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MARKOV ADDITIVE PROCESSES 1. EIGENVALUE
PROPERTIES AND LIMIT THEOREMS

By P. NEY! AND E. NUMMELIN

University of Wisconsin, Madison and University of Helsinki

We consider a Markov additive process {(X,, S,): n=0,1,...}, where
{X,} is a M.C. on a general state space and S, is an R%valued additive
component. Limit theory for S, is studied via properties of the eigenvalues
and eigenfunctions of the kernel of generating functions associated with the
transition function of the process. The emphasis is on large deviation theory,
but some other limit theorems are also given.

1. Introduction and summary. Let {X,; n=0,1,...} be a Markov chain
on a state space E with o-field &, which is irreducible with respect to a maximal
irreducibility measure ¢ on (E, &) and is aperiodic. Let {{,; n=1,2,...} be a
sequence of R“%valued random variables such that {(X,,{,); n=1,2,...} is a
Markov chain on (E X R¢, & X #¢) (2 = Borel sets) having transition function

P{(X,1156p41) EAXTIX, =x, £}
(1‘1) =P{(Xn+1’£n+1) EA Xran=x}
=P(x,AXT), x€E, A€é,TeR?

where %, is the o-field generated by (X,,..., X, £;,...,§,). Let S, =5, +
r2 ¢, The pair {(X,,S,); n=0,1,...} is called a Markov-additive process or
chain (abbreviated MA-process), and P(x, A X T') is called an MA-transition
kernel. For basic results on construction and properties of MA-processes see
Cinlar (1972a, b).

The limit theory of an MA-process can be studied via the “spatial” transform
or generating function of its transition function:

(12) P(a) = P(x, A; a) = j';de<"’s>P(x, A X ds),

acR x€E, A€,

and of its iterates P*(a). ({ +,+ ) denotes inner product.)

The main purpose of this paper (part I) is to study, from a general viewpoint,
the existence and (especially) the regularity properties of the eigenvalues and
eigenfunctions of the above “Feynman-Kac” operator. These properties seem of
interest in their own right and are useful in proving limit theorems for MA-
processes. Our particular interest is in large deviation (LD) theorems. We will
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562 P. NEY AND E. NUMMELIN

prove a logarithmic LD theorem, and under stronger hypotheses, a sharper limit
theorem.

The present results are also essential preliminaries to part II of the paper,
where a general logarithmic LD theorem is proved under minimal hypotheses.

There is extensive literature on LD theorems for Markov chains. An early
work by Miller (1961) considered a real valued MA-process defined on a finite
Markov chain, and used properties of the transform matrix to prove a local LD
theorem. Kim and David (1979) and the present authors with Iscoe (1985)
proved Perron—Frobenius-type theorems for P(a) (and thence LD theorems) for
general state space M.C.’s subject to strong uniformity restrictions. The most
definitive work on additive functionals of M.C.’s is Donsker and Varadhan
(1975a, b), (1976) and (1983). Upper bounds have also been obtained somewhat
more generally by de Acosta (1985). Recent books by Stroock (1984) and Ellis
(1985) also contain many related results. Azencott (1980) is an excellent survey of
LD theory.

There are a number of departures between our present work and the above
works. First, our techniques are quite different, being very probabilistic, and
relying on the construction of a regeneration structure for the MA-process. This
simplifies much of the analysis, and provides an alternative approach to the
Donsker—Varadhan theory. Our hypotheses differ in several respects from those
of Donsker and Varadhan. We have no topological restrictions on the Markov
chain; only irreducibility with respect to the reference measure ¢. '

Both of our results cover random sequences of the form Y7F(X;_,, X;). In this
paper we restrict ourselves to R%valued F'’s, whereas Donsker and Varadhan
(and other references cited above) cover more general spaces, including measure
valued functions. On the other hand, we have essentially no further restrictions
on F, such as boundedness or growth properties. (See also the remarks below.)
Our setting also allows F(x) or F(x, y), for each x, y € E, to be random
variables. This would be the case, for instance, if S, is the time up to the nth
jump in a semi-Markov process on a general state space. The absence of
restrictions on F and on {X;} (other than irreducibility) becomes most striking
in the lower bound theorem of part II.

Finally, there is a technical distinction between our setup and that of some
other approaches (e.g., Donsker and Varadhan, de Acosta or Stroock). We work
with the convergence parameter of P(a) (defined below) as the basis for
determining the rate function, whereas they use the spectral radius (or an
equivalent function). The convergence parameter leads to LD theorems for

(1.3) P{S,/n€erl, X, €A}, Tex? Acé,

for A’s that are “sufficiently small” in a suitable sense; the spectral radius leads
to theorems for

. P.{S,/n €T}
(i.e., A = E). When the convergence parameter and the spectral radius are the

same, then (1.3) will have the same rate function for all ¢-positive sets A, but in
general this will not be so. (Our results shed some light on this.)
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This point is illustrated in Example 6.3 below, for a sequence S, = XF(X,),
where X, takes values in E = {0,1,...} and F is a (finite) integer valued
function. Our theory yields an LD result for

P{S, > an, X, =j}.

But the spectral radius turns out to be infinite, and hence tells us nothing about
P{S, = an}. )

The basis of the regeneration technique is the construction of random times
{T; i =0,1,...}, in terms of which the process is decomposed into independent
blocks, and one can then define the generating function

¥(a,$) = Eexp{(e, S, = Sg) = {(T;;, - T.)}, «E€R%{ER,

which is independent of i. Letting exp{ — A(a)} be the convergence parameter of
P(a), one can show that if P is e~ A-recurrent, then

(1.4) ¥(a, A(a)) =1.

More importantly, there is also a converse. Namely, if ¢ has open domain of
convergence #, then y(a, {) = 1 has a unique solution { = A(a), and e*® is an
eigenvalue of P(a) with associated nonnegative invariant function {r(x; a);
x € E} and measure {{(A; a); A € &}. Furthermore, the properties of A, r and [
can be developed directly from (1.4) (which we thus call the characteristic
equation of A). These properties are used to prove limit theorems about S,,.

In a principal application of the above results we approximate a general MA-
process by a sequence of processes satisfying the above hypothesis on #°, and
thereby prove a large deviation theorem under little more hypothesis than the
irreducibility of the underlying Markov chain (e.g., no recurrence on {X,}, only a
mild nonsingularity hypothesis on the additive component). As this result
requires its own constructions and arguments we have given it a fairly self-con-
tained treatment in the sequel “part I1.”

Here is an outline of the rest of this paper:

Section 2. A quick survey of some known results about nonnegative kernels,
plus a few lemmas about such kernels which will be needed later.

Section 3. Definition of A(a) via the characteristic equation y(a, A(a)) = 1.
Proof of analyticity and essential smoothness of A(a) under the condition that
#'={(a,§) € R Y(a,§) < o0} is an open set.

Section 4. Proof that e~ is the convergence parameter of P(a) and e*®
is an eigenvalue. Determination of representation formulas for the associated
(right) eigenfunction {r(x; a); x € E} and (left) eigenmeasure {I{(A; a); A € &}.
Proof that r(x; @) and l(A; a) are analytic for x & a fixed set of @-measure 0,
%nd A “sufficiently small” in a suitable sense. Proof of geometric ergodicity of

().

Section 5. Limit theorems for S,. '

Section 6. Examples are given of MA-processes that satisfy the hypotheses of
this paper, and some that do not.

2. Nonnegative kernels. In this section we summarize some definitions
and known results, plus a few simple additional facts, about nonnegative kernels.



564 P.NEY AND E. NUMMELIN

For proofs and details about results not explicitly proved here see Vere-Jones
(1967,1968), Tweedie (1974a,b), Athreya and Ney (1982) and particularly
Nummelin (1984).

After looking at the basic definitions, the reader can skip to Section 3 and
later refer back to Section 2 when needed.

Let {K(x, A); x € E, A € &} be a o-finite nonnegative ¢-irreducible kernel.
For any function A: E - R and measure » on (E, &), we write Kh(x) =
/K(x, dy)h(y), vK(A) = [v(dx)K(x, A) and

(h®»)(x,4) = H@)(4),  rh(4) = [(d)h(x),  vh=rh(E).
Let
2.1) G(x,A) = ¥ K"(x,4), G®= Y K~

n=0 n=0
Call R the convergence parameter of K if G is “finite” for p < R, “infinite”
for p > R [see Tweedie (1974a, b) or Nummelin (1984) for a precise definition]. A
o-finite irreducible, nonnegative kernel always has a convergence parameter
0 < R < oo. We will assume K is such that R > 0. Given any K as above, one
can show that there always exists an integer 2, < oo, a function A and a nonzero
measure » such that

(2.2) h®v<Kk, o¢h>0.

