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ON THE SUPPORTS OF MEASURE-VALUED CRITICAL
BRANCHING BROWNIAN MOTION!

By 1. IscoE
McGill University

Let (X,),> o denote the measure-valued critical branching Brownian mo-
tion. When the support of the initial state, X, is bounded, temporally global
results are given concerning the range, i.e., the size of the supports of
(X,):> 0, and the hitting (i.e., charging) probabilities of distant balls are
evaluated asymptotically; they depend strongly on the dimension, d, of the
underlying Euclidean space R?. In contrast, in the case d =1 and X, = A
(Lebesgue measure), it is shown that (spatially) local extinction occurs. Also
extensions are indicated for the case of an infinite variance branching mecha-
nism; these results are also dimensionally dependent.

1. Introduction and statement of results. In this article we investigate
the global size and, to some extent, the location of the supports of the states of
the measure-valued Markov process (X,),.,, which is an analogue of the
classical critical branching Brownian motion (when the offspring distribution has
finite variance) on d-dimensional Euclidean space R. (X,),. , takes its values in
the set of Radon measures on the Borel o-algebra of R¢, and can be obtained as a
high-density weak limit (i.e., convergence in distribution) of the latter processes
as the mass of the Brownian particles tend to zero in a specific manner [see, e.g.,
Dawson (1975)]. We refer the reader to the articles of Watanabe (1968), Dawson
(1977) and Iscoe (1986a) for the existence and description of (X,),. . (The first
reference treats the case of finite-measure states, which was extended in the
third reference to certain tempered measures; while the second reference is
intermediate in that infinite-measure states were considered, but the presenta-
tion assumed that the branching mechanism had a finite variance.) See also (1.1)
and (1.2) below.

In contrast, the local structure of the support of each state X, was investi-
gated in Dawson and Hochberg (1979), where it was shown in particular that if
d>=2 and X,=A, then X, is almost surely (a.s.) singular with respect to
Lebesgue measure, A, in the sense of absolute continuity. More precisely, they
showed that the Hausdorff dimension of a (random) support for X, is less than
or equal to 2; with the singularity in the case d = 2 handled separately by a
self-similarity argument. Also it was shown in Roelly-Coppoletta (1986) that for
d =1, X, is a.s. absolutely continuous with respect to A. This result is already
implicitly anticipated in equation (6.3) of Dawson (1975) by a stochastic differen-
tial equation for the ostensible density.
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Before giving the statements of the main theorems of this article, we intro-
duce some notation, and recall a characterization of (X,), . o to put the statement
of Theorem 1 into proper perspective.

If x € R¢ we denote its Euclidean norm by |x| and write simply x? for |x|2.
We set B(0; R) = {x € R% |x| <R}, B(; R)={x€R% |x| <R} and
dB(0; R) == {x € R% |x| = R); the complement of a subset of R is indicated
by the superscript “c”. Write

Cy(R9) = {4/ R¢ - R|y continuousand lim ¢(x) = }

|Jx]— + o0
C(R?) = {¢y: R > R|Y continuous and supp ¥ compact},

where supp is an abbreviation of support; the subscript “+” indicates “the
nonnegative members of ....” If G R? is open and u: R, XG> R is
appropriately differentiable, we set (¢, x) = (du/dt)(¢,x) and Au(t, x):=
T4 (3%/3x?)u(t, x). Measures on R? will be understood to be positive and
Radon; A will always represent Lebesgue measure and for x € R¢, §, denotes the
unit atom at x. If ¢ is p-integrable, we will often use the notatlon (¢, n) for
[y dp; if ¢ depends on a parameter a, then we will write (y(a), p) = (Y(a, - ), )
for j Y(a, x) dp(x). We denote the set of all Radon measures on IR" by M(R?); it
carries the topology of vague convergence and the associated Borel o-algebra. We
fix p > d and set M, (IRd) = {n € M(R?): [ga(l + |x|)"Pdp(x) < +o0}.

The process (X, t)tzo is an M,(R 9).valued Markov process whose transition
measures are characterized through their Laplace transforms as

(11) E,[exp(—(¥, X,))] = exp(—(u(t),p)), ¥ < CRY),, pc M,(R?),

where

(12) u(t, x) = Au(t,x) — u*(¢,x),
u(0,x) = ¥(x).

In (1.1), E, denotes expectation with respect to the probability B,, the law of
(X)iso0 such that PB(X,=p)=1. We will use the notation X, for a generic
sample path of (X, ,),> 0» which can be assumed to be right continuous with left
limits by Theorem 1.1 of Iscoe (1986a). In the case that p is finite, it is known
that there is a continuous version of our process [see, for example, Watanabe
(1968)]. This result is probably valid for p € M,(R?) as well, but we shall not
have need of it; and moreover it will not be true in the setting of Section 5.

We now present the main results of this article. The first result concerns the
range of the process globally in space and time when the initial state, X, has
compact support. The expression “X, ever charges a (Borel) set B” means:
3 ¢ > 0 such that X,(B) > 0.

THEOREM 1. Let w(R%) < + oo with suppp C B(0; R;) and let R > R,,
Then

(1.3) P,(X.ever charges [B(0; R)]°) =1 — exp(—R™Xu(R™" ), p)),
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where u is the unique positive (radial) solution of the singular elliptic boundary
value problem

(1.4) Au(x) = u¥(x), x€B(0;1),

u(x) - +o0, asx - 3B(0;1).
In particular, if p = ,, then
(1.5) P, (X. ever charges [ B(0; R)]°) = 1 — exp(—u(0)R~2),
with u as in (1.4). In the case d = 1, the value of u(0) is given by

(16) (d=1) u(0) = 1{I(1/2)T(1/6)/T(2/3)}" € (8.372,8.388),

u(0) = 8.38,

T being the usual gamma function.

As an immediate corollary we deduce that, under the hypothesis of Theorem
1, the “mass” of the process (X,),. , spends its entire “life” within a ball of finite
(random) radius, termed the range of (X,),. .

CoROLLARY. Under the hypotheses of Theorem 1, P([U,. ,supp X,] is
bounded) = 1. More specifically, we can define a random range % := inf(R > 0:
X. never charges [ B(0; R)]°}; then P(Z < R) = exp(—R¥w(R™ '), pn)), with
u as in (1.4). In particular 2 is an absolutely continuous random variable except
possibly for an atom at sup{|x|: x € suppp}, and E,# < + co; in the case
p = 8y, Z is absolutely continuous and Ey R = [u(0)w]"/>.

