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THE NUMBER OF PACKETS TRANSMITTED BY COLLISION
DETECT RANDOM ACCESS SCHEMES

By F. P. KELLY AND I. M. MACPHEE!
University of Cambridge

We consider infinite source collision detect random access schemes. For
such schemes we establish that the number of packets successfully trans-
mitted is infinite with probability 0 or 1 according as the arrival rate is
greater than or less than a critical value.

1. Introduction. An infinite number of stations share a single communica-
tion channel. Packets for transmission arrive in a Poisson stream of rate » > 0
from time ¢ = 0 onward and no station ever has more than one packet arrive at
it. All stations are synchronized and the time axis is slotted so that one packet
can be successfully transmitted in the slot (¢, ¢+ 1), ¢t = 1,2,... . However, if
two or more stations transmit in a slot, there is a collision and none of the
packets involved is successfully transmitted. When a station transmits a packet,
it learns at the end of the slot whether the packet has been successfully
transmitted or whether a collision has occurred. Call the collection of packets
that have collided and await transmission the backlog. A station with a back-
logged packet waits for a random time and then retransmits the packet, repeat-
ing this procedure until the packet is successfully transmitted. In this paper we
consider the case where the only information a station has concerning other
stations or the use of the channel is the history of its own transmission attempts.
Retransmission policies which use only this information are called collision
detect (or acknowledgment based) random access schemes.

The simplest example of such a retransmission policy is the Aloha scheme
(see, for example, [4]). Under this scheme, packets arriving during the interval
(t — 1, t) are first transmitted in slot (¢, ¢ + 1), the first complete slot after their
arrival. Also, backlogged packets are independently retransmitted with probabil-
ity f € (0,1) in slot (¢ ¢ + 1). Thus, the retransmission delay following an
unsuccessful attempt is geometrically distributed with parameter 1 — f. A more
sophisticated retransmission policy is the Ethernet scheme. Under this scheme a
station which has attempted unsuccessfully to transmit a packet r times,
retransmits after a further delay which has a discrete uniform distribution on
B, = {1,2,3,...,|b"]}. Here b > 1 is the backoff factor and the case b =2 is
termed binary exponential backoff [11].

In this paper we prove that for a general collision detect random access
scheme there exists a critical value », € [0, 0], with the property that the
number of packets successfully transmitted is finite with probability 0 or 1
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according as » < », or » > v,. For example, for the Aloha scheme », = 0. More
generally, we show that »,= 0 for any scheme with slower than exponential
backoff. For the Ethernet scheme with backoff factor b we prove that », = log b.

The organization of this paper is as follows. In Section 2 we formally define
the model and a number of examples, and in Section 3 we obtain our main
results. In Section 4 we consider an unslotted version of the model, in which it is
not assumed that stations are synchronized, and indicate how our results are
altered in this case. For example, we find that an unslotted Ethernet scheme
with backoff factor b has a critical value of }log b.

Some of the results of this paper are described in [8] as part of a brief essay on
probabilistic problems in random access communications. For a much fuller
review of the area, the reader is referred to the collection [10]. In particular, the
papers of Gallager [4] and Hajek [7] discuss in detail the assumptions underlying
the basic model considered in this paper.

2. The model and some examples. Let the arrival times of packets be
0<t <ty< ---, where the sequence ¢, ¢,,... is a realization of a Poisson
process of rate ». Label the stations so that station i receives its packet at time
¢;. Station i transmits its packet in slots (|;] + 7; ,,18,] + 7, + 1), r=1,2,...,
stopping only when the packet is successfully transmitted. T; = (7; ,,r € N) is
an increasing sequence of positive integers and T}, i € N, are independent and
identically distributed. Fix a probability space (2, &, P) that carries the Poisson
arrival stream and the sequences T}, i € N.

Let s, = s if station i successfully transmits its packet in slot (s, s + 1) and
s; = oo if it never manages to transmit its packet. Thus, s; > |¢;]. Write

(2.1) L={i:t;<t<s;}, teN,

for the set of stations with packets at time . The number of transmissions
attempted in slot (¢, ¢+ 1) is

(2.2) Z,=|{iel:te|t;]+T}|, teN.
A successful transmission occurs only if Z, = 1, and so
s;=t, iel:te|]+ T,

2.3 Z,=1

(2:3) ¢ =>si>t, iel:te |+ T,
while

(2.4) Z,=0=s,>t, i€l

The recursive relations (2.1)—(2.4) define the stochastic process (I,, ¢ € N) on
(Q, #, P). Let '

(2.5) X, = (L) {(Ll&] + T) N {1,2,...,t - 1}: i € L}).