This condition is equivalent to the existence of C-sets [see Orey (1971) and
Nummelin (1984)]. In the interest of simplicity we will assume that %, = 1;
namely,

(2.3) hev<K,
but this is not a necessary condition for our results.
Let
Gh,v = Z (K_ h® V)n,
n=0
(2.4) .
Gi= ¥ oK~ h®r)"
n=0

K is called R-recurrent if G®(x, A) = o for x € E, (A) > 0, otherwise
R-transient. R-recurrence is equivalent to »G®h = oo. If K is R-recurrent for
some R, call it recurrent. Let

up=1, u,=vK"'h, nx>1,
(2.5)

by=0, b,=v(K-h®»)" 'h, nx=1.

Then {u,}7 is the renewal sequence generated by {b,}5 [Nummelin (1984)
and Athreya and Ney (1982)]. Define

i(p) = Lo"u,,  b(p) = Xp"b,.
0 0
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Let R’ = sup{p: &(p) < oo} = sup{p: b(p) < 1}. Then R’ = R, and b(R) < 1.
Furthermore,
(2.6) K is R-recurrent & b(R) =1 o #(R) = .

K is called positive R-recurrent if Y1nR"b, < oo and just positive recurrent if it
is positive R-recurrent for some R > 0 (we write p-recurrent). An R-recurrent K
is called geometrically R-recurrent if ’

vG{)h < oo, forsomep > R,
or, equivalently,
Y o"b, < 00, forsomep > R.
(We again say g-recurrent for short.)
A function r(x) >0 (not = co) with or >0 is called p-subinvariant if
pKr < r, invariant if pKr = r. In the latter case call A = p~! an eigenvalue.
There may be any number of eigenvalues (or none) and R may or may not be an

eigenvalue. For p < R, p-subinvariant functions always exist. When p < R, or
when p = R and K is R-transient, then a p-subinvariant function is given by

r(xz) = (G®h)(x) [hasin(2.3)].

If K is R-recurrent, then there exists an R-invariant function given by

(2.7 r(x) = (RG{®)h)(x) [h,vasin(2.3)],

and an R-invariant measure

(2.8) I(A) = (RvGR)(4), Aces.
Note that

(2.9) b(R) = RvGR) =vr=1h

and this =1 if K is R-recurrent. Thus in the R-recurrent case R™! is an
eigenvalue with

(2.10) r=RKr, [=RIK.

In the R-transient case there may still be an R-invariant function. Thus the
existence of such a function does not imply R-recurrence. Let K, = K — ¢h ® ».

LEmMA 21. If K>h®v and K is g-recurrent, then K,= K —eh ® v is
g-recurrent for all sufficiently small ¢ = 0.

PrOOF. Let R be the convergence parameter of K. Then by (2.6)

B(R)= Y Rw(K-h®»)" 'h=1
n=1
and
=)
o> Y pw(K-—h®»)" Th=c>1,

n=1
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for some p, > R. Let
b(p) =Y ov(K,— (1-¢e)h®r)" '(1-e)h.

This is just a power series in p, hence analytic in the interior of its domain of
convergence. Also

Be(Po) = (1 - 8)0 € (17 °°)7
for sufficiently small e. But this is the definition of geometric recurrence of K,
(with minorization (1 — ¢)A ® »). O

The next lemma is a converse of the above.

Lemma 22. If K > h ® v and K, is recurrent, then K, is g-recurrent for all
0 <e<eg,,.

ProoF. We have K, > (1 —¢,)h ® », and hence letting R, denote the
convergence parameter of K, and using (2.6) again, this time applied to K,
with minorization (1 — ¢,)2 ® v, we see that

1= ZR;’OV(KEO —(1—-¢g)h® v)n_l(l —&)h
=(1-¢)XR»(K-h® »)" 'h=(1- 50)3(R50)-
Thus
1<b(R,)=(1-¢)" <o,

and hence K is geometrically recurrent. The same argument applies to K, for
0<e<eg. O

The next two lemmas give some special hypotheses under which g-recurrence
can be verified. These will be referred to in examples later on. The first is a slight
generalization of Theorem 3.10.1 of Harris (1963).

LEMMA 2.3. Assume there exist constants 0 < a < ¢ < o0, a function h:
E — R and a measure v on (E, &) such that

(2.11) ah(x)r(A) < K(x, A) < ch(x)v(A), x€E,AE€d.
Then K is g-recurrent.

NOTATION. Sometime we abbreviate (2.11) by K = A ® ».
Proor. (i) Recall that
R= sup{b >0: Y p"vK"h < oo}.

By (2.11)
(2.12) (K - ah®v) <p,K,
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where p, =1 — a/c < 1. Note that necessarily h(x) < oo, or else by (2.11),
K(x, -) would not be o-finite for some x € E. Now

(2.13) Y Rw(K~-ah®»)" 'ah < o,
n=1

for R, = p; /2R > R. This implies K is g-recurrent. O

REMARKS. (i) The hypothesis (2.11) can be replaced by the somewhat weaker
condition K™ = YN h‘® »’, for some N < 0, n,> 1 and functions A’ and
measures »'. See the arguments in Section 5.7 of Nummelin (1984).

(i) If K(x,E) = 0, we simply throw away this trivial point x. Thus it means
no loss of generality to assume K(x,E) > 0 forall x € E.

If {K(x, A); x € E, A € &} is stochastic, then a useful recurrence criterion is
the “Doeblin condition”

(2.14) av(A) < K(x,A), x€E,A€é,

for some 0 < @ and probability measure ». (In fact, of course, this implies
uniform recurrence.) Unfortunately, for general kernels, this fails. Namely, we
may have (2.14) but not have any kind of recurrence.

The following lemma is a step in the direction of a Doeblin condition for
kernels.

LEMMA 24. Let K(-,- ) be an irreducible aperiodic kernel on (E, &). Assume
that a < K(x,E) < b, 0 <a < b< oo, x €E and that there is a probability
measure v on (E, &) such that for some ¢ < a

(2.15) K(x,A) > (K(x,E) — c)r(A),
for all A € &. Then K is g-recurrent.
Proor. Let A(x) = K(x,E) — a. By (2.15)
K(x,dy) — h(x)r(dy)
= K(x,dy) — (K(x,E) — c)v(dy) + (@ — c)»(dy)
> (a - c)r(dy),
and hence
(2.16) K(x,A)=a (K -h®»)(x,A)

is a stochastic kernel with
v . . c
(2.17) R(x, A) > (1 - ;)V(A), x€E Acé.

Thus K is uniformly 1-recurrent. Hence by Lemma 2.2 K is g-recurrent. O
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COROLLARY 2.1. If
(2.18) K(x,A) > cv(A), forx€E, A€é,

for some ¢ > b — a and some probability measure v, then K is g-recurrent.

3. Regeneration. We define a regenerative scheme for the MA-process
which is similar to constructions in Iscoe, Ney and Nummelin (1985), Athreya,
McDonald and Ney (1978) and Nummelin (1978). Since some of the limit theory
also applies to general regenerative processes, we minimize the dependence on
the Markov aspect of the process in this section.

Consider the following: )

(M) Minorization condition. There exists a family of measures {h(x,T); T €
2%} on R for each x € E, and a probability measure {(r(AXT); Aecé,
I'e 2% on E X RY such that forallx €E, A € &, T € 29,

h(x, )*»(A X -) < P(x,AXT).

Let %, = the o-field generated by (X,,..., X,, {&,..., £,). The consequence
to be drawn from (M) is

LeMMA 3.1. Under (M) there exist random variables 0 < Ty < T, < ---
and a decomposition &, = §7. + §7, 1 =0,1,..., with the following properties:

@ {T,y, - T; i=0,1,...} arei.i.d. random variables;
(ii) the random blocks

{Xpos Xy 0 6 brn oo b, 100}, i=0,1,...,

are independent; and
(i) PA( Xy, 7)) €A X T"|Fp_1, &1} = (A XT”), for A€ &, T” € %

ProOF. See Ney and Nummelin (1984). O
COROLLARY 3.1. If h(x,R%) > ¢ > 0, then
P{Ti+1_Ti>k} <k

We note two special cases of (M). First, if {7/ =0, n=1,2,..., then (M)
becomes

M) h(x,T)r(A) < P(x, AXT),

where v is now a measure on (E, &). In this case the fndependent blocks are
(3.1) D CTNERD AN I

and

(3.1) P{X; € AlFr_,, &1} = »(A).
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On the other hand, if £, = 0, then (M) reduces to
M,) h(x)v(A XT) < P(x,A XT),
where h: E - R’.

HyproTtHESIS 1. To avoid repetitive consideration of different special cases
we will work with condition (M,) in this paper (except for examples). We
remark, however, that (M,), or the apparently weaker (M) would work just as
well.

By a result of Niemi and Nummelin (1986), given in the following proposition,
a mild nonsingularity condition on P is sufficient to assure a slightly weaker
condition than (M) or (M,).