In the next theorem we given an asymptotic evaluation of a hitting probabil-
ity of a distant ball. It is qualitatively identical to the result for the classical
critical binary branching Brownian motion, as obtained in Sawyer and Fleischman
(1979). In the statement of the theorem, the notation f ~ g means
lim,, . [ f(x)/8(x)] = 1. Note, however, that in “equation” [4.2] of Sawyer
and Fleischman (1979), the dependence of the constant on the radius ¢ is not
made explicit when d > 5. Note also that the exponent (d — 4) coincides with
that in the covariance kernel |x — y|*~¢ of Theorem (5.5) of Iscoe (1986a).

THEOREM 2. For each ¢ > 0,

6/x2, d=1,
4/x2, d=2,
P, (X. ever charges B(x; ¢)) ~ { 2/x%, d=3,
2/[x%loglx|], d=4,
ced™*/|x|972, d>5,

where c is some constant (depending only on the dimension d).
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It was shown in Dawson (1977) that for X, = A, a unique nontrivial invariant
distribution exists and is the weak-lim, _, , X, [i.e, (X,),. , is ergodic] iff d > 3;
and that if G ¢ R is bounded and open, then lim,_, , X(G) = 0 in P,-prob-
ability if d =1 or 2. This latter result was strengthened somewhat in Iscoe
(1986a), where it was shown that [°X,(G)dt < + oo iff d=1. When d =1 it
does not follow immediately that X,(G) — 0 ass. as t - + c0; and if so, whether
or not X,(G) is eventually and permanently zero—i.e., local extinction. In the
next theorem we verify that the latter scenario is correct. The corresponding
result for the classical critical binary branching Brownian motion was obtained
in Sawyer and Fleischman (1979); of course, in that model all particles have the
same mass, so that lim,_ ,  X,(G) = 0 clearly implies extinction in G [here
X,(G) denotes the number of particles in G at time #].

THEOREM 3. Let d =1 and X, = \A. For each R > 0 there exists a finite
random time tp such that with Py-probability 1, X,((—R, R)) = 0 for all t > 7y,
The random variable ty, is absolutely continuous and

0 < liminf#/2P,(15 > ¢t) < limsupt'/2P\(1, > t) < c0-
t— 0

t— o0

Consequently, E\[1z] = + o0.

The layout of the remainder of this article is as follows. In Section 2 we
present the proofs of Theorems 1-3, with the discussion of the deterministic
singular elliptic boundary value problem (1.4) and an analogous “exterior”
problem being delayed until Sections 3 and 4, respectively. In Section 3 we give
considerable detail so that we can safely refer to it (similarly) in Section 4, to
avoid being repetitive. Finally, in Section 5 we indicate some extensions of the
results to a class of processes with a branching mechanism which does not
possess a finite variance. It is not taken up at the outset in order to simplify the
notation in the proofs. An Appendix appears after Section 5 in which some
recent results, concerning the temporal asymptotic behavior of solutions of (1.2),
are stated. In Sections 2-4 and the Appendix, the numbering of lemmas,
propositions, theorems, equations, etc. was done strictly in order of appearance,
in the form (x.y), where x denotes the section number (x = A within the
Appendix).

2. Proofs of the theorems. Before presenting the proofs of Theorems 1-3,
we introduce some additional notation and recall an important representation.

If G c R? is open we let C*(G), k € N, denote the set of k-times continu-
ously differentiable functions from G to R. Most of the functions we shall see
will be radial, i.e., they depend on x € R¢ only through |x|. Strictly speaking
then, if u: G — R is radial, then u(x) = @(]x|) for some i: R, — R; however, we
shall make no distinction between u and & and abuse the notation by writing
simply u(x) = u(r), where the variable r will always represent |x| when viewing
u on G c R? In particular, if u € C%@), then

Au(x) =u"(r)+ ((d—-1)/r)u'(r) forx +0,

where the primes denote differentiation with respect to r; if 0 € G, then



204 L. ISCOE

u'(0") =0, u”(0*) exists, and Au(0) = d- u”(0"). Conversely, it is easy to see
that given an interval I C R, and a function f: I —» R, u(x) = f(]x|) defines a
C? function iff f(0*)=0 and f”(0*) exists in case 0 € I; in which case
Au(x) = f"(|x|) + (d — 1)/|x|)f'(|x|) for x # 0, and if 0 € I, then Au(0) =d -
f”(0%). We would then apply our convention and write simply u(r) for f(|x|).
We shall take advantage of this symmetry in order to avoid unnecessary use of
elliptic regularity theory, etc., for the p.d.e.’s which arise in the proofs.

LEMMA (2.0). Lett>0,G c R? open. If [*X(G)ds = 0, then for all s > ¢,
X,(G) =0 (a.s.).

PrROOF. Choose (¥,),cn © C(R?), such that ¢,11; as n — +co. Then
0= [*X(G)ds > [V, X;)ds. Therefore (y,, X, =0 for a.e. s>t but
s = (Y,, X;) is as. right continuous, and therefore (y,, X,;) = 0 for all s > ¢.
By the monotone convergence theorem, X (G) = lim,, , , .(V¥,, X,) = 0 for all
s>t(as.). O

The main tool used in the proofs of Theorems 1-3 is the following representa-
tion derived in Theorem (3.1) of Iscoe (1986a):

E,L[eXP(—fotw, Xs>d8)] = exp(—(u(¢), p),

reE Mp(Rd)’ ¢ € C(RY),,
where u(t) = u(t, x) is the solution of the evolution equation

i(s) =Au(s) —u*(s)+¢9, O0<s<t,

(2.1)

(2.2)
u(0) = 0.

More generally, we shall need a temporally inhomogeneous version of (2.1) and
(2.2), which was derived in Theorem (3.2) of Iscoe (1986a), for Theorem 3,

@8 Bfew(~ [<ols), X,y ds)| = expl(~cu(t). ),

where u is the mild solution of the evolution equation
(2.4) u(s) = Au(s) —u®(s) +p(t—s), 0<s<t,
u(0) = 0.

In (2.3) and (2.4), p € M,(R?) and ¢: [0, t] — Cy(R?), is right continuous with
left limits [Cy(R?) carries the sup-norm topology] and such that for some K > 0
and all (s,x) €[0,¢] X R% o¢(s,x) < K1 + |x|)77; in particular, the latter
condition holds if each ¢(s, -) € C(R%),.

