## THE STRUCTURE OF SIGN-INVARIANT GB-SETS AND OF CERTAIN GAUSSIAN MEASURES<sup>1</sup>

## By Michel Talagrand

Université Paris VI and The Ohio State University

Let  $(g_i)_{i\geq 1}$  be an i.i.d. sequence of standard normal r.v.'s. Let A be a family of sequences  $a=(a_i)_{i\geq 1},\ a_i\geq 0$ . We relate the quantity  $E\operatorname{Sup}_{a\in A}\Sigma_{i\geq 1}a_i|g_i|$  and the geometry of A.

**1. Introduction.** Consider a separable Hilbert space H. We fix once and for all an orthonormal basis  $(e_i)_{i\geq 1}$  of H. An element t of H is often identified with the sequence  $(t_i)_{i\geq 1}$ , where  $t_i=\langle t,e_i\rangle$ .

On H is defined a canonical (isonormal) Gaussian process, which we denote  $(X_t)_{t\in H}$ , such that  $E(X_tX_u)=\langle t,u\rangle$ . If  $(g_i)$  denotes a sequence of independent N(0,1) random variables, a version of X is given by  $X_t=\sum_{i=1}^{\infty}\langle t,e_i\rangle g_i$  (where the series converges a.e.). Consider now a set  $A\subset H$ . Following [1], we say that A is a GB-set if E Sup $_{t\in A}X_t<\infty$ . Consider a set  $B\subset H$  that satisfies

(1) 
$$\forall u > 0, \quad \text{card}\{b \in B; ||b|| \ge u\} \le \exp(1/u^2).$$

A simple computation shows that B is a GB-set, and that actually  $E \operatorname{Sup}_{t \in B} X_t \leq K$  for some universal constant K. (In the sequel, we denote by K a universal constant, not necessarily the same at each line.) It follows that the closed convex hull C of  $B \cup \{0\}$  still satisfies  $E \operatorname{Sup}_{t \in C} X_t \leq K$ , so any subset A of C is a GB-set. A rather remarkable fact is that this method generates all the GB-sets.

THEOREM 1 [2]. Consider a GB-set A that contains zero, and let  $a = E \operatorname{Sup}_{t \in A} X_t$ . Then one can find a set B that satisfies (1) and such that each t in A is the sum of a series  $t = \sum_{b \in B} \alpha_b(t)b$ , where  $\alpha_b(t) \geq 0$ ,  $\sum_{b \in B} \alpha_b(t) \leq Ka$ .

COMMENTS. (1) The restriction "A contains zero" is inessential, since  $E \operatorname{Sup}_{t \in A} X_t$  is invariant under translation of A.

(2) As is explained in [2], Theorem 1 allows a complete description of all bounded (or continuous) Gaussian processes, and of all Gaussian measures on Banach spaces.

We set  $L = \{-1,1\}^{\mathbb{N}}$ . For  $\varepsilon = (\varepsilon_i)$  in L, we denote by  $M_{\varepsilon}$  the operator on H given by  $M_{\varepsilon}(t) = (\varepsilon_i t_i)$ . We say that a subset A of H is sign-invariant if  $A = M_{\varepsilon}A$  for  $\varepsilon$  in L. For a sign-invariant set A, we denote by |A| the set of

Received March 1986; revised March 1987.

<sup>&</sup>lt;sup>1</sup>This research was partially supported by an NSF grant.

AMS 1980 subject classifications. Primary 60G15; secondary 28C20.

Key words and phrases. Supremum of Gaussian process, Banach lattice, majorizing measure.

sequences  $(|t_i|)$  for  $t = (t_i)$  in A. Then

$$E \mathop{\operatorname{Sup}}_A X_t = E \mathop{\operatorname{Sup}}_{|A|} \sum t_i |g_i|$$

(by this latter expression, we mean  $E \operatorname{Sup}_{|A|}Y_t$ , where  $Y_t$  is a separable version of the process  $t \to \sum t_i |g_i|$ .) In the case where A is sign-invariant, it is natural to expect a description of A more precise than that in Theorem 1; but it is not immediately clear how to achieve that goal using the results and the methods of [2]. The purpose of the present note is to introduce the necessary adaptation of the techniques. Our main result is as follows.

THEOREM 2. If A is a GB-set that is sign-invariant, it can be represented as in Theorem 1, where B is also sign-invariant.

While it may not be clear at once that this is interesting, the point is that condition (1) is rather restrictive for a sign-invariant set B and so there are unexpectedly few sign-invariant GB-sets. This will be more apparent in the following formulation of Theorem 2, where for a finite subset I of  $\mathbb{N}$ , and  $\eta > 0$ , we consider the set

$$C(I,\eta) = \Big\{ t \in H; \ \sum_{i \in I} t_i^2 \le \eta^2; \forall \ i \notin I, \ t_i = 0 \Big\},\$$

which is a ball of radius  $\eta$  and dimension card I.