- PROPOSITION 3.1. Assume that there exists a ¢-positive set B € & such that
for every x € B, P™(x,-X-) is nonsingular with respect to ¢ X Lebesgue
measure for some n = n(x) > 1. Then there exists an integer n,, a function
f(x,5): EXR?—> R, and a probability measure v on (E,&) such that
[ [(x, $)p(dx) ds > 0 and

f(x,s) dsv(dy) < P™(x,dy X ds).

There also exists an integer n,, a function h(x): E - R™ and a probability
measure v(dy X ds) = v(dy X s) ds, such that

h(x)v(dy X ds) < P™(x,dy X ds).

REMARK. Requiring that a minorization hold for P*o for some 0 < k, <
is a weaker hypothesis. However, for purposes of large deviation theory it is no
loss of generality to take &, = 1, since the required eigenvalue properties for P
and P* are the same. [See Ney and Nummelin (1984) for details of this

argument.]

Under (M,), we may define the generating function
(32) Y(a,§) =Ee@07f,  aeR? R,
where

T=p T, ~ T, S, =p Sr,+1— S, 1=12,....
(If P(X, € A} = v(A), define T, = 0.)
Let
(3.3) #={(a,8): ¥(a,§) < o0} C R,

DEFINITION 3.1. Assume (M,). If
(34) (@A) =1,

for some A < oo, then define A = A(a) by (3.4). Since Y (a, {) is monotone in ¢,
if such a A exists it is unique.
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In Section 4 we will prove that if # is open then A(-) exists and e*(® is an
eigenvalue of P(a). In this section we establish some properties of A which
follow from the definition.

First some more notation. Let

%= {a€R% y(a,0) < 0},

U, = {a: Y(a, A) = 1forsome A = A(a) < 0},

2, = {a e 4, —(09/30)" (o, A@) < 0},

U, = {a:1<yY(a,{) < oo for some { € R},

2= {a: Y(a,§) < oo forsome { < 0},

&= Supp,(S,/7),

where Supp,(Y) = the convex hull of the support of the measure P{Y € -}.
Note that %, C %, C %, € 9 and % C 9 always.

HYPOTHESIS 2. We assume from now on that $+ @, thereby assuring that
S, is genuinely d-dimensional. This will not always be explicitly stated.

LeEMMA 3.2. Assume (M,) and that # is open. Then
9=U=U, = U,= U, = an open set.

COROLLARY 3.2. Under the above hypothesis (a, A(a)) € #~ for all a € .
Hence A(a) is analytic on 2.

PrOOF OF LEMMA 3.2. Take any a € 2. Since 7 > 1
(3.5) lim ¢(a,$) = 0.
$ A0

Now let {;, € {{: (a,§) € 3#} U {—o0}. Then
(36) Jim ¥(a,£) = oo,

since by Fatou’s lemma, any generating function with open domain diverges
along any sequence approaching a finite boundary point of the domain. Since
Y(a, {) is continuous on #7, (3.5) and (3.7) imply that there exists a { = A(a)
such that ¥(a, ) =1, ie, (a,§) € #°, a € %,. The fact that #” is open then
also implies that there is a {’ such that 1 < y(a,{’) < o, ie.,, a € %,. Since
clearly %, Cc 9, we have %, = 9. Since 9 is the projection of %" on the a-space,
it is also open. O

PROOF OF COROLLARY 3.2. If a €2, then the above proof implies
(a,A(@)) € # . The rest of the corollary then follows from the strict convexity
of Y(a, {), its monotonicity in ¢, and the implicit function theorem for analytic
functions [see, e.g., Gunning and Rossi (1965), page 2, or Dieudonne (1960),
page 268]. O
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NOTATION. Write

(3.7) EyYe<“’S-r>—A(a)Td=efElfa)Y.

LemMmA 3.3 (Differentiation). If a € %, and (a, A(a)) € #, then VA(a)
and vV 'A(a) exist, and '

(3.8) VA(a) = (E®r) 'E@S,,
and
(3.9) v 'VA(a) = (E®r)  cov®(S, — vA(a)7).

[V’ = transp. v, V'VA = Hessian matrix of A, and cov(-) means covariance
matrix.]

Proor. The hypothesis allows us to differentiate through (3.7) with Y = 1,
yielding
0 = E,[(S, = 7vA(a)) e S~ Aear]
= E{(S, - 1vA(a))
and hence (3.8). Differentiating again,
0= E,f"‘){[(S,' - 1v’A(a))(S, — 7VA(a)) - 'rVV’A(a)]e<“'Sf>’A("‘)’},
which is (3.9). O

COROLLARY 3.3. A(a) is strictly convex.

PROOF. Since £+ @ by hypothesis the support of S, — VA(a)7 under P(®
has nonempty interior, and by the lemma v ’'vA(a) is positive definite. O

DEFINITION 3.2. A convex function f with domain D (D # @) is called
essentially smooth if it is differentiable throughout D, and if for any sequence
{a,} € D such that a, = a, € dD one has |[Vf(a,)|| = co.

LEMMA 34. If (M,) holds and # is open, then A is essentially smooth
on 9. '

Proor. Choose {a,; n =1,2,...} C P suchthat a, > ay € 9. Nowa, € 2
implies a, € %, (by Lemma 3.2) and hence there exist {, = A(a,), n =1,2...,
such that y(a,, A(a,)) = 1. If |A(a,)| » oo, then there is a subsequence {n’}
such that A(a, ) — some {,, and thus (a,,{,) = (ag $). If (ay,$) €7,
then there is a neighborhood A4(a,, {,) C #" (since #" is open); hence also a
neighborhood of a,, A (a,) C 9, contradicting a, € d9. Hence (ay, §,) & #.
But (a,,$,) € # since Y(a,,$,) =1 < co. Hence (ay, §;) € #  and thus €
d# . Now, using Fatou’s lemma again, this implies y(«,, {,) = 00, contradicting
¥(a,,$,) =1 for all n. Thus we must have |A(a,)] = o as a, = a, in fact
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the convexity forces A(a,) = +oo. This in turn implies |[VA(a,)| = o as
a, > a, € 09, i.e., A is essentially smooth. O

The range of the gradient map of A plays a role in some large deviation
theorems, so it is desirable to characterize it in terms of the parameters of the
problem. To this end we prove:

LEMMA 3.5. Assume (M,) and that # is open. Then

5 S\ _ [ E"S,
(3.10) &F= (Supp,,(j)) = {W; o 69} = VA(@)

ExaMPLE 3.1. When S, = L7%; is a sum of i.i.d. r.v.’s, A(«) = log(generating
function of £;), and it is intuitively clear (and is easily proved) that as a ranges
over 9, the mean of the a-conjugate distribution, E(*¢, sweeps out the convex
hull of the support of §;. The appropriate generalization of this statement to
MA-processes is (3.10).

ProOF. The equality on the right of (3.10) is just Lemma 3.3.

(i) £Lc vAD).

Assume first that O € #. Let {a; i = 1,2,...} € 9. Recall #” open implies 2
open (Lemma 3.2). Hence by the essential smoothness of {A(a); a € 2} (Lemma
3.4), if a; > ay € 02, then ||VA(q;)|| = oo and in fact by the proof of Lemma
3.4 A(a;) = oo. Suppose that ||a;|]| = oo and note that

S 0
(3.11) Oe (Supp,,(f)) , if and only if O € (Supp,(S,))°

(since 1 < 7, and 7 < co since 2 = %, by Lemma 3.2). Hence if ||a,|| > o and

A(a,) +» oo, then A(a,) remains bounded on a subsequence {«, }, and then

O € (Supp,S,)° implies that Y(a,, A(a,)) = Eef SO~ Madm 5 o5 But

Y(a,, A(a,)) = 1, a contradiction. Thus A(a,) = o as either a, = a, € d2 or

as ||a,|| = oo, and together with the strict convexity and differentiability of A, it

has a unique minimum at some a* € 2 and VA(a*) = 0, namely O € VA(@)
Next suppose that v € &. Then

S 0
Oe (Supp,,(—’ - v)) = 0 € (Supp,(S, — vr))°.
T

Now if we translate the original MA-process by v, namely replace all the §;’s by
§(°) = £, — v, then we get a new MA-process with transform kernel P(a) =
P(a)e™ (e, ©), and with eigenvalue e”~®, A (a)=A(a)— (a,v); and with
S =S8, — nv, S =8, — r0. The regeneration structure for the translated
process remains the same, A («) remains essentially smooth, and

V(a, A(a)) = E,E(S) Ak = 1,
Now arguing as before O € (Supp,S{”)° implies O = VA (a) = V(A(a) -
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{a,v)) has a unique solution «,, i.e., VA(a,) = v. Hence v € VA(Z). This
proves (i).
(i) VA(2) c &.
We thank the referee for the following proof.
Let (S{™, 7,) be i.i.d. copies of (S,, 7). By the SLLN
g— ls(n) z:n-lﬁ" (S:,,n)/'rn) E}a)ST

-
e T, E™r

The left side is a convex combination of (S(”)/ ), n=1,..., m, and hence the
limit E(¥S,/E(“r must be in the closed convex hull of the support of S,/r,
hence also in its interior. O

as. [P@].