It was also shown, in Theorem (3.3) of Iscoe (1986a), that as t — + oo, u(t) [of
(2.2)] increases and converges uniformly to z € Cy(R?),, where

(2.5) Au—u®+¢=0.
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PROOF OF THEOREM 1 AND ITS COROLLARY. With R and p as in the
statement of the theorem, § > 0, and ¢, ,, as in (3.3), we can calculate, using
Lemma (2.0), the monotone convergence theorem, and the representation (2.1),
(2.2),

Pn( X. never charges [E(O; R)] c)

- B(["x{[BO; B]) @t - 0]
lim E [exp(—02 fo th([E(O; R)|°) dt)]

60— + o0

= lim lLm Lm lim E[exp(—fT(ﬂqun,m,Xt)dt)]
0

6> +00on—>+o0om—>+o00 T— +o00

= 1 .“R.6
0—1}1-?00 nlu-{loo ml—zli—loo T—}I-Ii-looexP( n'm(T’ ; R, )’ I"‘))

exp(—(u(-; R), p)).

The last equality follows from (2.5), Lemma (3.4) and Proposition (3.15) invoked
in that order. The function v = u, (¢, -; R, #) is the solution of

o(2) = Ao(t) — 0*(¢) + 0%, ..,
v(0) = 0.

Also by Proposition (3.15) u(x; R) = R~ 2u(R™'x;1). Thus (1.3) and (1.4) are
established, and (1.5) follows upon setting x = 0. In the special case d = 1, (1.6)
follows from (3.8) of Proposition (3.5). The numerical estimation was obtained
using Table (6.1) and the values given at (6.1.8) and (6 1.13) in Abramowitz and
Stegun (1964).

Finally, to establish the corollary, we observe that 1f supp p € B(0; R,), then
with B = B(0, R,) and B(R) = B(0, R,/R),

limsup (u(-; R), p) = hmsup/R 2u(R™x; 1)p(dx)

R— +x
< limsupR‘z[ max_ u(y; 1)]M(Rd) =0
R— + o0 YEB(R)

Therefore

PF( U supp X,] is bounded)

t>0

}?:‘( U {X. never charges [ B(0; n)] c})

n=R,

lim_exp(=(u(+; n), p)) = 1.

That E,# < +c0 is clear from (1 3) since for large R, (w(R™'-),p) is
bounded [actually limg_, . (u(R™'-),p) =0]. That 2 is absolutely continu-
ous, except for a possible atom at sup{|x|: x € supp p}, is clear from (1.3). In the
case ju = 8, an atom at R = 0 is clearly ruled out by (1.5).
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To compute E; [#] = [&°[1 — exp(—u(0)R~?)] dR, we make the change of
variables R = \/u(0)/r:

E, [2] = Wf:r-zh — exp(—r?)] dr.
Consider
1(0) = [T - exp(=r®)] dr,  f(0) = £(0%) = 0.
Then
(df/a)(2) = [ exp(~tr®) dr =V /(24F).
Therefore f(t) = [7t]"/? and E; [2] = Ju(0) f(1) = [u(0)7]"/%.O

ProoOF oF THEOREM 2. It follows easily from the spatial homogeneity of the
Laplacian, A, and the branching mechanism [through the term ©? in (2.2)] that
we can interchange the roles of 0 and x, i.e., .

P (X.ever charges B(x;¢)) =1 — P, b'¢ B(x;¢e))dt=0
L) 0 0 t

o0
—1- Ps,(f X,(B(0; ¢)) dt = o).
0
As in the proof of Theorem 1, we approximate 154, ,, = lim,, _, | ¢, with ¢, as

in the statement of Proposition (4.2). Then by (2.1), (2.2), (2.5) and Proposition
(4.2)

Psx( fo " X,(B(0; ¢)) dt = 0)

lim E, [exp(—02 [ X,(B(0; ¢)) dt)]

60— + o0

T
N (T )
0131}}00 nln-lploo T- +ooE8’ [exp( j(; <0 " Xt) d ]

= lim lim lim exp[—u,(T,x;e,0)]
> +o00 n—> +oo T— +00

= exp[ —u(x; €)],
where u, = u,(t, x; ¢ 0) satisfies
i,(t) = Bu,(t) — ui(t) + 0%,
u,(0) = 0,

and u = u(x; ¢) is the solution of the problem (4.1).

As stated at (4.7), u(x) ~ v(|x|) which suffices for the assertion of this
theorem when d < 4. It remains to make explicit the dependence of ¢ = c(¢), of
(4.7), on &. To this end, we note the identity u(x; €) = ¢ 2u(¢”'x; 1) established
in Proposition (4.2). Multiplying this identity by |x|?"2 and letting |x| > + o
yields the result: c(e) = e?~%c(1).

To conclude, it only remains to observe that as @ = 0*,1 — e™ % ~ a.O
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ProoF oF THEOREM 3. Fix R > 0, and choose an even ¢ € C(R'), with
0<ogp(x)<1forxe(—R,R)and ¢(x) =0 for x & (—R, R). ThenbyTheo-
rem (3.2) of Iscoe (1986a), cited as (2.3) and (2.4) in this article,

B [XA(~R. R)) ds = 0]

(2.6) B P’*(f,w@” X,)ds = 0)

= llm hm E)\[exp( fT<02(p . 1[ ¢, +o0) XS> ds):l

0> +o0 T—> +00

= lim hm exp( (u(T), ),

- +o00 T—
where u is the mild solutlon of the evolution equation

u(s) = Au(s) — u®(s) + 0% - 1; 40 (T-s), 0<s<T,

u(0) =0,
@) u(s) = Au(s) —u?(s) + 0% -1 r_4(s), 0<s<T,
u(0) =

Actually, it follows [e.g., directly from the proof of Theorem (3.2) of Iscoe
(1986a)] that u(T) = v,(t), where

or(s) = Aog(s) — v7(s),

o7(0) = w(T - t),

and where u(T — t) is determined, of course, from (2.7) which simplifies to
i(s) = Au(s) —u’(s) + 0%, O0<s<T-t,

u(0) = 0.

By (2.5) as T 1 + oo, w(T — t, x)1 u(x), where u € Cy(R!) is the positive solu-
tion of the equation Au — u? + 8% = 0 such that 0 < u < 6 [the uniqueness is
established in Lemma (3.2)]. Then by the continuity of the monotone semigroup
associated with (2.8), v, increases as T' —» + oo to the unique solution v of the
evolution equation

(2.8)

6(s) = Av(s) — 0v%(s), O0<s< +o0,

v(0) = u.

The function v depends, of course, on 8 since u does; we make this explicit in
our notation by writing v = v(s, x; 6), when necessary. Now 0 < u < # implies,
by the monotonicity of the semigroup associated with (2.9), that v is dominated
by the solution of (2.9) with u replaced by 6; namely, 8/[1 + 8¢]. In particular,
o(t,-;0) <1/t. Thusas 61 + o, v(¢,-; 8)1 v(¢, -), say, and

(2.10) o(t,x) <1/t, forall x € R.

