The Annals of Probability
1988, Vol. 16, No. 1, 172-179

THE STRUCTURE OF SIGN-INVARIANT GB-SETS AND OF
CERTAIN GAUSSIAN MEASURES!
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Let (g;);>1 be an ii.d. sequence of standard normal r.v.’s. Let A be a
family of sequences a = (@;);»,, @; = 0. We relate the quantity
E Sup, ¢ 4X;.,2;|8;| and the geometry of A.

1. Introduction. Consider a separable Hilbert space H. We fix once and for
all an orthonormal basis (e;), ., of H. An element ¢ of H is often identified with
the sequence (¢;),.,, where ¢, = (¢, ;).

On H is defined a canonical (isonormal) Gaussian process, which we denote
(X,);e u» such that E(X,X,) = (t,u). If (g,) denotes a sequence of independent
N(0,1) random variables, a version of X is given by X, = X2 (¢, e,)g; (where
the series converges a.e.). Consider now a set A C H. Following [1], we say that
A is a GB-set if E Sup,. 4 X, < oo. Consider a set B C H that satisfies

(1) Vu>0, card{deB;|b]|=>u}<exp(l/u?).

A simple computation shows that B is a GB-set, and that actually E Sup, 3 X, <
K for some universal constant K. (In the sequel, we denote by K a universal
constant, not necessarily the same at each line.) It follows that the closed convex
hull C of B U {0} still satisfies E Sup,. X, < K, so any subset A of C is a
GB-set. A rather remarkable fact is that this method generates all the GB-sets.

THEOREM 1 [2]. Consider a GB-set A that contains zero, and let a =
E Sup, . 4 X,. Then one can find a set B that satisfies (1) and such that each t in
A is the sum of a series t = ¥, _ go,(t)b, where ay(t) > 0, X, c ga,(¢) < Ka.

CoMMENTS. (1) The restriction “A contains zero” is inessential, since
E Sup, . 4 X, is invariant under translation of A.

(2) As is explained in [2], Theorem 1 allows a complete description of all
bounded (or continuous) Gaussian processes, and of all Gaussian measures on
Banach spaces.

We set L = {—1,1}™. For ¢ = (¢;) in L, we denote by M, the operator on H
given by M(t) = (g;t;). We say that a subset A of H is sign-invariant if
A = M_,A for ¢ in L. For a sign-invariant set A, we denote by |A| the set of
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SIGN-INVARIANT GB-SETS 173

sequences (|¢;|) for ¢ = (¢;) in A. Then

ESupX, = ESup Y. t|g|

A IA|
(by this latter expression, we mean E Sup,,Y;, where Y, is a separable version of
the process ¢ — Xt;|g;|.) In the case where A is sign-invariant, it is natural to
expect a description of A more precise than that in Theorem 1; but it is not
immediately clear how to achieve that goal using the results and the methods of
[2]. The purpose of the present note is to introduce the necessary adaptation of
the techniques. Our main result is as follows.

THEOREM 2. If A is a GB-set that is sign-invariant, it can be represented as
in Theorem 1, where B is also sign-invariant.

While it may not be clear at once that this is interesting, the point is that
condition (1) is rather restrictive for a sign-invariant set B and so there are
unexpectedly few sign-invariant GB-sets. This will be more apparent in the
following formulation of Theorem 2, where for a finite subset I of N, and n > 0,
we consider the set

C(I’n)={teH; Yei<uhviel, t,.=o},
iel

which is a ball of radius # and dimension card I.

THEOREM 3. Let A be a sign-invariant subset of H and let a = E Sup,X,.
Then there exists a sequence (C,) of sets C, = C(1,,n,,) such that each t in A is
the sum of a series, t = La,(t)c,, where c, € C,, a,(t) > 0, La,(t) < 1 and that

(2) foreachu >0, Y {25 9, > u} < exp(Ka®/u?).

To understand this result better, one should note that if C is the closed
convex hull of U,C(I,, n,), a simple computation (that is done in the course of
the proof of Theorem 4) shows that condition (2) implies that E Sup,X, < Ka.
So, Theorem 3 means that given any sign-invariant GB-set A, one can find a
sign-invariant set C containing A, and such that E Sup,X, < KE Sup,X,,
where C is the convex hull of a sequence of finite-dimensional spheres, whose
radius and dimensions are related by (2), and hence is obviously a sign-invariant
GB-set.