4. Transform kernels. In this section we study the propertles of the
transform kernel P(a). We start by proving that A(a), as defined in the last
section by the equation
(4.1) Y(a, Aa)) =1,
is in fact an eigenvalue of P(«). Thus (4.1) is a characteristic equation for A.

With A(a) givenby (4.1), define the functions .

(4.2) r(x; @) = E [e®Sw)-AMaT]  xecE,ac,,

and the measures

T—1
(43) UA;a)=E,)| Y el®So-Mon, X cAl, Aeé,aca,.

n=0

We assume (M, ) throughout this section.

LEMMA 4.1. (i) For a € %, Na) = e™® is an eigenvalue of P(«), with
associated eigenfunction r(a) and measure l(a) given by the representations
(4.2) and (4.3).

(ii) Ua)r(a) = e *E{r and if also a € U,, then [a)r(a) < oo. In this
case we always multiply | or r by a constant (depending on o) so that
a)r(a) =1.

Proor. . Clearly,

(4.4) P{T,=n,S,€ds}) = (P—h®»)" '+h(x,ds).

Hence

r(x;a)= ¥ [e) AP - h@»)" "+ h(x, ds)

foe-ww(ﬁ(a) — h(a) ® »)"h(a)(x).

But this shows that r(-; a) is just the essentially unique minimal invariant

(4.5)
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function &, for the kernel K = P(«) with minorization P(a) > A(a) ® » [as in
Theorem 5.1 of Nummelin (1984), page 70].
Similarly,

(4.6) (A;a) = 3 e~y (Pla) — h(a) ® »)"(A)

is the essentially unique e~ *(®-invariant measure 7, given by Theorem 5.2 of
Nummelin (1984).
Finally, by formula (5.6) of Nummelin (1984), we have

erMO(a)r(a) = i::lne"\(“)”v(ﬁ(a) - h(a) ® v)n_lﬁ(a)

o0
(4.7) = ¥ [ne@ ) Mn(y(P— h®»)" " s h)(ds)
n=1
= E®r, 0
We will now relate the recurrence properties of P(a) to those of the imbedded
regenerative process. Letting A be as above, define the sets
4, = {a € R%: P(a)is e”M®-recurrent},
@, = {a € 4, P(a)is positive e~ A*-recurrent}

oig = {“ € oip: P(a) is geometrically e_A("‘)-recurrent}.

LEMMA 4.2. Let a € %, (so that A(a) is well defined). Then e is the
convergence parameter for P(a). Furthermore,

(4.8) v,=4, U,=4, and U,=4,.

Proor. Let
bl = P*{r = n})
(4.9) = E,[e(S0=A@n 7 = n]

=e My (P(a) —h® v)"—lfz
and

@ = F [e{®S)-AMon, y =1
(4.10) u? = B[ =1

= o~ Nmypr-if,
(Recall {Y,_, =1} =UZ(T; = n}.) The sequences {b\®} and {u{¥} are the
analogs, for the present setup, of {b,} and {«,} in (2.5).
Now {u{”} is the renewal sequence generated by {b\”}. Recall that the
convergence parameter R(a) of P(a) satisfies

(4.11) R(a) = sup{p: Yo (Pla) —hev)" 'A< 1}.
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But by (4.9)

(412 Yo=Y e Mony(Pa) ~heor)" A
. n n
= Eve<a’s‘r>_A(a)7 = 1.

Hence R(a) = e ¥,

The last identity also tells us that a« € %, if and only if ¥b(® = 1, while
R-recurrence means YR™(a)(P — h ® v)*~ 14 = 1, i.e.,, again Eb("‘) = 1. Thus
U, = %

Similarly, o € %, means |(dy*/3§)(a, A(a))| < co; namely,

LB, [ne 570" 1 = n] = Tbf© < .

But this means that the associated renewal sequence {u"} is positive recurrent,
which by (4.10) is equivalent to P(a) being positive recurrent, i.e, a € 02/
Finally, « € %, means Lr"b{* < oo for some r > 1, i.e,,

Zp”v(P -he»)" th<ow

for some p > R(a) = e~ @, which is the definition of P(a) being geometrically
~M®).yecurrent. Thus %, = %,. O

In Section 3 we saw that the hypothesis “#” open” played an important role
in determining analyticity and other regularity properties of A. The following
lemma gives a sufficient condition for this in terms of B ).

If A ® v is a minorization for P(«), then obviously ¢k ® », for 0 < e < 1, is

-also. Let ¢ (a, {) be the generating function defined in (3.2), with the minoriza-
tion eh ® », and let v, be its domain of convergence. Let Is(a) = P(a) — ch ® ».

LEMMA 4.3. If 9 is open, 0 < ¢, <1, and P%(a) is recurrent for all a € 9,
then ¥, is open for 0 < & < g,.

PROOF. (i) %, = 9. Apply Lemma 2.2 to P, () with e = 0. This implies
a € %, for all a 69 ie, %, 2 9. The converse 02/ C 9 always holds.

(ii) (a, Aa)) € # for a]l a€ P If (a, A(a)) E d¥, then (since a € %,)
(a, A(a) — 8) € 0# for some § > 0. Hence L, = {(&,§): { = A(a) — 8} € B"II/
But this is impossible since 2 is open.

(iii) A(+) is analytic on 2. This follows from (ii) and the implicit function
theorem.

(iv) Let exp(— A (a)) be the convergence parameter of f’(a) Note that the
domain of 135( a) = 9, = 2. Applying the same argument to Pe as to P in (i), (ii)
and (iii), conclude that A (a) is analytic on 2.

(v) Show that #, is open. Take any (a,, §,) € #;. Then

YeSomy(P—ch®v)" th(ay) < .
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But P(a,) recurrent implies

Ye Adeny(P— ch® »)" h(ay) = .
Hence {, > A(ag). Let 8 = §, — A (ay) > 0. By (iv), there is a neighborhood
H(ay) € D such that

A(a) < Afap) + 38, fora € N(ay).

Then for
) )
(8) € (ar) (80 3.5+ 5.
we have
§>A(a),
and hence
(a,$) e¥.. O

Finally, we investigate the properties of r(«) and I(a). There is a technical
problem about the finiteness of r and ! which is illustrated by the following
example. Let E = [0,1], and the Markov chain {X,} be ii.d. uniform random
variables on E. Let P{¢, > t} = e”* when x = 0, or in fact for x € any set M,
of measure 0, and PJ{¢{ >t} =e * for x € M,. Then »(dy) = Il(dy) = the
Lebesgue measure on [0,1]; h(x, ds) = P{§ € ds}; 7=1; Y(a ) =
1 -a) e ¥ #=(—00,1) X (—00,00) = open; A(a)= —log(l —a), e € D=
(—o0,1); r(x;a) =1ifx &€ My, = e(e —a)"'1 —a) if x € M, a <&, = oo for
xEMy,ac[gl)Cc D

In other words, the measure P,(-) has been smoothed out and may have better
convergence properties than individual P,(-)’s. The following lemma shows that
this can happen only on a set of g-measure 0, and this set can be chosen
independent of a. For x € the complement of this set, r(x, -) will be seen to be
analytic on 2. A similar question arises for /(A; &) and is the object of Lemma
4.6.

LEMMA 4.4. Assume that W is open. Then there exists a “full” set F € &
such that ¢(F€) = 0, and for each x € F, r(x,:) < oo on 9, and is analytic
on 9.

Proor. Fix (a,{) € # and let ‘

(4.13) F(x; o, ¢) = E e(®S>¢r,
[Note 7(x; a, A(a)) = r(x; a).]
Let

2 = {1, when n is a regeneration time,
" 10, otherwise,
Z,=24+ -+ 2,

@=(a,aq,,) ER™L
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Then {(X,, S,)} is an MA-process on E X R*!, with a transition function P,

and transform P(&).
Let

J(a’ g) = Eye<&’§1>_§7 = Eye<avsf>_ad+l_§7
and R(&) = e A® be the convergence parameter of I_E'(a). Now for (a,§) € #/,
take a,,, = —log ¥(a,{). Then y(a, ¢) = 1, namely, { = A(a). The invariant
function for P(a) with eigenvalue e*® is

F(x; a) = ES&S0-8@ = (x5 0, ¢) /4(a, §),
and
(&) = (& ¥(a, ) = 1.