(2.9)
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Suppose for the moment that we have established the estimate
(2.11) o(t,x) <6/[|x| — R]?, forall |x| > R.

Then returning to (2.6) we can continue the calculation with two applications of
the monotone convergence theorem:

(2.12) PA('/;OOXS((—R, R))ds = o) = exp(—(o(,-),A)).

By (2.10) and (2.11) we can apply the dominated convergence theorem to the
right-hand side of (2.12) to obtain

P,\(EI t>0: fths((—R, R))ds = 0) lim PA('/;OOXS((—R, R))ds = 0)

t— + o0

exp(— tliglw (v(t, ), A)) =e’=1.

We now verify the estimate (2.11). It suffices for it to hold for each v(-, -; ) in
place of v; we verify this, but omit writing @ explicitly for brevity. Set w(x) =
6/[|x| — R]% Since v and w are both even functions it suffices -to restrict
attention to x € [ R, + o). Suppose for the moment that (2.11) is valid for ¢ = 0,
i.e., that u(x) < w(x) for x > R. Then on I(R, X[R, +0)),0 < w — v < +o0;
and also lim, _, , ,inf,., .. (w(x) — v(¢, x)) = 0.

Therefore if w — v were ever negative on R, X[ R, + o), it would assume a
negative minimum at a point in the interior of R, X[ R, + c0). Now
(2.13) (w=-0)—Aw-v)=—(w?-0?),
so that at such a point of minimization, the left-hand side of (2.13) would be
nonpositive, while the right-hand side would be positive, which is absurd.
Therefore w — v > 0, and the estimate is established for ¢ > 0.

To obtain (2.11) at ¢t =0, we repeat the argument at (2.13), working on
[R, + o0) and omitting the derivative with respect to “¢”.

To derive the asymptotic behavior of P,(75 > 0) as t = + o0, we must take a
closer look at the limiting function v(¢, x) = lim, _, , . v(¢, x; ), since

(2.14) Py(mp>t) =1 —exp(—(v(¢,-),A)) ~ (v(t,-),N), ast— +oo0,
which follows from (2.10)-(2.12). The asymptotic result will follow immediately
from Lemma (A.10) (with d = 1 and B = 1) of the Appendix, once it is estab-
lished that v satisfies the p.d.e.
(2.15) o(t, x) = Av(t,x) — v*(¢,x), t>0,xeR
[The determination of whether or not E,[7z] is infinite is effected through its
expression as E,[1;] = [°P\(7g > t) dt.]

To this end, we cast (2.9) into its equivalent “mild” form [see the Appendix to
Iscoe (1986a)] on the interval [¢;, + o0) for any fixed ¢, > 0,

t
(216)  o(£;0) = S (083 0)) = [Sipuo(v*(s30))ds, 2,

where (S(Y))(x) = [pa¥()exp(—(x — y)*/4r)]/(4nr)?/2dr, for r > 0, x € R?
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(here d = 1), and ¢ € Cy(R?), say. Using (2.10) and the bounded convergence
theorem, we obtain from (2.16) as § = + o0,

(2.17) o(t) = St—tl(v(tl)) - fttSt_sHl(tﬂ(s)) ds, t21.

Note also that the function r — v(r, -) from (¢,, + 00) = L2[R%, A\) [L? corre-
sponds to the term v? in (2.17)] is continuous. This follows easily using (2.10),
(2.11) and the dominated convergence theorem a few times. We can them employ
the bootstrapping technique used to prove Proposition (3.28) of Iscoe (1986b) to
conclude that v satisfies (2.15) for ¢ > ¢;, which was arbitrary. Three comments
are in order, to compare the two situations. First, our initial time is not 0; this
only involves notational complications. Second, in Iscoe (1986b), the solution to
the p.d.e. at our (2.15) had a singularity at x = 0, which is not the case here.
This leads to the occasional simplification. Third, we must note that due to
(2.10), (9/9t — B)S,_, (v(t,)) = 0 for ¢ > ¢;.

To conclude the proof, we show that 75 is an absolutely continuous random
variable. Indeed, from (2.14), we see that its distribution function is given by

F(t) = P\(1g < t) =exp(—(v(¢),N)), ¢t>0.

Clearly, P)(7g = 0) = 0 follows from Lemma (2.0). We shall show that F is
continuously differentiable on (0, + o). Fix £, > 0. From (2.17) we obtain that

(o(£), ) = Co(t),2) = [ ‘(v%(s), \) ds,

for t > t,, since [pe(4mr)~ ¢/ %exp(—x%/4r)dx = 1 for all r > 0. It was previously
noted that v: (0, + c0) = L%(R¢, \) is continuous; so we are done. O

3. A singular elliptic boundary value problem. In this section we ex-
amine the problem of existence and uniqueness for the problem

Au(x) = u®*(x), x< B(0; R),

u(x) > +, x— IB(0; R).

We restrict our attention to positive (radial) solutions and discuss the one-
dimensional case in great detail. Note that the transformation u — 1/u converts
(3.1) into a quasilinear Dirichlet problem with the singularity shifted into the
coefficients. However, in making this transformation, the utility of the maximum
principle is lost. Analogous problems, where its utility is present, were considered
by Crandall, Rabinowitz and Tartar (1977). It would be interesting to know if
some transformation of (3.1) would convert it exactly into the setting considered
there.

(3.1)

LEMMA (3.2). Let u,v € C(R?), such that Au— u®+ ¢ =0 and Av —
v + ¢ = 0, where ¢,y € C(R?), with ¢ <. Then u < v. In particular, the
equations have unique solutions.

PROOF. Suppose u were greater than v at some point x € R% Then at a
point where u — v assumes a positive maximum (note that |u|? < sup ¢; for
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otherwise at a point where |u| assumes its maximum: 0 > Au — u? + ¢ = 0)
0>A(u—v)=(u>-0")+(¥y—9)>0,

which is absurd. The unicity follows by taking ¢ =y so that u < v and by
symmetry v < u; existence was announced at (2.5). O

Define for each m,n €N, ¢, ,: R, — [0,1] by

(33 nl) = |
and extended uniquely to R, as a continuous piecewise linear function. Suppose
u=u,, € C(R?) is the positive, radial solution of the equation

Au(x) — u?(x) + 0%p, ,, =0
such that 0 < u < 0 (6 > 0); see (2.5).

0, r<Rorr>m+1,
1, R+1/n<r<m,

LEMMA (3.4). u:= limn_,+°olimm_,+°°un m €xists, is C', and is a positive
radial solution of the equation Au — u® + 0®1 g, gy = 0, for |x| # R, such that
O<ucx<é.