Thus, X, gives the number of stations with packets at time ¢, and for each such
station it records when, prior to time ¢, that station attempted transmis-
sions. Observe that (X,, ¢ € N) is a Markov chain with stationary transition
probabilities. Let & be its state space and denote the state (0; ) by 0. Write
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P(X,=x|X,=0)=P(X,=x) and let P(X,=2x)=PX, ,= x| X, = x)
whenever there exists a u € N such that P(X, = x) > 0.

Let
(2.6) h(r) =P(reT), T N.
Note that, since T} is an infinite sequence, ¥3°_,h(7) = 0. Let
(27) HO) - © [{ £ (r) o =» 3 )}]
t=

Then H(») is nonincreasing in » and may be infinite for small enough values of ».
Let

(2.8) v, =inf{r > 0: H(») < 0},
where v, = oo if H(v) = oo for all » € (0, ).

REMARK 2.9. Note that the probabilistic structure of the sequence T; in-
fluences », only through the probabilities (1), 7 € N.

We shall establish in Section 3 that the number of packets successfully
transmitted is finite with probability 0 or 1 according as » < », or » > ».. In the
remainder of this section we provide some examples of the general construction.
The examples show that », may take any value in the set [0, co].

ExXaMPLE 2.10. Aloha (see, for example, [4]). For this scheme, described
informally in the Introduction, 7,; =1and 7, ,,, -7 ,—1, r=12,..., are
independent random variables geometncally distributed with parameter 1-f,
where f € (0,1). Thus, A(1) =1 and k() =f, 7=2,3,..., and so, from (2.7)
and (2.8), », = 0.

ExaMpLE 2.11. Ethernet [11]. Set 7,, =1 and let 7,y — 7, r=12,.
be independent random variables with 7; ,.,, — umformly dlstrlbuted on the
set B,={r€N:1<r7<|b"]}. Here, b> 11is the backoff factor. Let

R(t) = Z I["' € T1]

be the random number of transmission attempts a packet will make before it has
been delayed by a time ¢. Then, certainly,

R(?)
Y o>t
r=0

equivalently,
(BRO*1 —1)/(b—-1) > ¢
and, hence,
(2.12) P(R(t) = log,((b—1)t+1) - 1) =1.

i
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But for 2 > 1,
P(R(t) 2k +1)=P(7, ., < t)

k
=< P( Z (Ti,r+1 - Ti,r) < t)

r=1

<P(Tir+1 trStr_lz k)
min{s.
= min
LY
k t

r=|log,t]+1 I_brj
k—1—|log,t] 1

A

Thus, for j > 1,
J-1

(2.13) P(R(t) = |log,t] +j+1) < 1—[ l;r] .
From (2.12) and (2.13),
§1h(7) = E(R(2))

=log,t + O(1) ast— co.

Hence,

exp{—v 5 h(f)} — exp{ —»log,t + O(1))

T=1
= ¢/ 18 bexp{0(1)} ast— oo

(logarithms are natural unless otherwise indicated) and so, from its definition
(2.7),

H(v) = oo, v € (0,logb],
<o, ve(logb, o).
Thus, from (2.8), », = log .

Hajek [6], Rosenkrantz [12], Fayolle [3], Goodman, Greenberg, Madras and
March [5], Szpankowski and Rego [13] and Aldous [1]'have considered a variant
of this example, where 7, .., — 7, ,, r =1,2,..., are again independent random
variables, but where 7, .., — 7; ; 1 is geometrically distributed with mean b”.
These authors were pnmanly interested in the recurrence or transience of the
stochastic process (I,, t € N), an issue to which we return in Remark 3.14, and
the geometric assumption permits a substantial reduction of the Markov descrip-
tion (X,, ¢ € N). The geometric assumption complicates the preceding calcula-
tions, but does not alter the critical value v, = log b [9].
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ExXaMPLE 2.14. Let the events {r€ T}, 7 € N, be independent, with
P(r € T)) = a/7, where a > 0. Thus, a packet which arrived in the interval
(t — 1, t) and has not been successfully transmitted by time ¢ + 7 — 1 is retrans-
mitted in slot (¢ + 7 — 1, ¢ + 7) with probability a/7, and the retransmission
rate of a packet depends only upon the delay it has incurred. This scheme is
more tractable mathematically than the previous scheme, although its general
behaviour is very similar. Note that

t t a
Lh(r)= X —
=1 r=1T
=alogt+ O(1) ast—

and, hence, v, = a~'. Observe that in this example and the next, the sets T; are
infinite with probability 1 by the second Borel-Cantelli lemma.