But then since 1_3"(&)7'(&) = e’"r (@),
w0 > vi(&) = e~$"yPF(&)
zeinf  (P)(@)(y:a),

where

F(a,$) = {x: 7(x; @) = A(x; 0, §) /¥(a, §) < 00} = {a: F(x; @, ) < 0}.
Now, for fixed (a, ), if @(F%(a,$)) >0, then the @-irreducibility of P(a)
(which is apparent from that of {X,}) implies that vP*(F(a, {); @) > 0 for
some n < co; the integral above is oo, and we have a contradiction. Hence
(F(a,{)) = 0. ‘
~ Now let #, be a countable dense subset of #,and set F =N, ¢)c»F(a, ),
and fix x € F. Note that 7(x; a, {) is a generating function and let 2, be its
domain of convergence. Thus 7(x, -, ) is analytic on 2,. Then since 7(x; a, {) <
o for (a,¢) € #,, we have #, C 9,, and since 9, is convex, #'C éx. Thus
#(x; @, ¢) is analytic on #". But A(:) is analytic on 2 and (a, A(a)) € # for
a € 9. (Recall # and 9 are open.) Hence r(x; a, A(a)) = r(x, @) is analytic
on 2.0

The positivity of r(x; ) is also of interest. Though easily r(x; a) > 0 for all x,
it need not be uniformly positive. However, we will show that there is a
countable partition of the state space E = UE,, independent of a, such that
r(x; ) is uniformly positive on each E,. We emphasize that this is a very general
fact and requires no hypothesis like %" open.

LEMMA 4.5. Let P(a) be the transform kernel of an irreducible MA-process
satisfying (M;), R(a) be its convergence parameter and {r(x; a); x € E} the
associated subinvariant function. Then there exists a partition E = U E; and a
sequence of functions f(-): R? - (0,0), i = 1,2,..., such that

(4.14) r(x; a) > fi(a)lg(x), x€E,a€P,i=12,....
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PrROOF. An R-subinvariant function is given by
(4.15) r(x; @) = ¥ R*(«)P"(a)h(a)(x), if P is R-transient,
n=0

and by

@ B9 ER@EE A o] R ),

if P is R-recurrent.
In the former case

N
r(x; a) > Z=‘,0(R"13"(a)ﬁ(a))(x).
Now
(Pr(a)h(a))(x) = f[ P B ds)e?
> e—NIIaII(Pn* h)(x,[—N, N]d),
and hence
(417)  r(x;a) = [R¥(a) A 1] e Nl IZV‘, (P*+h)(x,[-N, N]%).
n=0
Now let

(4.18) EN = {y: Y (P*+h)(y,[-N,N1%) > %}

n=0

Hence if x € EY, then
1
r(x,a) > [R¥(a) A l]e‘N""‘"N, 1<N < oo0.
By irreducibility

Y (P"+h)(y,[-N,N]) >0, for N sufficiently large.

n=0

Hence EN 7 E. Let Ey = EN — EN71, and set

1
(4.19) fn(a) = [RN(a) A l]e‘N""‘“N.
Then (4.14) is satisfied. ‘

In the recurrent case simply replace P(a) by [P(a) — A(a) ® »] in the above
argument. Then take ’

N 1
EN = {y: Y (P-hov)"+h(y[-N,N]?) 2 N}

n=0
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and EN ~ E since
o0
Z (P-h®v)"+h(y,R) =P {r<0}>0

(in fact = 1 by recurrence). The rest of the argument goes through for P — A ® »
as for P before. O

DEFINITION 4.1. We call any set contained in a finite union of E;’s an s-set
(for “sufficiently small”).

ExaMpLE 4.1. If the state space E is countable then every finite set is an
s-set.

ExXAMPLE 4.2. Suppose that the minorization satisfies (M,) with h(x) > § >
0 for x € A. Then for ¢-positive A and x € A

(P"h)(x,T) > 6P™"(x,AXT)>28(hxv)"(x,AXT)
>8™(v(A x -))*™(T).
Hence
N 1
Z (P h)(x,(-N,N]") = ,
n=0
for N sufficiently large, namely A c EV,

COROLLARY 4.1. Assume % is open, If A is an s-set then l(A; @) < « for
alac 9.

PROOF. The hypotheses imply that P(a) is geometrically e~ A(®-recurrent.

Hence (as we have seen) I(a)r(a) < co (and we normalized to Ir = 1). Now if A
is an s-set, then r(x; a) > f(a) for x € A and for some i. Hence if A C E*

(4.20) 12 [Uds; a)r(x, o) = fi()l(A; o),
with 0 < f(a) < 0. O

LEMMA 4.6. If # is open, and A is a ¢-positive s-set. Then {l(A; a);
a € 2} is analytic.

Proor. Let [, (A XT)=w»(P—-h®r)" (A XT): For fixed A, this is a
measure on N X R? Define the generating function

[(A; a,{) = f f P'(P—‘ ﬁ ® ll)n_l(A X ds)e(ﬂ,s)—fn’
Rdn=1

and note that [(A; a, A(a)) = I(A; a). [Recall that P(a) is positive
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e~ A@._recurrent.] For x € F write out 7(x; a, {) as defined in (4.13) as a series,
and we get

s 8) = E (Bla) - h(e) © 5)"K(w)e "

=/ Y (P-—h®v)" *h(x,ds)el®"
Rdn=0

(4.21) N
> [ Y (P—-h®v)"*h(x, ds)e®s—in
[-N, N]dn=0
N
e~ Nlal-BIN Z (P_ h® v)”*h(x,[—N, N]d),
n=0
as in (4.17). Define E” as in (4.18). Then
Fx; a,§) 2 e”NUI+OL, (x),  x €E.
Now with a,,, = —log Y(e, {),
F(x; a,8) . (A;a,%)
r(x;a) = ———— d l(A;a)=—F—+—
e M T )

are an e A® = e¢~{invariant function and measure for P(a) [Note that
zl/(a, $) =e%1y(a,{) < oo on # X R, ie., the domain of y is open; hence

P(a) is geom. e ‘recurrent.] Hence [F(a,{) < oo for a,{ € # and
[l(dx; a, $)r(x; a,{) <oo. Now if A is an s-set, then (A; a,¢) < o for
(a,$) € #°. But l(A, ,+ ) is a generating function with some domain of converge
2,, and hence ' 9,. But [(A; -,- ) is analytic on 9,, hence on #". O

We summarize the results about A, r and [ in the next theorem.

THEOREM 4.1. Assume that (M,) holds, %" is open, and S+ @. Let A(+)
be defined by the characteristic equation (4.1). Then

(@) () 2= {a: Ma) < 0} = {a: (a,§) € # for some {} is an open set. For
a € 9, P(a) has convergence parameter R(a) = e *®, and A is analytic,
strictly convex and essentially smooth on 2. (ii) For a € 9, e js an eigen-
value of P(a) with (right) eigenfunction {r(x; a): x € E} and (left) elgenmea-
sure {{(A; a): A € &} having the representations (4.2) and (4.3). (iii) There is a
fixed set F C E with ¢(F°¢) = 0, such that for each x € F, r(x; ) < oo and is
analytic on 9. If A is an s-set, then I(A; -) < o and is analytic on 9. (iv) P(«)
is geometrically e~ *“-recurrent for a € 9.

(b) Conversely, if 2 is open and P [(a) is recurrent for some ¢, > 0 and all
a € 9, then W, is open for some ¢ > 0 and hence (i), (ii) and (iii) hold.

5 Limit theorems. Assume (M,) throughout this section. Let A(a), r(x, a),
x €E, a € 2 be as in Section 3, define

(5.1) Q(x,dy X ds; a) = e  A@H«)P(x dy X ds)r(y; a)/r(x; a),



MARKOV ADDITIVE PROCESSES I 581

and note that for each a € 2 this is an MA-transition function. Denote by
{(X{9, 8{)} the MA-process associated with @(a). Call this the a-conjugate
process. We also use the same symbol @ for

(5.2) Q(x, dy; a) d——e;fQ(x, dy X R4 a).
Let

(5.3) w(dx; a) = I(dx; a)r(x; a)

and note that

(5.4) 7(a)Q(a) = 7(a).

Denote the measure induced by the kernel @(a) by Q(®, and expectation with
respect to this measure by E2“(.).

Let f: R%*! - R! be a measurable function, and recall (from Section 3) the
expectation operator

(5.5) E®f d=efEVP [ fe<a,s,>—A(a)f] ,
where P = Q© = the measure induced by P(x, dy X ds). Let
»(dy)r(y; a)

(5.6a) v @(dy) = o) (a) = a probability measure,

and

(5.6b) h(x, ds) = e 2 pr(a)r~Yx; a)e<*>>h(x, ds),

where »(-) and h(x, -) are the measures in the minorization
(M) P(x, dy X ds) > h(x, ds)»(dy).