PROOF. As m1 + o, ¢, ,,T9,, say; and by Lemma (3.2), u, ,, also in-
creases to some function, say u,, such that 0 < u, < 8. It follows from the
monotone convergence theorem applied to the 1nteg'ral equation (which is equiv-
alent to the p.d.e.)

U, o(r)=u nm(1)+f - "f [u2 () — 8%, .(t)]t4 ' dtds,
that
un(1) = un(1) + '8¢ ["Tul(t) ~ 0%,(1)] % deds;

we follow the usual convention if 0 < r < 1. Repeating the argument as n - + 0
yields that u satisfies

u(r) = u(1) + jl 's1-d /0 [u?(£) = 6215, ()] 9 dtds.

It is clear from this representation that u € C*((0, + o)) N C%(0, + o0) \ {R});
and that u/(0*) =0 and that u”(0*) exists. Differentiating the last integral
equation yields the lemma; that u < 6 follows as in Lemma (3.2). O

PROPOSITION (3.5). Let the dimension d =1 and u = u(-; 0) € CYR') N
C*R' \ { £ R)) be a positive, even (symmetric) solution of the equation
(3.6) u" - u2 + 021[—R, R]¢ = 0,

such that 0 <u <6, 0 >0. Then u = limy_, ,  u(-; 0) exists on (—R, R), on
which it is the unique positive, even solution of the singular boundary value
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problem
(37) u'(r)=u?*(r), re(-R,R),
u(r) > +00, asr-— +R.

Equivalently, u is the unique maximal solution of the initial value problem
u’(r) = u*(r),

(3.8) u(0) = [6R*]{T'(1/2)T(1/6)/T(2/3)}’,
u'(0) =0,
I denoting the usual gamma function.

[ Remark: The assumption of symmetry at (3.7) is actually unnecessary, as
will be shown in Proposition (3.15).]

Proor. For the moment we suppress the implicit dependence of u(-; 8) on 6,
and write simply u; we restrict attention to r € R .. Multiplying (3.6) by u’ and
integrating yields

(3.9) [w]?/2=u®/3+¢, on[o0,R],
(3.10) [w]?/2 =u?/3-0%u+c, on[R,+w).

As u'(0) = 0, we deduce that ¢, = —[u(0)]3/3. Directly from (3.6) and the
assumptions that 0 < u < 6 and u’(0) = 0, we see that u is convex and increas-
ing on [0, R]; and u is concave and increasing on [ R, + ). Indeed, if u were
eventually decreasing for r > r,, then from u” = u? — 6% < u*(r,) — 0% < 0 we
see that u is eventually negative [note that u(r,) = 0 is impossible since at that
maximizing point u'(r,) = 0 and the unique solution to the initial value problem
u' =u’- 0% u(ry) =0, u'(ry) =0 is simply u = 6; however, this implies that
0 < u'(R™) = u'(R™") = 0, which is absurd]. Thus u(r) increases to a limit; u’'(r)
decreases necessarily to 0 [since u(r) < 8] as r - +oo. If u(+ o0) < 8, then we
can repeat an earlier argument to obtain that u would eventually be negative.
Thus lim, , , u(r) =60 and lim,_ ,  u'(r) =0. From (3.10) we deduce that
c, = 20%/3.
From (3.9) and (3.10) we see that u being C' at r = R implies that

36%u(R) — 26%(0) = u3(0) > 0.

Therefore u(R) > 26/3 - + o0 as § — + oo.
We return to the separable equation (3.9) and “integrate” it (implicitly) on
[r, R]:

[w1?/2=u®/3 — u3(0)/3 & [(2/3)(u3(r) — u?(0))] " *w(r) =1
o fu‘(‘if)[(2/3)(u3 —u%0))] " *du=R - r.

Since u is strictly increasing on [0, R] it was permissible to make the change of
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variables r — u(r) in the integral, where now u is just a dummy variable.
Making the further change u = u(0)v yields the following equation, in which we
reinstate the dependence of the function u on 6,

(3.11) j"“”’ [(2/3)(v® - 1)] %dv = u(0;0) (R—r), O<r<R,

where [,(r; 0) = u(r; 8)/u(0,0) and 12(0) u(R; 0)/u(0; 9).

The following monotonicity property is inherited from that of the {Un, m(5 0)}
of Lemma (3.4), as results from Lemma (3.2): As 1 + oo, u(-; )1 u, say, where
u is a possibly infinite but positive function. Setting r = 0 in (3.11) yields that
yu(0; 0) R < [[2/3(v® — 1)]" % dv < + o0; so that u(0) < +oo. Thus again
from (3 11) it follows that u(r) < + oo for 0 < r < R; otherwise the left-hand
side of (3.11) would tend to 0 as § - + oo since u(R; ) - + oo, while the
right-hand side would not do so. Setting r = 0 again in (3.11) and letting
0 — + oo yields the value

u(0) = (3/2R2)(£w[u3 -1]7' dv)2
(312 - (/6B ['(1 - 2)” 2_1z1/6‘1dz>2
= (1/6R*){T(1/2)T(1/6)/T(2/3)}",

by making the change of variables z = v~3 T is the usual gamma function and
the “beta” identity between the two braces is well known [see, e.g., (6.2.1) and
(6.2.2) of Abramowitz and Stegun (1964)].

Letting @ — + oo in (3.11) yields the equation

(3.13) f [2/3)(0® — 1)] " dvo = fu(0)(R-r), O0<r<R.
[u(r)/u(0)]

Clearly, as r > R, u(r) — + oo since the right-hand side of (3.13) tends to 0.
Since u”(r; 8) = u®(r; 9) for r € [0, R) and u'(0; 8) = 0, it follows that u(-; )
satisfies the integral equation u(r; 6) = u(0; 0) + [J/su?(¢; 0) dtds. Letting 6 —
+ oo and applying the monotone convergence theorem yields that u satisfies the
integral equatlon u(r) = u(0) + [7fgu’(t) dtds with u(0) given by (3.12). It
follows that u is the solution to the initial value problem (3.8).

Conversely, if u is a positive, even solution to the singular boundary value
problem (3.7), then we can “integrate” the equation to arrive at (3.13), from
which it follows that (3.12) is valid for #(0). Thus u coincides with the solution
of the initial value problem (3.8). O

LEMMA (3.14). Denote the solution in Proposition (3.5) by v, and let u =
u(x; 0) be the solution in Lemma (3.4). There exists a constant C, which is
independent of 8, such that u(x; ) < Co(x%/R), for all x € B(0; R).