Theorem 3 can be translated into a statement about certain Gaussian mea-
sures on some special Banach spaces. Let us recall that a (separable) Banach
space Y has an unconditional basis if there is a sequence ( f,), ., of norm one
elements of Y such that each x in Y is the sum of a series X, . ,x, f,, and that
the norm of the sum ¥, ,x,, f, is the same as the norm of ¥, . ;¢,x, f, for any
sequence ¢ = (¢,) in L. We denote by f* the element of Y* given by
f*Xr 1%, fr) = %,. A centered Gaussian measure p on Y is a Borel probability
measure on Y such that the law of each continuous linear functional on Y is
(centered) Gaussian.
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THEOREM 4. Let pu be a Gaussian measure on a Banach space Y with
unconditional basis ( f,), - Assume that the functionals ( f,*) are independent.
Let o, = ([f,*2 dp)"/%. Assume that o, > 0 for each n. Then there is a sequence
I, of finite subsets of N, and a sequence 1, > 0, such that if we consider the
pseudo-norm of Y (valued in R U {o0}) given by

v
(3) N(x) = supm| T (1)/a)’)

1=y
then the following properties hold:
VzeY, x| < N(x),

(4) ny(x)-du(x) <K / il dp(x).

This means that the norm of Y is a weakening of a norm N of the very
explicit type (3), so we have completely understood what the object (u, Y) is.

2. Proofs. Before we start the proofs, we explain what the issue is. For
t> 0, let h(t) = (logl/t)/% In [2], we deduce Theorem 1 from the following
result.

THEOREM 5. For any subset A of H, there is a probability measure m on A
such that if D is the diameter of A, we have

(5) VzeA, fODh(Sup{m({u}); lu — x|l < 1)) dy < KE SupX,.

The essential step to prove Theorem 2 is to show that when A is sign-
invariant, the measure m of Theorem 5 can be taken sign-invariant (in the
obvious sense that it is invariant under each M,). In [2] the existence of m is
obtained through an involved analysis. It does not seem possible in this analysis
to take into account the fact that A is sign-invariant. We first note that (5)
implies that

(6) Vx€eA, th(m(B(x,n))) dn < KE SupX,,
0 A
where B(x, 1) is the ball of center x and radius n. We note now that # is convex

for ¢ < e~ /. Averaging the measures M,m over ¢ in L, L being provided with
the canonical measure, we get the following.

PROPOSITION 6. For every sign-invariant subset A of H, there is a sign-
invariant probability measure m on A such that
D
VxeA, f h(m(B(x,n)))dn < KE SupXt.
0

The line of attack is to use the above probability measure to produce a new
one that satisfies (5) and is sign-invariant.



SIGN-INVARIANT GB-SETS 175

LEMMA 7. There exists a universal constant K, with the following property.
Fora=1%,,,a;e;in H, a; > 0 and 1 > 0, denote by N(a, 1) the largest possible
number of closed disjoint balls of radius n that are centered at points of the type
M, (¢in L). Then if k = [K,log N(a, n)], we can find c in H which has only at
most k nonzero components and satisfies ||a — c|| < K.

PrOOF. There is no loss of generality to assume that the sequence (a,) is
nonincreasing. Consider a sequence (8;) of independent random variables, with
P(3,=0)=1/2and P(§;=1) =1/2. We have, for i > 1 and A > 0,

Eexp(—Aa2;) = 1(1 + exp(—Aa?)),

so also

1(1 + exp(—Aa?)).

(=]
=1

Eexp(— Yy >\ai28i) =

i=1 t

It follows that

7) P( {2 als; < nz) < (exp (A?)) ﬁ %(1 + exp(—ka?)j.

i=1 i=1
Consider now 0 < a; < 1 such that 1 + exp(—x) < 2exp(—a,x) for 0 < x < 1.
Let a, = log(3(1 + 1/e)) > 0. Since we can assume K2 > 1/a,, there is nothing
to prove if T, ,a? < n?/a,, since we can then take ¢ = 0. If T, ,a? > #?/a;, we
consider the largest integer k& such that X, ,a? > #?/a,. In (7), we take A = 1/a2.
For i < k, we have a?/a2 > 1, so

. 1+ Aa? . 1 -
2( exp — ai)SE( +Z)—exp(—a2).