ExaMPLE 2.15. Let the events {r € T}, r € N, be independent, with
P(r€T)~ (rlogr) 'as 1 - co. Then

t
Y h(r) ~loglogt ast— o

T=1"

and from this it follows that H(») = co for any » € [0, o0). Thus, v, = co.

REMARK 2.16. We have assumed that the sets T} are infinite. Our model and
our subsequent results generalize to allow P(|T}| < o) > 0, with the interpreta-
tion that station i discards its packet after |T;| unsuccessful transmission
attempts. Under this generalization E|T;| < co implies that ¥2°_,A(7) < o0 and,
hence, that », = .

(Example 2.11 is, of course, a mathematical idealization. The authors note
that the implementation of Ethernet [2] discards a packet after 16 attempts; it
also permits at most 1024 stations.)

REMARK 2.17. The Ethernet scheme is often termed “exponential backoff,”
since the size of the set B, grows exponentially with r. Part (a) of the following
proposition makes precise the statement “», = 0 for any scheme with slower
than exponential backoff.” Parts (a) and (b) can be regarded as generalizations of
Examples 2.10 and 2.15, respectively. '

ProprosITION 2.18. (a) If
7=1h(7)

=1
t— o0 logt ’
then v, = ’
(b) If
Xt h(r)
— =0
t-o logt

b

then v, = 0.
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PrOOF. Let
t_h(7)
=1
t = e——
8(t) logt
From the definition (2.7)
* g(t)logt

H()= X O
t=1
Recalling (2.6), g(¢)logt < ¢t and for any K < oo there exists #(K) < oo such
that g(¢)logt > K for t > #(K ). Hence

00 [oe]
K Y t759 <H(»v) < Y 1780,

t=H(K) t=1
The first inequality shows that
lim g(t) =0=H(») =0, Vve(0,x0),
t— o0

while the second inequality shows that
lim g(t) = 0o = H(v) <00, V»e(0,0).
t— o0

Results (a) and (b) now follow from the definition (2.8) of ».. O

3. Results. We start by introducing a partial ordering on the state space Z.
For x, x’ € Z, define x > x’ to mean |I| > |I’| and

{(xij; Jj= 1,2,...,j(i)),i€I} - {(x{j;j= L,2,...,j(i);ie I’}.

Recall from relation (2.2), that Z, is the number of transmissions attempted in
slot (¢, ¢+ 1). Let x,, x, € % and suppose x, > x,. Write X%, Z%, k = 1,2, for
copies of X,, Z, started from x,, x,, respectively. There is a natural coupling of
the processes X; and X? such that for every ¢, X! > X? and Z} > Z2. Without
essential loss of generality, assume min{r: P(7,, =) > 0} = 1.

LEMMA 3.1. Suppose x, € ¥ is such that P(X, = x,) > 0 for some x € &,
t € N. Then there exists x, € & such that x, > x, and

P(X,=x,)=P(X,=2x,,Z,>22,8=1,2,...,t) > 0.

Proor. Construct a process (X/, r € N) from (X,, 7 € N) by attaching to
each Poisson arrival an independent Bernoulli trial with success probability 1,
say. Admit only arrivals with successful trials to the system. Then (X7, 7 € N) is
a version of the process defined by (2.1)-(2.5) on an arrival process of rate »/2,
but if P(X,=x,)> 0 then P(X/ = x,)> 0, as all the Bernoulli trials up to
time ¢ may be successes. Again, since ¢ is finite, P(Z! > 2, s =1,2,...,¢t) >0
and, thinking of the rate » arrival process as a superposition of two independent
rate }» processes, the existence of an x, is assured. O
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Next, let ® = {t € N: Z, <2} denote those slots where transmission is
possible but which are not the occasion of a collision.

ProposiTION 3.2. If v > v, then P(® = ¢) > 0.

Proor. Define
(3.3) Z,=|{ieN:t—|t;,|] € T}|, teN.
This random variable has the following interpretation. If the channel is exter-
nally jammed from time ¢ = 1 onward so that no packets are ever successfully

transmitted, then Z~t is the number of transmissions attempted in slot (¢, ¢ + 1).
Define, for fixed ¢, u = 0,1,...,¢t -1,

V,=|{ieN:u<t;<u+1,t-|t;] € T}

and observe that Yu, u=0,1,...,t— 1, are independent random variables and
that Y, has a Poisson distribution with mean E(Y,) = vhA(¢ — u). But
t-1
Z~t = Z Yu
u=0

and, hence, Z, has a Poisson distribution with mean »¥!_, A(r). Thus,
¢ ¢
P(Z,<2) = {1 +rY h('r)}exp{—v Y h('r)}
=1 =1

and so, since ¢ was arbitrary,

(3.4) $={teN:Z <2}
has expected cardinality
(3.5) E(®) = 21{1 +v élh('r)}exp{—v Z_tjlh(f)}.