Proor. By (3.9), which appears in the proof of Proposition (3.5), we see that
for0 <r <R,

v'(r) = [(2/3)(o*(r) - o%(0))]"* < y2/30%%(r) < Ko¥(r),
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for sufficiently large K, since v(0) > 0 and v is increasing on [0, R] [for example,
K = [3v(0)/2]"'/2]. Now, if x2 < R?, then

Alo(x%/R)] = v"(x*/R)[v(x?/R)]* + v(x?/R)[A(x?/R)]
[4x2/R2]uz(x2/R) + [2/R]v'(x%/R)
<[4 + 2K/R]v*(x%/R).

Set C =4+ 2K/R; then u(x;6) < Cv(x%/R) (= +o0 if |x| =R). If
u(x,8) > Co(x2/R) for some x € B(0; R), then u(x; ) — Co(x2/R) would have
to assume a positive maximum at some point x € B(0; R) at which

0> Alu(x; 8) — Co(x%/R)]
> u?(x;0) — C[4 + 2K/R]v*(x%/R)
= u?(x;0) — C%*x%/R) > 0.
Thus u(x; 8) < Co(x2/R) Tor all x € B(0; R) and the lemma is established. O

PROPOSITION (3.15). Let u(x; R, 6) denote the solution in Lemma (3.4). Then
u(x; R) = limy _, , (ulx; R, 0) exists for x € B(0; R) and is the unique positive
solution of the singular boundary value problem

(3.16) » Au(x) = u?(x), forx < B(0; R),

u(x) » +oo, asx - dB(0; R).
Furthermore, u(x, R) = R~ 2u(R™'x; 1) and is radial.

PROOF. As 6 increases, so does u(-; R, 8) (R fixed); this is inherited from
the corresponding behavior of the u, ,, in Lemma (3.4), due to Lemma (3.2). By
Lemma (3.14) for d > 2, and Proposition (3.5) for d =1, u(x; R) :=
lim, _, ,  u(x; R, 0) exists and is finite for x € B(0; R). It can be shown as in the
proof of Proposition (3.5), that lim ,, _, gu(x; R) = +co: One argues again that
lim, , ,  u(r; ) = 0 and integrates the radial version of the equation for u,
multiplied by u'(r; 8), on [0, + ). The result is that

Aw(d — D)r Yu'(r; 0)]>dr = —(2/3)6% + 02u(R; ) — u?(0; 6)/3;

which implies that uw(R;0)>260/3 > + 0 as 6 - +o0. As in the proof
of Lemma (3.4) it follows that Au=u? in B(0; R). Therefore we can
derive inequalities such as (3.11) and (3.13) with equality there replaced by
inequality (<), since u'(r; R) > 0 for 0 < r < R. It follows immediately that
lim, , p-u(r) = +oo.

To establish that (3.16), admits only one solution, we consider two positive
solutions u; and u, and set vy(x) = c’uy(cx), for 0 < ¢ < 1. Then Av, = v3
in B(0; R) and v, is finite on dB(0; R). If u, were ever less than v,, then at a
point where u, — v, assumes its negative absolute minimum, 0 < A(u, — v,) =
u? — vZ < 0, which is absurd. Therefore u,(x) > c?uy(cx). Letting ¢ — 1~ yields
u(x) > uy(x). Since the roles of u, and u, are interchangeable, we conclude that
U, = U,
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The radial property follows from the unicity and the invariance of (3.16),
under rotations. The self-similarity property viz. u(x; R) = R~ 2u(R™'x; 1) fol-
lows from the unicity, since R~?u(R~'x; 1) is clearly a solution of (3.16). O

4. A singular elliptic boundary value problem II. In this section we
examine the problem of existence and uniqueness for the “exterior” problem:
Au(x) = u*(x), x € B%0;¢),
(4.1), u(x) > +o0, asx— dB(0;e¢),
u(x) >0, as|x| > +oo.

As in the previous section, we present the solution in such a way as to support
the proof of a theorem in Section 2—Theorem 2. We omit details when they are
very similar to those of Section 3.

PROPOSITION (4.2). The problem (4.1), admits a unique positive solution
u = u(-; &). It is strictly positive and radial. Moreover, if, forn > ¢},

1, O<|x|]<e—-n"l,
Pu(x) = (n(e—x), e-nl<|z|<e,
o, e < |x|,

and u,(+; 0) is the solution of the equation, Au, — u2+ 0%, =0, then for
x € B0; €), u(x)=limy_ lim, _ ,  u.(x;8), both limits being increasing.
Also, u(x; &) = e %u(e x; 1).

Proor. The unicity for (4.1), follows as in the proof of Proposition (3.15)
with “c < 1” replaced by “c > 1” and “c - 1~ ” replaced by “c — 1*.” The
radial property follows from the unicity and the invariance of (4.1), under
rotations. The self-similarity property viz. u(x;e) = e 2u(e 'x;1) also follows
from the unicity.

The existence, positivity, uniqueness and monotonicity of u, are established
by (2.5) and Lemma (3.2); again u,(-;0) is radial. Denote by u(-; @)=
lim,_ , u,(;0). Then as in Lemma (3.4), u(-;0) € CY(R?) n C¥R? \
dB(0; €)), 0 < u(x; 0) < 4, and is the unique solution, on R? \ 9B(0; ¢), of the
equation, Au — u®+60%-1p, , =0. As in Lemma (3.4), since u(-;0) is an
increasing function of § € R ,, the proposition will be proved once we establish
an upper bound for u(x; §) with respect to 6; and then the boundary conditions.
We switch to the radial notation for the remainder of the proof and suppress the
dependence of u on 6 when convenient.

Concerning the upper bound, define w(r) = 6(r — €)~2 for r > &. Then w” =
w? and w’ < 0. Therefore for r > ¢,

(4.3) [u(r) —w(r)]” + [(d - 1)/r][u(r) - w(r)]" = u*(r) - w?(r).

Asr—e*, u(r)y—w(r) > —cc; and as r > +o0, u(r) —w(r)—> 0. If u—w
were ever positive, then it would assume a positive maximum at some r > ¢, at
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which the left-hand side of (4.3) would be nonpositive, while the right-hand side
would be positive, which is absurd. Therefore u(r; 8) < 6(r — ¢)~2, and so
u(r) = limy_, , u(r; 0) < 6(r — e)"2 < +o0, for r > ¢ in particular,
lim, _, ,  u(r)=0.

