbers {q,} so that q, |0 as n —> oo, and a number ¢, > 0 so that for
e < g,

(3.5) Lp.Pld(X,,C(1)) = q,] = H(e).
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Proor. It follows from Lemma 3.3 that there exists p, > 0 so that if p < p,,
then
(3.6) P[p?inf{Ly(f): IX - fI < p} > m/2] > §.

If 0 <& < e, =2p2/m and 0 < § < ce, where ¢ = (m/2), then §/ Ve < p, and
82/¢? < m/2. Therefore, from (3.6)

P[d(X,,C(1)) = 8] = P[d(X,C(1/¢)) = 8/Ve]

(3.7) = P[62/einf{Iy(f): |1 X — fIl < 8/Ve } = 82/¢?]
> 1.
Define
P, = > DPpg;
k>n

9, = Cinf{n: Pn+1 = 2H("1) = Pn}a

‘where ¢ = /(m/2) . Since {P,} is nonincreasing and H is nondecreasing, {q,} is
nonincreasing. Assume that H(e) > 0 for ¢ > 0. [Otherwise (3.5) holds trivially.]
Then g, > 0 for every n. If 0 < € < g, there exists n so that P,,, < 2H(1) < P,.
For k > n, we have g, < ce. From this and (3.7), it follows that the left-hand
side of (3.5) is greater than

i X P.23iR2H(e). O

{k: qp<ce}

ExAMPLE 3.8. Suppose the setup is as described at the beginning of this
section. Let H be a prescribed function which has the properties described in
Lemma 3.4. Define subsets V, of E_ by

V.= {fe€Ex: d(f,C(1)) 2 q,}
and let A c E, be defined by

A= UV, x{n}.
n=1
Then A is closed, lim,_, ,P(Z, € A) = 0 and by (3.5), P(Z, € A) > H(e). How-
ever, IF(A) = I;(A)=1>0.

4. Proofs of the large deviations bounds. In this section, we give the
proofs of the large deviations results for the family {Z,: ¢ > 0} of (2.6).

ProoF oF LEMMA 2.9 (Lower bound). To establish (2.10) for open A € E,, it
is enough to show that if M and N are open subsets of E and Ey, respectively,
x€M, ye N, I,(x) <o, y€ SuppY and F(M X N) Cc A, then
liminf elog P((X,,Y) € M X N) > —Iy(x). But this follows immediately from
our assumptions, using the independence of X, and Y. O



654 C. BEZUIDENHOUT

Proor or LEMMA 2.11 (Upper bound). Obvious. O

PROOF OF PROPOSITION 2.14 (Large deviations principle when Y has compact
support). The lower bound follows from Lemma 2.9. The upper bound follows
from Lemma 2.11 if we observe first that it is always true that Iy (A) =
I(I14(A)), and then that if Y has compact support, Il x(A) is closed whenever
A is closed. The fact that I is a rate function in this case follows easily from the
compactness of Supp Y and the fact that I is a rate function. O

PRrOOF OF THEOREM 2.15 (Large deviations principle when F satisfies (2.16)).
It is easy to see that if A is an open subset of E, then Ip(A) = I;}(A). So the
lower bound follows from (2.9). For the upper bound, it suffices, by (2.11), to
show that under the above hypotheses on F,

(4.1) I#(A) < Iy(TT4(A)) for every closed A C E,

where II,(A) is as in (2.13).

We now show that if (2.16) holds, then so does (4.1). If x is in the closure of
II,(A), then there exist x, € Il y(A) and y, € Supp Y so that z, = F(x,, 3,) €
A and x, —» x in Ey. In particular, {x,} is precompact in Ey. Therefore, by
(2.16)(b), {2,} is precompact in E,, and so we may assume that {z,} converges in
E,, say to z. Since 2z, € A, and A is closed, z € A. Define 2, = F(x, y,). By
(2.16)(a), d4(z,,2,) >0 as n—> o0, so Z, >z also; so IF(A)<If(z)<
liminf, , Ix(Z2,) < Ix(x).0O

NoTE 4.2. A sufficient condition for I} to be a rate function is that {z:
I:(2) < a} be precompact for 0 < a < co.

ProOF OF PROPOSITION 2.17 (Large deviations principle when Z, = F(X,, Y,)).
By the “contraction principle” (2.3), it is enough to consider the case E, = Ey X
Ey, and F = id [ie, F(z) = z].