LEMMA 5.1. Assume that #  is open. Then for a € 9
(5.7) ESH(S,, 7) = Ef(S,, 7).
REMARK. It is not true that for fixed n,'
ERH(S,, n) = EH(S,, ).
Proor. By (M,)

e’ h(x, ds)-v(dy)r(y; a)
r(x; a) vr(a)

(M(a)) Q(x, dy X ds; a) > e-A(a),,,.(a)
1

= B(x, ds)r@(dy).
Now in general, for any MA-process satisfying (M, ),
(5.8) P{r=n,8,€ds} =v(P—hx»)" "*h(ds),



582 P. NEY AND E. NUMMELIN

where 7 is the inter-regeneration time. Thus for the a-process, we have by
M{®),

(59)  QW{r=n,85,€ds} = ¥ QW — A ® y®)" '« h®(ds).
Applying the definitions of the above quantities, after some calculating, this
— e~ M@y (e ) (P h® v))"_l*(e<"" “h(ds)) .
= e MO Dy(P - h® »)" "% h(ds)
= e(m)-Mmp (r — p S e ds)
= E,[e(*S0-8@n; 1 = S e ds].

Hence

ESSF(S,, 1) = fRde(s, n)Q{r = n, S, € ds}

= fo(S, n)Ey[e(a,Sn>—nA(a); T=n, Sn = dS]
= E”e<a,S,>-A(a)ff(S“ 1) = EXf(S,, 7). O

LEMMA 5.2. Assume that W is open. If E,S, exists then
EPS‘T
Er

(5.10) = ES,.

REMARK. It may be that the left side of (5.10) exists, but the right side does
not. See Example 6.3.

ProoF. Since #  is open, {X,} is a geometrically recurrent Harris process,
with invariant probability measure = (Theorem 4.1). If #(f) exists, then [see,
e.g., Athreya and Ney (1978) and Nummelin (1978)]

- Efgof(x,,)=w(f).

Er

Now take f(x) = E_S,. By hypothesis this is 7-integrable. Then
Evs'r Evz:t=1£n Evzgogn'[{’r 2 n}
Er - Err a Er

- (Es)"'E, imﬁnm_di{fa n}).

Now E,[¢,1%, 1= Ey S, = f(X,_,). Thus
Evs-r _ Evz:z—lf(Xn-—l)

= = = . a
Er E(7) 7f = E.5,
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The important part of the following lemma is (5.13), which is the twisting
formula.

LEMMA 5.3. Assume that W is open. Then
(5.11) vA(a) = (E%r) T (ESSS,)
(5.12) =ESSS,,

provided the latter exists. If VA(a) = v has solution «, for some v € R, then
obviously

(5.13) E2."S, = v.

Proor. By Lemma 3.3
E[s,

E®r’

VA(a) =

and by Lemma 5.1 this = the right side of (5.11). If a« = «,, the above = v.
If E;‘,J(:';Sl exists, then Lemma 5.2 applied to the a-process implies (5.12). O

Note also that

@ @ @ @
(5.14) Equ(a)Sn=E:r::a) A EEE +E:,-‘:a)§n = nE,ga) L = nvA(a).

We note that (5.12) is equivalent to the following differentiation formula:

COROLLARY 5.1.
(5.15) v(U(a)P(a)r(a)) = I(a)(VP(a))r(a).

PrROOF. The left side = Ve X® = (VA(a))e (@, and the right side

- Jtas e et

(5.16) = oA @ / f f w(dx; @)sQ(x, dy X ds; a)

= eMWERSS,. ’ O

REMARK. This formula was proved in Iscoe, Ney and Nummelin (1985)
under a strong recurrence hypothesis, using a tedious direct calculation.
(Elsewhere it has also been the object of lengthy calculations, under special
conditions.) It is a simple consequence of the regenerative approach, and is seen
to hold quite generally.
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Applying the strong LLN to S{*, (5.11) implies:
COROLLARY 5.2. If v € VA(9), then

(5.17) lim —’;S(“v) =0 [@*] as, x€E.

n- oo

We turn to some large deviation theorems. Applying Theorem 4.1 and Lemma
5.3, the following results are proved very similarly to their analogs in Iscoe, Ney
and Nummelin (1985).

THEOREM 5.1. Assume that W is open, let A € & be a @-positive set, and
let x € F. Let G be any open set and F any closed set in R<. Write A* for the
convex conjugate of A and A(T') = inf{A*(v): v € T'}. Then

1 —_
(5.18) liminf-’;log P*(x, A X nG) > —A(G).
If also A is an s-set, then

: 1 —
(5.19) limsup—r;log P"(x,A X nF) < —A(F).

ProOF. The geometric ergodicity of P(a) implies
(5.20) Pr(x, A; a) = I(A; a)e™@r(x; a)[1 + 0(8™(a))],
where 0 < 8(a) < 1, a € 2. Under the hypothesis of the theorem then

1 A
(5.21) lim;log P*(x, A; a) = Aa),
where by Theorem 4.1 A(-) is differentiable and essentially smooth on 2. Thus
1
lim—log E, eS| = A(a),

where I, is the indicator function of the set [ X, € A]. Our hypothesis also
implies that 0 € 2°(A). The conclusions (5.18) and (5.19) then follow directly
from Theorem II of Ellis (1984). O

The sharper large deviation results of Iscoe, Ney and Nummelin (1985) can also
be extended to the present setting. By using the essential smoothness of A
(Lemma 3.4), and the identification of the range of the gradient of A as &= the
interior of the convex hull of the support of S, /r (Lemma 3.5), exactly as in
Iscoe, Ney and Nummelin (1985), one proves: '

. THEOREM 5.2. If # is open and B is a convex set with (B NS+ 2,
and E,S, & B, then there exists a point vy € dB NS such that B c
{0 (6 - vp),a,) >0}, where a,=(VA)(v). Also A*(vg)=A(B)=
inf{A*(v); v € B}.
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This implies [as in Iscoe, Ney and Nummelin (1985)] the representation
formula

S,
Px{X,, c4,~e B}

(5.22) R

= —nA(B)r(x “va)f {X S dy, S € ds}
where {(X,,, S )} is a centered MA-process with measure- P,. Namely, E,.S, =
# being the invariant measure of {X,). Also note that the exponent (a, , s) 1s
> 0 over the range of integration.

For an upper bound, we conclude from (5.22) that if x € F and A is an s-set,
then under the hypothesis of Theorem 5.2

Axn(B-o) (95 @,

S _
(5.23) Px{Xn EA; _;" e B} < ¢"e~"A(B),

In the other direction the local limit theorem [Theorem 5.2 of Iscoe, Ney and
Nummelin (1985)] for S, applies. Clearly r(-; a, ) will also be bounded on some
subset of A. We conclude that if the S, are lattice valued and A is an s-set, then
under the hypothesis of Theorem 5.2

S, _
(5.24) Px<Xn (=] A; _; = B} > cln—d/2e—nA(B).
Thus:

THEOREM 5.3. Assume the hypothesis of Theorem 5.2, and that A is an
s-set. Let {S,} be lattice valued. Then there exist constants 0 < ¢’ < ¢” < o
such that

- S, _
(5.25) c'n~4/%e~nMB) < px{Xn EA; e B} < ¢%e—nAB),

Similar estimates hold in the nonlattice cases, and for continuous parameter
processes {(X,, S,)}, with n replaced by ¢ in (5.25). See Iscoe, Ney and
Nummelin (1985) for further dlscuss1on of such results under the more stringent
hypotheses of that paper

REMARK. The CLT for MA-processes is well known [see, e.g., Nagaev (1957)
and Keilson and Wishart (1964)]. We note that it also follows trivially from
(5.20) (though under excessive hypothe313) Let ® be the Gaussian measure with
mean 0 and covariance ¥, = (E,r) 'cov,S,. Just replace a by a/Vn in (5.20) to
get .

ol 2 ) e () [
ll'rznP (x, A ‘/’7) = 7(A)lim X (\/ﬁ) w(A)exp[zaZ,a ],
and hence P (X, € A, S,/ Vn € T) > 7(A)®(A).
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6. Special cases and examples. We describe several MA-processes which
illustrate the nature of our hypotheses and also some that point to unanswered
questions.

ExXAMPLE 6.1. The “bounded” process. This simple example will play an
1mportant role in Part II of the paper. Suppose that the summands {£;
i=1,2,...} of the additive component are uniformly bounded random variables,
and that the inter-regeneration times {T;,, — Tj; i = .} are also bounded.
Then Y(a, {) < oo for all « € R? ¢ € R! and “///= IRd“. Furthermore, from the
representation formulas for r(x; a), I(A; a) [(4.2) and (4.3)], we see that for each
a € R% (r(x;a); x € E} is bounded and uniformly positive, and {l(A; a);
A € &} is a finite measure. Thus the conditions required for Theorem 4.1 and for
the limit theorems of Section 5 are satisfied.