Suppose now that » > ».. Then, from (2.8) and (2.7), H(v) < co and so, from
(3.5), E(|®|) < oo. Thus, @ is finite with probability 1.

Let F be a finite subset of N such that P(® = F) > 0 and let ¢ = max F.
Choose x, € & so that P(X,,; =x, ® N {1,2,...,t} = F) > 0. Use Lemma 3.1
and the coupling argument preceding it to conclude that

P((I)=¢)2P(Xt+1=x2’q)=¢)
=P(X,,, = x2)Px2(Zt >2,teN)
> P(X,,, = xz)Px,(Zt >2,teN)

=P(X,,,=%,)P,(Z,22,teN)>0. |

LEMMA 3.6. Suppose E,,n € N, is a collection of disjoint sets and E,e,,
n € N, are such that

P(E|E,) >e,, neN.
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Then

P(E UE,,) > infe,.

n

ProoF. Direct. O

PRroPOSITION 3.7. If P(® = ¢) = p, then
P(® >n)<(1-p)"

ProoF. Define, for s =0,1,2,...,

(3.8) I[={weZ,22,t=s5+1,5+2,...}
and, further, 6, = 0, .
(3.9) 0, =inf{¢t>6,_,: Z,< 2}, i=1,2,...,

where inf ¢ = co. Thus, if finite, §; is the ith slot which is not the occasion of a
collision. Let 6 be any stopping time with respect to {Z,, ¢ € N}. Observe that-
{0 =t} € o(X,, Xy,..., X,) and, hence, using the Markov property,

P(T,n{6=¢t}n{X;=x,,i=0,1,...,t})
=P, (T)P({0=¢t} n{X;=x;,i=0,1,...,¢}).
Since P, (I},) = P(I;,) = P(? = ¢), applying Lemma 3.6, we see that
P(T)0=t¢) >p, t=1,2,....

Writing T, =U2 {0 =t} NT,, we can apply Lemma 3.6 again to obtain
P(T,|0 < o0) > p. Next, set 6 = ;. Then, from this inequality and definitions
(3.8) and (3.9),

P(0,,,<wlf,<0)<1-p, i=12,....

Evidently,
{12/ 2n} = {0, <0} and {6, = o0} ={®=9¢},
which establishes the proposition. O

THEOREM 3.10. If v € (v, ), then P(|®| = o0) =0 and so, with prob-
ability 1, the scheme transmits successfully only finitely many packets.

Proor. This follows from Propositions 3.2 and 3.7. O
THEOREM 3.11. If v € (0, »,), then P(|®| = o0) ='1.

_Proor. Recall definition (3.8) and observe that
P(T,) = Y P(X,=x)P(T,), t=1,2,....
x

Suppose that for some ¢t € N, P(T,) > 0. Then P(T,) > 0 for some x such that
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P(X, = x) > 0. Apply Lemma 3.1 with x, = x to obtain x, such that

P(Ty) = P(X,=2x,,2,22,s=1,2,...,t)P,(T,) > 0.
Now, P(Iy) = P(® = ¢) = P(® = ¢), where ® is as defined by (3.4). The proof
of Proposition 3.7 can be applied to the process Z, defined by (3.3), to establish
that P(|®| > n) < (1 — p)", where p = P(® = ¢) and, hence, E(|®|) < c0. But
this contradicts the assumption » € (0, »,). Hence, P(I,) = 0 V ¢. But then

o0
P( U 1“,) =0
t=1
and

{Io] <0} = UT. o
t=1

THEOREM 3.12. If v € (0, »,), then with probability 1 the scheme transmits
successfully an infinite number of packets.

ProoFr. Let
W,=|{ieN:|g] + 1= t}!,
the number of first transmission attempts in slot (¢, ¢ + 1). For z = 0,1, define
V,={t>d:Z,— W,= 2z},

so ¥, is the set of slots where 2 retransmission attempts are made. Observe that

|®|= Y (I[te ¥, W,=0] + I[te ¥,, W,=1] + I[t € ¥,, W,=0]).

t=1
But W, is independent of (X,, I[t € ¥,]) and so with probability 1,

Y (I[te ¥, W,=1] + I[t € ¥, W,=0])=c0

t=1

= Y I[te ¥, W,=1] = .

t=1
From Theorem 3.11 we have that |®| = co with probability 1 and, hence,

Y (I[te ¥, W,=0] +I[te ¥, W,=1]) =

t=1
with probability 1. O

REMARK 3.13. It has been convenient to arrange our results according as
v <, or v >y, but observe that the proof of Proposition 3.2 used only the fact
that H(») < oo, while the proof of Theorem 3.11 used just that H(») = oo.
These observations allow the critical case » = », to be decided. They show that if
v =y, € (0, ), then P(infinitely many successful transmissions) = 0 or 1 accord-
ing as H(»,) < oo or H(»,) = c. Example 2.11 illustrates the case H(v,) = co. If
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Example 2.14 is amended so that

P(reT)=
(7 ) =a T tlognT

1 3 )
pu— + ,
then »,= a"' and H(»,) < co.