Concerning the boundary condition at r = e, we first establish some estimates
for u = u(-; 0). For r # ¢,

(44) w'(r) + [(d=1)/rlu(r) =u®(r) — 6% 15 4(r), O0<u(r) <.
Therefore, for 0 <r <e, [r¢ W/ (r)) = r¢ '[u?(r) — 62] < 0, which implies

that r¢ 'u’(r) is decreasing. Since u'(0) = 0, u'(r) <0, i.e., u is decreasing on
[0, &). Integrating the equation twice we find that for 0 < r < r; <,

u(r) —u(r) = Lrlsl_dl)std‘l[u2(t) — 02] dtds
< /r]sl‘dfstd_l[u“’(t) - 02] dtds.

Since 0 < u(r)) < u(t) < u(r), if limy_,  u(r; @) < + oo, then the left-hand
side of (4.5) remains bounded as § — + oo, while the right-hand side clearly
diverges to —oco. Thus lim,_, | u(r; 8) = + oo for all r € [0, ).

For r>e, [r? 'w/(r)] = r¢ 'u®(r) > 0, which implies that r¢ 'u’(r) is
increasing. If u’ were ever positive, it would remain so thereafter; but this
contradicts the already-established result that lim, , , u(r) = 0, u > 0. There-
fore u'(r) < 0; also —c = lim, , ,  r? 'u'(r) exists. Returning to (4.4) we have

u’ > u’= [(u’/2)2]’ < [(«®/3)]
= [w(e)]* = (2/3)u’(e)
= u'(e) < —(2/3) u(e),
since lim, , , u'(r)=0 [for d =1, ¢ = 0—otherwise lim, , u(r) = —c].
Therefore if ©'(¢; 6) remains bounded as § — + oo, then so does u(e; 8); and also
u'(r; 9) for 0 < r <e, since r? 'u'(r; 0) is a decreasing function of r when
0 < r < & By the mean value theorem (on [r, ¢]), we would then have that

u(r; 8) would remain bounded as § — + o0, contradicting lim,_, .  u(r; 0) =
+ 00, for 0 < r < e. Therefore u'(e; §) > — o0 as § - + oo, at least along some

(4.5)

sequence.
Integrating the equation once on [¢, + o), we obtain (with ¢ = ¢;)
o0
(4.6) co— e (e; 0) = f ri='u?(r; 6) dr.

Now it can be shown [see, e.g., Taliaferro (1978); case I after the change of
variables u(t) :== tu((t/(d — 2)]"%?) for d > 3; and y(¢) = u(log t) for d = 2]
that any bounded, positive solution v of (4.4) restricted to the interval [e +
1, + o0), say, behaves asymptotically (in ratio: denoted by ~) as

2(4 — d)r 2, 1<d<3,
(4.7) o(r) ~ {2r-2log~(r), d =4,
[e/(d—2)]r? ¢, d=>5,
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where the value of ¢ (consistent with our usage) is also implicitly described
by —c =lim,_, r% %' (r) and is nonzero (d > 5); moreover, v(r) >
[c/(d — 2)]r?~ < [Actually, the analysis continues from our (4.6) with & replaced
by s and one more ds-integration.] In particular, [%,r¢"W?(r)dr < + oo for
all d. Returning to (4.6), we know that w(r) > u(r;6) > [c,/(d — 2)]r*~ 9,
r > g so that the constants ¢, remain bounded as 6 — +o0. Letting
0 - + oo [along a sequence such that u'(e; §) » —oo] we conclude that
J2r¢w?(r)ydr = +co, while [%,r9 'u?(r)dr < + . As u is decreasing on
(e, + o0), it follows that lim, _, -u(r) = +c0.O

5. Extensions to the infinite-variance case. In this section we extend the
results presented in Section 1 to the class of measure-valued branching processes
considered in Iscoe (1986a) [and in Watanabe (1968) for the case X, € M, (R%)],
where the branching mechanism has infinite variance. This is reflected in the
replacement of the term u2 in (1.2) by u!'*# for a choice of 8 € (0,1). As such,
the same change is made in (1.4), (2.2), (2.4), (2.5), etc. Since there is essentially
no qualitative changes needed in the proofs presented in Sections 2 and 3, we
shall simply indicate the quantitative changes in the statements and proofs of
the theorems. If the only change in a lemma is the alteration, u? — u!*# we
omit any special mention. Note that it is not necessary to require that 8 < 1 in
Section 3; B > 0 is sufficient. The principal novelty in considering this class of
processes is that their behavior depends strongly on the relationship between 8
and d, the dimension of the underlying Euclidean space.

PROPOSITION (3.5);. Replace u® by u'*# throughout and the value of u(0) in
(3.8) by

u(0) = [2(2 + B)]"V#(T(1/2)T(B/[2(2 + B)])/T((1 + B) /(2 + B))}/*R-¥%.

Appropriate changes are made in integration within the proof.

PROPOSITION (3.15)5. Replace u® by u'*# throughout and amend the self-
similarity property to read u(x; R) = R~?/Pu(R ™ 'x; 1).

Various exponents are altered when appropriate minor changes are made
when integrating; e.g., in (3.13) v® is replaced by v?>*# and u(0) by [u(0)]?/%,
etc. Also, in the uniqueness argument we set vy(x) = cPu,(cx).

PROPOSITION (4.2)5. Replace u® by u'*# throughout and 0* by 6'*F. The
self-similarity property is u(x; €) = e~ 2Pu(e x; 1).

The upper bound w is now w(r) = cg 4(r — €) %%, where ¢5, =
(2[2 — (d — 2)B]/B%)!/E. Various exponents are altered in integration; e.g., the
estimate for u’(e) is now u'(e) < —[2/(2 + B)]V*[u(e)]**#/%, etc. The
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asymptotic description at (4.7) is now

g gr V5, if (d—2)B<2,
o(r) ~ { [v2 /8]*[r2log r] V2, if (d - 2)8 =2,
cr? e, if (d - 2)8 > 2.

Also, (3, r¢ W A(r)dr < + .

THEOREM 1,. Replace u with u'*# in (1.4), R™* with R~** in (1.5) and
(1.6) by

u(0) = [2(2 + B)I'"*{T(1/2)T(B/[22 + B)])/T((1 + B)/(2 + B)}".
COROLLARY;.  Replace the expression for E; by [u(0)]*°T(1 — B/2).

In the proof we consider f(t) = [°r~%[1 — exp(—tr?/?)] dr and show that
(df/dt)(t) = (B/2)tF/2"Y>s™ P/ %™ ds = (B/2)tP/7'T(1 - B/2),

where s = tr%/#,

THEOREM 2;. For each ¢ > 0,
cp,d|x|_2/ﬁ, if (d—-2)8<2,

P, (X, ever charges B(x; ¢€)) ~ { c[x%log|x|] ~"/*, if (d—2)B8=2,
ch g€ 2R 1x27Y, if (d-2)B > 2,

where ¢5 ;= (A2 — (d - 2B)/B%)4, ¢ = [V2 /81 = [(d — )/ 21*%, and
Ch 4 18 some constant (depending only on B and d).