EXAMPLE 6.2. Finite space space. E = {1,..., N}. It has already been
observed in Iscoe, Ney and Nummelin (1985) that all the large deviation
theorems work in this case, but we point out that the present hypotheses are
especially easily checked. Namely, with

pij(r) = P{Xn+1 =j’ £n+1 € FIXn = l}’ ﬁij(a) = /pij(ds)e<a's>9

={a: p;j(a) < w0}, = ﬂ, 9;;; we see that A(a) exists and is < oo if and
only if p;(a) < oo for all i, j; namely, PD(N)=2. Assume P = {pU(IRd)} is
irreducible. Then for all a € 9, P(a) is geometncally A~ !(a)-recurrent
(Perron—Frobenius theorem). If 9;; are all open, then so is 9. By part (b) of
Theorem 4.1 we conclude that #~ is open. [The minorization (M,) can be taken
as h(i, I') = 8,0pp(T), »(j) = 8;5.] Thus all the conclusions of that theorem
hold.

EXAMPLE 6.3. A modified “sawtooth” chain. The following example of an
integer valued MA-process on a countable state space M.C. illustrates a case
where P(a), considered as an operator on the space of bounded sequences with
sup norm, is unbounded. However, the convergence parameter A(a) is well
defined and finite for all « € R. The eigenmeasure associated with e*(® is not a
finite measure, and the (right) eigenfunction is not bounded away from 0. Thus,
we can use our results to determine the rate function of P,(S, > an, X, = j), but
not of Py(S, > an), since the set E = {0,1,...} is not an s-set. An approach via
the spectral radius also does not work here.

Let {X,} be a M.C. on E = {0,4,5,6,...} with transition function

P(0,4i) =p,, i=0,1,...,
P(4i,4i + 1) = P(4i + 1,4i + 2) = P(4i + 2,4i + 3) = P(4i + 3,0) = 1,

for i=1,2,.... Define, for i>1, f(4i)=0, f@Ai+1)=ga,; [fAi+2)=
—f(4i + 3) =i, f(0) = 0, where a; is a given sequence of numbers. Then

P(a) = {P(i, j)e*!D, i, j € E}.
The spectral radius of P(«) is oo for a # 0.
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Now P[(7, 8,) = (1,0)] = py, PI(7,S;) = (5,a;)] = p;, i = 1. Thus Y(e,{) =
Poe ¥ + (1 — py)e ¥p(a), where ¢(a) = (1 — p,) T2 p,e®* is a generating
function.

Thus clearly A(a) is well defined by ¢(a, A(a)) = 1. Suppose the sequence
{a;} is bounded. Then ¢(a) < oo for a € R and hence A(a) < o for all @ € R.

The invariant measure for eA(® is computed from (4.3):

1(0,0) =1, Il(4i,a) = p;exp(—A(a)),
I(4i + 1; @) = p;exp(aa; — 2A(a)),
1(4i + 2; @) = piexp(a(a; + i) — 3A(a)),
I(4i + 3; a) = piexp(aa; — 4A(a)), i=1,2,....
The right eigenfunction r(i, a) is easily computed from (4.2). If p, = ce™, i > 0,
then for a > y, I(E, @) = co. Also for a > 0, liminf r(i; a) = 0. Now for all fixed
(i, j) the sequence of probability measures

S, .
oZe.,x,-)
n

satisfies the LD principle with the same rate function A*(-). But one easily
checks that Py{S, > an} may decay at a rate other than A*(a).

EXAMPLE 6.4. Strong recurrence. Markov chains on a general state space
with transition function P satisfying
(6.1) av(A) < P(x,A) <bv(A), Ae€é¢,
for some probability measure », and some 0 < a < b < o0, act very similar to
finite state space chains. Harris [(1963), Theorem 2.10.1] has proved a complete
analog of the Perron—-Frobenius theorem for this case.

In Iscoe, Ney and Nummelin (1985) we studied MA-processes satisfying a
natural extension of (6.1). Namely,
(6.2) av(A XT) < P(x,AXT)<bv(AXT),

where » is now a measure on (E X R?, &X #¢). We will show that a somewhat
more general form of this condition also fits nicely into the scheme of the present
paper; namely, that “#” open” can be verified. The hypothesis consists of the
minorization (M) together with a similar upper bound for P. Namely, that

(M) There exist measures {h(x,-), x €E} on R? and v on
E X R, such that for some 0 < a < b < oo,

(6.3) ah®v(x,AXT)<P(x,AXT)<bh®v(x,AXT),
forallx e E, A € &, T € R?, where
(h@»)(x, AXT)=h(x,-)*x»(A x -)(T) = /Rh(x ds)»(A X T — s).
The a-transform of (6.3) is
(6.4) ah ® 3(a) < B(a) < bh ® 3(a).

For the following proposition, (6.4) is sufficient (and slightly weaker), with only
the lower bound in (6.3) needed to assure existence of the regenerative structure.
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Take 0 < & < a, and consider the regeneration structure and associated gener-
ating function ¢ = ¢ (e, {) and domain #"= #,, determined by the minorization
eh ® v. Let

92’ = {a: ph(a) < 0},
&' = convex hull of support of » * A(-).

ProposiTION 6.1. Assume (6.4), 2’ open, and P+ @. Then for some
e>0, ¥, isopen, ¥’ =%, D' = D(N\). Hence all the conclusions of Theorem
4.1 hold.

PROOF. Starting with (6.4), conclude by Lemma 2.3 that P(a) is g-recurrent.
Let A" Y(a) = e~ A® be its associated convergence parameter. By (6.4)
(6.5) a™(?h)""(a) < $P"h(a) < b™(3R)" (a), a9’

Now A(a) < oo if and only if £8"$P"A(a) < oo for some & > 0, which by (6.5) is

equivalent to #A(a) < co. Hence 2’ = 9(), and 2(A) is open. The conditions

of Lemma 4.3 are satisfied and hence there is an & > 0 such that #; is open.
Finally, note that

(6.6) P{(S. €T} = ¥ vs(P—ch@»)" s h(T).

n=1

Hence
] S'r ° 0
oe¥ < 0€ Supp,,(7) « O € (Supp,(S,))

< O Supp{r*[P—e(h*v)]" '+ h}o, for some n > 1

= O € Supp{(»+* h)*"}o, forsomen > 1 [by (6.3)]

e 0.
To argue that v € &, translate the process by v and argue as in the proof of
Lemma 3.5. O

REMARK. The hypothesis (6.4) can be replaced by the somewhat weaker
condition: :
For some integer £ > 1, there exist kernels

{(hi(x,T):x€E, Te®?), iel={1,...,,N)},

and probability measures »'(- X - ) on (E X R? & x R“) with transforms A¥(x; @),
?'(A; a), such that »'* h/(R?) > 0 for i, j € I, and

(6.7) a X h(a) ® #(a) < ﬁk(q) <bY h¥(a) ® #(a), forsome0 <k < oo.

iel iel
Similarly the minorization (M) can be replaced by
(6.8) Y hi(x,-)*»¥(A X -)(T) < P*¥(x, A; T).

iel
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COROLLARY 6.1. Under (6.3)
(6.9) c,h(x,a) < r(x; @) < c,h(x,a), x€R?,
for some 0 < c;(a) < cy(@) < o0, a € 2, and
(6.10) v.,9(A,a) <l(A;a) <y,9(A;a), AE€&,

for some 0 < y)(a) < yy(a) < 0, a € Q.

ProOF. Just multiply through (6.4) on the right by r(«), then on the left by
I(a). Recall that #r=1and lA=1. O

Thus bounds on A or # imply similar ones on r and L If #(E; a) < o0, then
I(-; @) is a finite measure, and by Corollary 4.1 I(A; a) is analytic on 2 for
each a.

EXAMPLE 6.5. A “Doeblin”-type condition. Here is an example where (6.4)
may fail, but P(a) satisfies (2.17), which is weaker. However, this is compensated
by a strong restriction on {£,}.

PROPOSITION 6.2. Suppose P(x, dy X ds) = B(x, dy)h(x, ds), where P is sto-
chastic. Assume ag(a) < h(x; @) < bj(a) for some fixed probability measure g
on R?, and that ch(x; a)p(A) < P(x, A; ) for some ¢ > b — a and probability
measure v on E. Then P(a) is g-recurrent for a € D(\) = 9(8). If this is an
open set, then all the conclusions of Theorem 4.1 hold.

PROOF. Verify the conditions of Lemma 2.4 for P(a). Also ag(a)B(x, dy) <
P(x, dy; @) < bg(a)P(x, dy) and hence ag(a) < Ma) < bg(a), and 2(\) = D(8).
O

For example, if E = {0,1,2,...} and P={p;;} with p,, >8>0, and if
h(i,T) = P{£,,, € T'|X, = i} satisfies ag(a) < (i, a) < bg(a) for some fixed &,
with b — a < §, then the conditions of the proposition are satisfied.