We prove first that I, is a rate function. I,;: E, — [0, co] is defined by

(4.3) Ly(x, y) = Ix(x) + Iy(y),
which is clearly lower semicontinuous if Iy and I, are. Hence the set

{z: I,y(2) < a} is closed for 0 < a < oo. Since it is contained in the compact set
{x: Ix(2) < a} X {y: Iy(2) < a}, the result follows.

NoTe. Since {z: I,;(z) < a} D {x: Ix(2) < a/2} X {y: Iy(z) < a/2}, I,; is
a rate function if and only if both Iy and Iy are.

The lower bound follows easily from the assumption that for each ¢ > 0, X, is
independent of Y, and the lower bounds for X, and Y,. The proof is very similar
to that of (2.9). '

For the upper bound note first that it is obvious that if A C E, is closed, then
(44) limsupelogP(Z,€ A) < —sup 1n;in {Ix(M;) + Iy(N,)},

= n

;;;;;
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where the supremum is taken over all finite collections of pairs of closed subsets
M; of Ex and N, of Ey such that

n
Ac UM, xN,.
i=1
Suppose a < I;;(A). Let Cx = Cx(a), Cy = Cy(a) and C, = C,(a) be the
sets {I < a} for I = I, Iy and I,,, respectively. By hypothesis and since I is a
rate function, these sets are all compact. Let dy and dy denote the metrics on
E and Ey, respectively. Define d, on E, by

dz((xp s (x4, yz)) = dx(x,,%;) + dy( 21, ).

Since a < I,;,(A), A and C, are disjoint and so, since the latter is compact,
d;z(A,C;) = 8 > 0. By compactness, Cy C UBx(x;, 6/16) and Cy C
UBy(y;, 8/16), where i runs from 1 to m and j from 1 to n for some finite m
and n.

Suppose that d,((x, y),C;) > 8, dx(x,Cx) <6/16 and dy(y,Cy) < §/16.
Then x € By(x;,8/8) and y € By(y,,8/8) for some i and j, and if (x', y') €
By(x;,8/8) X By(y;,8/8) then d,((x’, ¥'),Cz) > 8/2, and hence

(4.5) Iy(Bx(:,8/8)) + Iy(By(3,8/8)) = a.
Therefore,
A c {x:dy(x,Cx) 28/16} X Ey
(4.6) UEy X {y: dy(y,Cy) 2 8/16}
U U Bx(x;,8/8) x BY(yj’ 8/8),

G, el

where I is a finite set of pairs of indices (i, j) such that if (i, j) € I, then (4.5)
holds. From (4.6) and (4.4), it follows that the left-hand side of (4.4) is no greater
than —a. Letting a 1 I,;(A), we get the result. O -

5. Application of Section 2 to the proof of Theorem 1.6. We present in
this section the proof of the large deviations theorem for random evolutions
stated as Theorem 1.6 We give the details only in the case where ¢ = Id, the
d X d identity matrix. The result for general o € C2(R?) can be proved in much
the same way as Azencott [1] proves the general case of the Ventsel-Freidlin
result. In the special case ¢ = Id, the large deviations estimates required for
Theorem 1.6 follow directly from Theorem 2.15.

PROOF OF THEOREM 1.6 WHEN o = Id. To express this in the notation of
Section 2, let Ey be the space C([0,T],R%0), Ey = L'[0,T],R™) and E, =
C([0, T1, R, x).

REMARK. In Example 1.5 it is more usual to think of Y as an element of the
space D of right continuous functions with the Skorohod topology. Note however
that the Skorohod topology is stronger than the L' topology.
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Let X, = vVeX. By Schilder’s theorem [14] {X,} satisfies a large devia-
tions principle with rate given by (3.1). Define F: E, X Ey - E, as follows.
F(f,h) =g if

(5.1) 8(t) =x+ [b(g(s), h(s)) ds + f(2).

Clearly the solution Z, of (1.3) satisfies F(X,,Y) = Z,. It follows from a standard
argument using Gronwall’s inequality that

LEMMA 52. F: Ey X Ey — E, defined by (5.1) is continuous.

REMARK. Since convergence in D implies convergence in L!, this also
establishes that in Example 1.5 F is continuous as a map from Ey X D to E,.

Using (3.1), we see that the function I, defined by (2.7) is the same as I in
(1.4) (with ¢ = Id). Define I* = I* by (2.8).