In the proof we replace u? with u'*#, 2 with 6'*# and ¢ 2 by ¢~ %A,

THEOREM 34. Let X, = p. Then for each R > 0 there exists a finite random
time T, such that with P,-probability 1, X,(B(0; R)) =0 for all t > 5 (local
extinction) if [ge(1 + |x|)” %P dpu(x) < + 0.

In case p =\ we have local extinction iff fd < 2. Moreover, t, is an
absolutely continuous random variable such that 0 < liminf, ,  t°Py(1p > t) <
lim sup,_, t°P\(1g > t) < o0, where § = (2 — Bd)/(2B). Consequently,
E,\[7g] < + 00 iff 0 < Bd < 2(1 — B).

We remark that when p is finite it is well known [see, e.g., Jirina (1966)] that
we have global extinction. For fixed d, the condition on 8 and d concerning
E,[7g] can be rewritten as

E\[rr] < 40, if0<B<2/(d+2),

(*) E\[rp] = +0, if2/(d+2)<f<1.
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Since B is inversely related to the size of the tail of the “offspring” distribution,
we see, in a very quantitative way, how the small likelihood of having a large
progeny (due to criticality) affects the mean local extinction time. The existence
of some description, as in (*), is intuitively plausible since the relatively rare
large progenies over successive “generations” would quite likely not be able to
diffuse to (or back to) a fixed bounded set before eventually expiring.

In the proof of Theorem 3; we replace u® with u'*#, 2 with §'*#, v? with
o'*A, 9/[1 + 0¢t] with [Bt + 6~P]" Y/ [so that o(t; -, 0) < (Bt)" ], w(r) by
the solution from Proposition (4.2); with ¢ = R [so that w(r) ~ ¢z ;r~ % as
r — +oo0; the latter being integrable when Bd < 2], w? by w“f, (2.11) by
o(t, x) < w(r) and (2.13) by (w — v)'— A(w — v) = —(w'*# — v!*#). The con-
verse “local extinction = Bd < 2” is supplied by Theorem (4.3) of Iscoe (1986a).

APPENDIX

In this Appendix we collect some recent results concerning the temporal
asymptotic behavior of nonnegative solutions of the semilinear parabolic p.d.e.

o(t,x) = Av(t, x) — o' +A(t, x),
o(t, x) >0,

In (A.1) we make the standing assumption that 0 < 8 < 1 and 8d < 2 and will
sometimes assume

3¢,> 0and c,, c, > 0 such that for all x € R%:

(A1) t>0, x € RC

A2
(4.2) 0 # v(¢,, x) < ciexp(—cyx?).

The first result is taken from Brezis, Peletier and Terman (1986).

THEOREM (A.3). There is a unique solution to the p.d.e. at (A.l) on
(0, + ) X R? of the form
(A4) w(t, x) = V(x| /Vt), t>0,x€R?,

where f: [0, +00) = R, is smooth, f'(0) =0, and such that f possesses the
bounds

ciexp(—cyr?) < f(r) < ciexp(—c,r?), r>0,
for some positive constants c,, c,, c3, C,.

[Note that w(0*, x) = 0 for x € R? \ {0} and that w(0*,0) = + c0.]
The next two results were obtained by Escobedo and Kavian (1985).

THEOREM (A.5). Let v be a solution of (A.l) satisfying (A.2), and let w be
the solution at (A.4). Then

(A.6) lim £/8o(¢) - w(?)|,, =0,
t— +o00

where || ||,, denotes the usual sup-norm on C,(R?).
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The next result which we quote appears in Lemma (2.2) of Escobedo and
Kavian (1985).

LEMMA (A.7). Let v be a solution of (A.l) satisfying (A.2). Then there are
constants ¢ > 1 and t, > 0 such that

(A.8) o(t,x) < cw(ty +t,x), t>t,x <R,

where w is the solution at (A.4).

We now deduce a consequence of these results which is similar to Lemma 5.1
of Dawson, Fleishmann, Foley and Peletier (1986).

LEMMA (A.8). Letv be a solution of (A.1) satisfying (A.2). Then
lim Xo(2),\) = (f,A),
t— + 00

where 8 = (2 — Bd)/(2B) > 0, and f(x) = f(|x]), x € R, with f as in Theorem
(A.3).

Proor.
(o(8), Ay = (w(t), Ay + (v(¢) — w(¢),A) [w given at (A4)]
= 7% f,N) + (o(t) — w(t),A),

via the change of variables x — Vex in (f,A) = [gaf(|x]) dx.

Therefore t°(v(t), A\) = {f, ) + t%v(t) — w(t), X). Choosing ¢ and ¢, as in
(A.8) of Lemma (A.7) and considering ¢ > ¢, we can dominate the second integral
in absolute value by

ew(t, + t,x) dx + tPw(t, x) dx
(& ) f{lxlzﬁmn> (&%)

tlo(t) - w(t) |, dx

'/;|x|2‘/t2+tR}

+
{|x|s‘/t2+tR}
<@e+1)[  f(xl) dx + (4R) P o(t) — w(0)]
{lx|= R}
if also ¢ > t,/3.

Then by Theorem (A.5),
limsup |¢%(v(t) — w(t), \)|

t— + o0

< (2% + 1)[{| |>R}f(|x|)dx—>0 asR > +oo. o
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LEMMA (A.10). Let v be a solution of (A.1) such that for some positive
constants ¢, t, and R, v(¢,x) < ct™V for t > t, and x € R?, and v(t,x) <
clx|~%® for t > t, and |x| > R. Then

(A.11) 0 < liminf#%v(t),A) < limsupt®(v(t),A) < + oo,
t— + o0

t— + o0

where § = (2 — Bd)/(2B) > 0.

ProoF. The solution @& of (A.l) for ¢ > t,, such that @(¢, x) =
0(2y, x)1p.1y(x), minorizes v for ¢ > ¢,. Since Lemma (A.9) applies to &, the
lower bound in (A.11) is established. For the upper bound we let K denote a
generic constant (depending on ¢, 8 and d but not on ¢ > ¢, + R%) whose value
varies from line to line in the following estimation:

(o(¢),\) = f{lxlsﬁ}v(t,x)dx+ f{lxlzﬁ)v(t,x)dx

< Kt~ V/Btd/2 4 war_z/ﬂrd‘ldr
Vvt
<Kt A o
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