EXAMPLE 6.6. Another “sawtooth-type” process. Consider a chain {X,}
with transition kernel P= {p;; i, j=0,1,2,...} satisfying p,; =0 for i > 1,
J = i; namely, it is lower triangular except for the first row. Thus starting at 0,
the process jumps to the right, then moves to the left by arbitrarily distributed
steps until it hits 0 and jumps out again. This process has nice properties which
illustrate some aspects of the applicability of our method. [Note that a condition
like (6.4) cannot be satisfied here, whatever {S,} may be.]

Let us take S, to be the occupation time vector of a finite number d of states.
[S, = Z1f(X;_,, X;), with f having finite support would work just as well.]
Let {T,, i=0,1,...} be the hitting times of {0}. Then ||S,|| < d. If @(¢) =
Ep,e” < oo for all £ € R, then

¢(a, g‘) = Ee("‘vsv>“§‘f < o0,
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for all (&, {) € R**. Thus #'= R¢*1, and all the ensuing theory goes through.

However, this depends delicately on {p,;}. Take, for example, the simple
sawtooth process, namely p; ; , =1 for i > 1, but drop the requirement that
@(t) < oo for all ¢. Simplify further to S, = the occupation time of a single state,
say {0}. Then

p(i, j; ) =Pi,(8ioea +(0- 8i0)]
and one can check that
r(i;e) = (Ma)) ™, i21;7(0; @) = 1 (say).
Also it is necessary that

e"ZpoJ(i) = Z P0i>‘_i =Ar(0) = A.
i=0

Thus letting p = A7, @(p) = L2, py:0', We require that pp(p) = e * have a
solution. If a > 0 this will always work, but if a < 0 it may fail. A sufficient
condition would be ¢(-) essentially smooth. Let p = Lip,; and 7P = .

Now 7, = p~'E% . po; and hence E, ¢, = A’(a)|,_o = ™ = 1/p. Thus if v <
1/p, then A’(a,) = v would imply a, is negative. We can therefore choose the
probabilities { p,;} so that pp(p) = e~* has no solution, and the above methods
cannot be applied to estimating P{S,/n < v}. However, if @(-) is essentially
smooth the required roots always exist.

A similar situation prevails in somewhat less trivial cases like

Poj = Dj; Pp=1 Pio =DPii-1 =73, fori>2.
Here r(i; o) also has geometric growth, and the essential smoothness of the

generating function of { p,} is sufficient, as above. One can construct other more
complicated examples of this kind.

EXAMPLE 6.7. Random sums of i.i.d. r.v’s. Let0 <T, <T,< --- bethe
renewal epochs of a renewal process with increment distribution G. Let {£,} be a
sequence of i.i.d. r.v.’s with distribution F and define the process S, = © @ Ti<nés
namely, §; = Sy, — Sy, _, with §, = 0. Also assume {£; i = 1,2,...} are indepen-
dent of {T}; i = 1,2,...}. Then in the notation of Section 3,

#(a,8) = Be® &~ = A(a)d(-),

and
#={acR%: Fa) <o} X {{ €R: G(-¢) < x),
€, = {a eR% G(-A) = (F(a))_l,for some A = A(a)}.

’i;llus if {F < o0} and {G < o} are open, then so is #".
If, for example, {S;; ¢ > 0} is a compound Poisson process, i.e., G = exp(B),
B >0, then G(—¢) = B/(B+ ¢) and A(a) = B(F(a) — 1) > —B for all « € RL.
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Hence §(a, {) < oo for some ¢ < A(a) whenever F(a) < o0, and therefore
= {a: F(a) < 0} = 9.
Thus if 2 is open then Theorem 4.1 is satisfied.

EXAMPLE 6.8.. Birth-death chain. TakeE = {0,1,...},
P{X, ,=i+1X,=i} =p, i1,
P{X,,,=i-1X,=i} =1-p,

P{X,,,=1X,=0} =1,

and let S, = ¥ ,f(X,). It seems difficult to directly verify any of the criteria of
this paper for {(X,,S,)} (even with restrictions on f). However, we will see in
Part II by an approximation argument that the logarithmic large deviation
theorem still holds.

REFERENCES

ATHREYA, K. B., McDoNALD, D. and NEY, P. (1978). Limit theorems for semi-Markov processes and
renewal theory for Markov chains. Ann. Probab. 6 788-797.

ATHREYA, K. B. and NEY, P. (1978). Limit theorems for semi-Markov processes. Bull. Austral.
Math. Soc. 19 283-294.

ATHREYA, K. B. and NEY, P. (1982). A renewal approach to the Perron—Frobenius theory of
non-negative kernels on general state spaces. Math. Z. 179 507-529.

AzENCOTT, R. (1980). Grandes deviations et applications. Ecole d’Eté de Probabilités de Saint-Flour
VIII, 1978. Lecture Notes in Math. 774 1-176. Springer, Berlin.

CINLAR, E. (1972a). Markov additive processes, 1. Z. Wahrsch. verw. Gebiete 24 84-94.

CINLAR, E. (1972b). Markov additive processes, II. Z. Wahrsch. verw. Gebiete 24 95-121.

DE ACOSTA, A. (1985). Upper bounds for large deviations of dependent random vectors. Z. Wahrsch.

< verw. Gebiete 69 551-565.

DIEUDONNE, J. (1960). Foundations of Modern Analysis. Academic, New York.

DONSKER, M. D. and VARADHAN, S. R. S. (1975a). Asymptotic evaluation of certain Markov process
expectations for large time, I. Comm. Pure Appl. Math. 28 1-47.

DONSKER, M. D. and VARADHAN, S. R. S. (1975b). Asymptotic evaluation of certain Markov process
expectations for large time, II. Comm. Pure Appl. Math. 28 279-301.

DONSKER, M. D. and VARADHAN, S. R. S. (1976). Asymptotic evaluation of certain Markov process
expectations for large time, III. Comm. Pure Appl. Math. 29 389-461.

DONSKER, M. D. and VARADHAN, S. R. S. (1983). Asymptotic evaluation of certain Markov process
expectations for large time, IV. Comm.. Pure Appl. Math. 36 183-212.

ELL1s, R. (1984). Large deviations for a general class of random vectors. Ann. Probab. 12 1-12,

ELuis, R. (1985). Entropy, Large Deviations, and Statistical Mechanics. Springer, New York.

GUNNING, R. C. and Rossl, H. (1965). Analytic Functions of Several Complex Variables. Prentice-
Hall, Englewood Cliffs, N.J.

HaRrRris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin.

Iscog, I, NEY, P. and NUMMELIN, E. (1985). Large deviations of‘uniformly recurrent Markov
additive processes. Adv. in Appl. Math. 6 373-412

KEILSON, J. and WISHART, D. (1964). A central limit theorem for processes defined on a finite

“ Markov chain. Proc. Cambridge Philos. Soc. 60 547-567.

KiM, G.-H. and Davip, H. T. (1979). Large deviations of functions of Markovian transmons and
mathematical programming duality. Ann. Probab. 7 874-881.

MILLER, H. D. (1961). A convexity property in the theory of random variables on a finite Markov
chain. Ann. Math. Statist. 32 1260-1270.



592 P. NEY AND E. NUMMELIN

NAGAEV, S. V. (1957). Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2
378-406.

NEY, P. and NUMMELIN, E. (1984). Some limit theorems for Markov additive processes. Proc. of
Symposium on Semi-Markov Processes. Brussels.

NieMy, S. and NUMMELIN, E. (1986). On non-singular renewal kernels with an application to a
semigroup of transition kernels. Stochastic Process. Appl. 22 177-202.

NUMMELIN, E. (1978). Uniform and ratio limit theorems for Markov renewal and semi-regenerative
processes on a general state space. Ann. Inst. H. Poincaré Sect. B 14 119-143,

NUMMELIN, E. (1984). General Irreducible Markov Chains and Non-negative Operators. Cambridge
Tracts in Mathematics, 83. Cambridge Univ. Press.

OREY, 8. (1971). Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Rein-
hold, London.

STROOCK, D. (1984). An Introduction to the Theory of Large Deviations. Springer, New York.

TwEEDIE, R. L. (1974a). R-theory for Markov chains on a general state space I: Solidarity
properties and R-recurrent chains. Ann. Probab. 2 840-864.

TWEEDIE, R. L. (1974b). R-theory for Markov chains on a general state space II: r-subinvariant
measures for r-transient chains. Ann. Probab. 2 865-878.

VERE-JONES, D. (1967). Ergodic properties of nonnegative matrices I. Pacific J. Math. 22 361-386.

VERE-JONES, D. (1968). Ergodic properties of nonnegative matrices II. Pacific J. Math. 26 601-620.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN UNIVERSITY OF HELSINKI
MapisoN, WISCONSIN 53706 HELSINKI

FINLAND