REMARK. To demonstrate the necessity for introducing I*, we remark that
I = I is not necessarily lower semicontinuous. As an example, take Y to be a
two-state Markov process with states 0 and 1. Let T =1, b(y, i) = (—1)* for
YyER, i=0,1. Let g, be absolutely continuous with derivative (—1)*
on (k/2",(k +1)/2"), k=0,1,...,2" — 1. Let h,(t) =0 when g,(¢) =1 and
h,(t) =1 when g, (t)= —1. Then for almost every ¢t e [0,1], g,(¢) =
b(g,(t), h,(t)) and so g, = F(0y, h,) where Oy is the function identically zero
on [0,1]. So I(g,) < Ix(0x) = 0. But g, = 0, in E; and I(0,) = 1.

To show that {Z,: & > 0} obeys a large deviations principle with rate I*, we

shall use Theorem 2.15. In order to apply Theorem 2.15, we have to show that
I* = I} is a rate function and check the condition (2.16).

LEmMMA 53. I} is a rate function. |
PROOF. As observed in (4.2), it is enough to check that {g: I.(g) < a} is

precompact for 0 < a@ < oo0. From the definition (1.4) of I(g), and the bounded-
ness of b, it follows that

(g: 1n(g) s o) < (&: ["le(e)* dt < )
for some A < o0, and the latter set is precompact by Arzela-Ascoli. O
LEMMA 54. The function F defined in (5.1) satisfies the condition (2.16).
NPROOF. It follows from the standard argument using Gronwall’s inequality

that in fact if F is defined as in (5.1), then F is Lipschitz continuous. This
clearly implies that {F(-, h)},c 1 is equicontinuous, whence (2.16)(a) follows.
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Since the family {/,b(&(¢), h(?))dt};cc, ne 1, Where C is the space E, is
equicontinuous and uniformly bounded, (2.16)(b) follows from the definition of F.
]

REMARK. In fact (although this is not needed) there is equality in (4.1) in
this case. To see this, suppose g € A and I#(g) < 0. Then I}¥(g) equals
lim,_,  In(g,), where g, - g. There are f, € Ex, and h, € SuppY so that
&, =F(f,, h,) and lim,_,  I,(f,) = I*(g). In particular, {Ix(f,)} is bounded,
and so since Iy is a rate function, {f,} is precompact, and we may assume that
f, = f, for some f € Ey. By definition, for ¢ € [0, T'],

gn(t) =x + [(b(&,(s), ho(s)) ds + 1,(2)

=x + ky(2) + f.(2),

where the second equality defines %,,. It follows from the boundedness of b that
(k,)} is precompact, and so we may assume k,, — k, for some k € C([0, T'],R%,0),
uniformly on [0, T']. Since g, — g, we have that g =x + k& + f. Hence g =
F{,, h,), where

L(8) = ['16(8,(5), Ba(s)) = b(8(s), hu(s)] ds = ky(e) + K(2) + (2).

Since b is Lipschitz in its first variable, g, = g and %, — &k as n — oo, it follows
that [, » f in E. Since g € A and g = F(l,, h,), I, € [ x(A). So f is in the
closure of II y(A) and hence

Iy (TTx(A)) < Ix(f) < liminIy(f,) = I¥(g)-

It remains only to show that:

LEMMA 5.5. If the support of Y is all of LY([0,T], K), for some compact
K c R™, the rate function has the simpler form given (1.7).

Proor. We may assume I(g) < co. Denote the expression on the right side
of (1.7) by I};(g). Clearly I;(g) < IF(g) For fixed ¢, since K is compact and
b(&(t), -) is continuous, the set

A(t) = {y = K: |o(g(1)[4(¢) - b(s(t), )|
= inf [o(g(t))[4(t) - b(&(t),w)] |}
wekK .
is compact and nonempty. Standard results (see for example [3]) ensure that we
can.select A(t) € A(t) in such a way that A(t), t € [0, T'], is measurable. Since
A(t)c K, h(-) € LY[0,T], K) = Supp Y, and so

In(g) < § [14(1) = b(a(2), h(0)) " dt = Ii(g). 0
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REMARK. In Example 1.5, a sufficient condition for the hypothesis of Lemma
5.4 to hold is that there should be a positive probability of going from each of the
n states to every other state.
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