REMARK 3.14. The Markov process (X,, t € N) is clearly transient if » > »,.
It is known that (X,, £ € N) may be transient even if » < v, ([8], or the following
example).

Consider the variant of Example 2.11 in which 7, ,,, — 7, , — 1 is geometri-
cally distributed with mean 2" and let N, be the number of successful transmis-
sions by time ¢. For this scheme, Aldous [1] has shown that (X,, ¢ € N) is

transient and

lim — =0 as.
t— o0
for any arrival rate » > 0. Hence, for » € (0, log 2] this scheme transmits success-
fully an infinite number of packets, but has a limiting throughput of 0.
It is an open question whether there exists a collision detect random access
scheme and a value » > 0 such that (X,, ¢ € N) is recurrent.

REMARK 3.15. The methods described in this section can be extended to the
case where messages are m slots in length and arrive at rate v/m. For example,
in the case of exponential backoff it can then be shown that », =
m(2m — 1)~ 'log b; see [9].

4. Unslotted schemes. The model of Section 2 assumed that stations are
synchronized and, hence, that the time axis can be slotted. In view of the very
limited amount of information available to a station under a collision detect
random access scheme, it is worth looking briefly at the case where stations are
unable to maintain synchronization and, hence, the time axis must be considered
unslotted. In this section we indicate how our results are altered in this case.

Amend the model of Section 2 as follows. Suppose now that T; = (7; ,, r € N)
is a sequence of real numbers satisfying 7,,,, — 7, .21, r €N, with the
interpretation that the packet which arrives at station : at time ¢; is transmitted
in the intervals (¢, +r, ,¢,+ 1+ 1), r=12,..., stopping only when the
packet is successfully transmitted. A transmission in the interval (¢, ¢+ 1),
t € R,, is unsuccessful if any other station transmits for any part of the
interval; otherwise, the transmission is successful. As before, assume that the
‘arrival times form a Poisson process and that the sequences T;, i € N, are
independent and identically distributed. Let A be the event that infinitely many
successful transmissions take place. Let

L(t) = E|T;n [0, ¢]|
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and let
M(t)=P(T,n(t—1,t+1) + ¢}.

THEOREM 4.1. (a) If

(42) jo ”L(t)exp{—p jo ‘M(T)df} dt < 0,
then P(A) = 0. '

(®) If
(4.3) _/:oexp{—vf()tM(f) d'r} dt = oo,
then P(A) = 1.

SKETCH OF PROOF. For ¢ € R, define
Z,=0, if [{ieN:(;+T)N(t-1,t)*¢}|=0
=1, if 3j,reNsuchthat(¢;+1,) € (¢-1,¢)
and {ieN:(+T)N(4+7,-Lt+7,+ 1) # ¢} = {J}
= ¢, otherwise.
This random variable has a simple intefpretation when the channel is externally
jammed, so that no packets are ever successfully transmitted; then Z, =0 if no
transmission attempts are in progress at time ¢ and Z, = 1 if one transmission

attempt is in progress at time ¢ and this attempt does not overlap with any other
transmission attempts. Calculations similar to those leading to (3.5) give that

LmI[Z, =1]dt= fooovL(t)exp{ —vatM(’r) d'r} dt.

Condition (4.2) implies that this integral is finite and from this it can be deduced
that P(A) = 0.
Conversely,

j(;ooI[Z", =0,7€ (t, t+1)] dt = j(;wexp{—vj(;tM('r) d'r} dt.

If this integral is infinite, then an argument parallel to the proof of Theorem 3.11
shows that P(A) =1.0

EXAMPLE 44. Consider the following unslotted version of Example 2.11. Set
7., =0 and let 7, .., — 7, , be independent random variables with 7, .., — 7; ,
uniformly distributed over the interval [1, b"], where b > 1. Then,

L(t) =log,t + O(1) ast— oo,
ftM('r)d'r=210gbt+ O(1) ast— oo.
0

Hence, P(A) = 1if » < }log b, while P(A) = 0if » > 1log b.
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