; 2 /02
For i > k, we have a;/a; < 1, so

%(1 + exp(—}\af)) < exp(—alaf/ai)-
It follows that

P(ZaizSi < n2) < exp[—(k - 1a, + (112 —a ) aiz)/a,%]

ik

(8)
<exp(—(k - 1)a,).
Fix now ¢’ = (&/) in L. For ¢ in L, we have

”Mea - Me’a”2 = Z aiz(si - 61{)2'
i>1
For the canonical probability P on L, the sequence ((¢; — &/)?) is distributed like
the sequence (49,). It follows from (8) that we can find a subset X of L, with
card X > exp(—(k — 1)a;), such that |M.a — M_a| > 27 for ¢, ¢’ in X, & + ¢
This shows that N(a,7) > exp(k — 1)a;, so £ — 1 < (1/a,)log N(a, €). We note
thatif & = l,ZiZIaiz >n%/a, > 1%, s0N(a,n) > 2.1fk > 2,wehavek < 2(k — 1);
so for some universal constant K, we have k2 < [ K,log N(a, 1)]. This completes
the proof, by taking ¢ = X, _,a,e;, so that ||a — ¢|| < na; V2 < K9. O
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We now perform the main construction.

PROPOSITION 8. There exist universal constants K ,, K, with the following
property. For each sign-invariant totally bounded subset A of H, each sign-
invariant probability measure m on A and each n > 0, there is a finite sign-
invariant subset B of H and a sign-invariant probability measure p. on B such
that

(9) vxeA, h(sup{n({t}); t € B(x, Ky)}) < Kzh(m(B(x,n))/2).

PROOF. Step 1. We first describe the basic construction. Let A’ be a sign-
invariant subset of A. Let a in A’ be such that

2m(B(a,n)) > sup{m(B(b,n)); b€ A’}.

By B(a, 1), we denote here and in the sequel the ball in H, not its restriction to
A’. Using Lemma 7, we find &, such that there is a point b in H that has exactly
k nonzero components, with ||@ — b|| < K7, and that at least exp (/K,) of the
balls B(M,a, 1) are disjoint. Let B be the set of points of the type M.b, ¢ € L,
so card B = 2*. For ¢ in B, we set p({t}) = 2" *m(B(a, 1)).

We note that all the balls B(M,a, 1) have the same measure for m, since m is
sign-invariant; since at least exp(k/K,) of these balls are disjoint, we have

log(1/m(B(a,))) = k/K,.
So, for each point ¢ of the type M.b, we have
log(1/p({t})) = klog2 + log(1/m(B(a,n)))
< (Klog2 + 1)log(1/m(B(a, n))).

Let (K,log2 + 1)/2 = K. Consider the set D, union of all the balls M( B(a, 27)).
Let K, = K, + 2. For each x in D, thereis ¢ in B with ||x — ¢|| < K,n. We note
also that w(B) < m(B(a,n)), and that for x in D, we have m(B(x,1)) <
2m(B(a, n)).

Step 2. By induction over p, we construct sign-invariant subsets A, of A,

sign-invariant sets D,, finite sign-invariant sets B,, points a, of A, and a

sign-invariant measure p on U, _ , B;, such that the following conditions hold:
(10) a,€A,;

(1) u(B,) < m(B(a,,n)); |

(12) foreach tin B, (h(p({t})) < K3h(m(B(ap, 1)));

(13) D, is the union of the balls B(M,a,,27) for ein L;

(14) VxeD,,3teB,, |x -t < Km;

(15) for each x in A,, m(B(x,1)) < 2m(B(a,,n));

(16) A,.,=A,\D,.



SIGN-INVARIANT GB-SETS 177

The construction starts with A, = A, and is immediate by induction, using
step 1. The construction continues until A, = &, which occurs in a finite
number of steps since A is totally bounded. We set B = UB,,. From (13) and (16),
we see that any two balls B(a,, 1), B(a,, 1), p # g, are disjoint; it follows from
(11) that ||p|| < 1. We now check (9). Let x in A. Let p be the largest integer
such that x € A, so x € D,. From (12), (14) we see that there is ¢ in B(x, K,n)

such that
h(u({t})) < Ksh(m(B(a,,n))).
From (15), we have
h(m(B(ap, n))) < h(m(B(x,7))/2).
This proves (9). Proposition 8 is proved, except for the fact that p is not a

probability but ||u|| < 1. However, (9) will still hold if we replace p by a larger
sign-invariant probability. The proof is complete. O

We can now prove the version of Theorem 5 that we need.

ProPOSITION 9. For any sign-invariant subset A of H, there is a sign-
invariant probability measure p on A such that if D is the diameter of A, we
have

D
(17) Sup fo h(sup{(u({u)); llx = ull < n)) dn < KESupX,.

PROOF. Let m be the sign-invariant measure on A given by Proposition 6.
According to Proposition 8, for each & > 0, there exists a sign-invariant probabil-
ity p, on B such that for all x in A,

h(Sup{p.k({t}); te B(x, K2D2_k)}) < Kah(m(B(x,2“kD))/2).
Let p = X% 42 % 1u,, so p is a probability. Moreover,
h(Sup{p({t}); t € B(x, K,D27*)})
< h(Sup{27*~'u,({}); t € B(x, K,D27%)})
< h(27*7") + h(Sup{p,({t}); ¢ € B(x, K,D27*)}).

We note now that for a decreasing function f, we have

Y 27+ 1Df(27*D) < [“f(n)dn < ¥ 27*Df(27*D).
k>0 0 k=0

It then follows that for x in A
[n(Sup{u((8)); ¢ & Bz, Kn))) dn < K( D+ ["h(m(B(x,))) d).

Making a change of variables and noting that D < K. E Sup, X,, we obtain the
result. O

PROOF OF THEOREM 2. Since the proof is very similar to the proof of the
Theorem 2 of [1], we only indicate the necessary modifications. Consider the



178 M. TALAGRAND

probability p given by Proposition 8. Then, for each & > 1, consider the set
- - -1 -
B, = {(t, - &)(2~*Dh(2 ({6 })u({£:))) s It — tall < 27*D,

r({t}), p({t,}) > 0}.

Since p is sign-invariant, so is B,. Hence B’ = UB,, is sign-invariant. As in [2],
one checks that B’ satisfies

VYu>0, card{b€< B’;|b||>u} < exp(Ka?/u?)

and that each ¢ in A can be written as a sum ¥, o p-a,(¢)b, where a,(t) > 0,
Y4 < pay(t) < 1. This completes the proof, by setting B = a 'K ~/?B’. 00

PRroOOF OF THEOREM 3. Let B be as in Theorem 2. B is sign-invariant; we
pick one element in each class of the action of M, on B; in other words, we
consider a sequence (b") in B such that b” is not of the type M., b" if p # n, but
that each b in B is of the type M,b" for some n, some ¢ in L. Let I, be the
support of b”, and let 7, = ||b”|. Then C(I,, n,) contains all the points M,b",
and there are 2°®4!» of them. It follows that B c U,C(I,,n,). Moreover, for
u>0,

Y {294, > u} < card{b € B; ||b]| > u} < exp(1/u?).
This completes the proof. O

PROOF OF THEOREM 4. Denote by Y;* the unit ball of Y*. Denote by A the
image of Y;* in L%(p) by the canonical injection from Y* into L?(p). Denote by
H the closed linear span of A in L%(p). For each n > 1, let e, = f,*/o,. Then
(€,),>1 is an orthonormal basis of H. Each x* in Y* is the sum of the series
re_x*(f,)f,*, where the series is weak* convergent. For ¢ = (¢,) in L, we have
IZ2_e,x2*(f) 1>l = lx*||. This shows that, when H is provided with the basis
(e,), 1, the set A is sign-invariant. Moreover, it is clear that E Sup,X, =
[yllx|l du(x). Consider a sequence of finite sets I, and a sequence 7, > 0 that
satisfy the conclusions of Theorem 3. Fix x in Y. For each x* in Y}*, we have

x*(x) = X a*(f)f*(x) = X (fi*(x)/ai)(oix*( 1))

i1 i>1
< 8up{ T a,(f%(x)/); a = (a1);a, < 4)-
ix1

If a € C(1,,,), we have

1/2
L a0 sm T (t@)/0)) <N
i>1 iel,
so this inequality still holds whenever a € A, so x*(x) < N(x). Since this is true
whenever x* € Y;* we have ||x|| < N(x).

It remains to show that [,N(x)dp(x) < K[y|x|| du(x) = Ka. If C denotes
the union of the sets C, = C(I,n,), we have [yN(x)du(x) = E SupcX,. Now,
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for some universal constant 8 and for each n, we can find a subset B, of H,
consisting of vectors of length 21, such that card B, < 2f°4%, and such that
the convex hull of B, contains C,. Let B be the union of the sets B,. Then the
convex hull of B contains C, so E Sup,X, < E SupgX,. On the other hand, for
u > 0, we have, from condition (2)

card{b € B: b > u} < ) {2f=dh; y, > u/2}

< (T {20 h; m, > u/2))”

< exp(4KBa’/u?).
As mentioned in the Introduction, this implies (by homogeneity) that
E Supp X, < Ka, and finishes the proof. O
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