Theorem 3. Let A be a sign-invariant subset of H and let  $a = E \operatorname{Sup}_A X_t$ . Then there exists a sequence  $(C_n)$  of sets  $C_n = C(I_n, \eta_n)$  such that each t in A is the sum of a series,  $t = \sum a_n(t)c_n$ , where  $c_n \in C_n$ ,  $a_n(t) \geq 0$ ,  $\sum a_n(t) \leq 1$  and that

(2) 
$$for each u > 0, \quad \sum \left\{ 2^{\operatorname{card} I_n}; \ \eta_n \ge u \right\} \le \exp(Ka^2/u^2).$$

To understand this result better, one should note that if C is the closed convex hull of  $\bigcup_n C(I_n, \eta_n)$ , a simple computation (that is done in the course of the proof of Theorem 4) shows that condition (2) implies that  $E \operatorname{Sup}_C X_t \leq Ka$ . So, Theorem 3 means that given any sign-invariant GB-set A, one can find a sign-invariant set C containing A, and such that  $E \operatorname{Sup}_C X_t \leq KE \operatorname{Sup}_A X_t$ , where C is the convex hull of a sequence of finite-dimensional spheres, whose radius and dimensions are related by (2), and hence is obviously a sign-invariant GB-set.

Theorem 3 can be translated into a statement about certain Gaussian measures on some special Banach spaces. Let us recall that a (separable) Banach space Y has an unconditional basis if there is a sequence  $(f_n)_{n\geq 1}$  of norm one elements of Y such that each x in Y is the sum of a series  $\sum_{n\geq 1} x_n f_n$ , and that the norm of the sum  $\sum_{n\geq 1} x_n f_n$  is the same as the norm of  $\sum_{n\geq 1} \varepsilon_n x_n f_n$  for any sequence  $\varepsilon = (\varepsilon_n)$  in L. We denote by  $f_n^*$  the element of  $Y^*$  given by  $f_n^*(\sum_{k\geq 1} x_k f_k) = x_n$ . A centered Gaussian measure  $\mu$  on Y is a Borel probability measure on Y such that the law of each continuous linear functional on Y is (centered) Gaussian.

THEOREM 4. Let  $\mu$  be a Gaussian measure on a Banach space Y with unconditional basis  $(f_n)_{n\geq 1}$ . Assume that the functionals  $(f_n^*)$  are independent. Let  $\sigma_n = (\int f_n^{*2} d\mu)^{1/2}$ . Assume that  $\sigma_n > 0$  for each n. Then there is a sequence  $I_n$  of finite subsets of  $\mathbb{N}$ , and a sequence  $\eta_n > 0$ , such that if we consider the pseudo-norm of Y (valued in  $\mathbb{R} \cup \{\infty\}$ ) given by

(3) 
$$N(x) = \operatorname{Sup}_{n} \eta_{n} \left( \sum_{i \in I_{n}} \left( f_{i}^{*}(x) / \sigma_{i} \right)^{2} \right)^{1/2},$$

then the following properties hold:

$$\forall x \in Y, \qquad ||x|| \leq N(x),$$

(4) 
$$\int_{V} N(x) d\mu(x) \leq K \int_{V} ||x|| d\mu(x).$$

This means that the norm of Y is a weakening of a norm N of the very explicit type (3), so we have completely understood what the object  $(\mu, Y)$  is.

**2. Proofs.** Before we start the proofs, we explain what the issue is. For t > 0, let  $h(t) = (\log 1/t)^{1/2}$ . In [2], we deduce Theorem 1 from the following result.

Theorem 5. For any subset A of H, there is a probability measure m on A such that if D is the diameter of A, we have

(5) 
$$\forall x \in A, \qquad \int_0^D h(\operatorname{Sup}\{m(\{u\}); \|u-x\| \leq \eta\}) d\eta \leq KE \operatorname{Sup}_A X_t.$$

The essential step to prove Theorem 2 is to show that when A is sign-invariant, the measure m of Theorem 5 can be taken sign-invariant (in the obvious sense that it is invariant under each  $M_{\epsilon}$ ). In [2] the existence of m is obtained through an involved analysis. It does not seem possible in this analysis to take into account the fact that A is sign-invariant. We first note that (5) implies that

(6) 
$$\forall x \in A, \qquad \int_0^D h(m(B(x,\eta))) d\eta \leq KE \sup_A X_t,$$

where  $B(x, \eta)$  is the ball of center x and radius  $\eta$ . We note now that h is convex for  $t \leq e^{-1/4}$ . Averaging the measures  $M_{\varepsilon}m$  over  $\varepsilon$  in L, L being provided with the canonical measure, we get the following.

PROPOSITION 6. For every sign-invariant subset A of H, there is a sign-invariant probability measure m on A such that

$$\forall x \in A, \int_0^D h(m(B(x,\eta))) d\eta \leq KE \sup_A X_t.$$

The line of attack is to use the above probability measure to produce a new one that satisfies (5) and is sign-invariant.

Lemma 7. There exists a universal constant  $K_1$  with the following property. For  $a = \sum_{i \geq 1} a_i e_i$  in H,  $a_i \geq 0$  and  $\eta > 0$ , denote by  $N(a, \eta)$  the largest possible number of closed disjoint balls of radius  $\eta$  that are centered at points of the type  $M_{\varepsilon}a$  ( $\varepsilon$  in L). Then if  $k = [K_1 \log N(a, \eta)]$ , we can find c in H which has only at most k nonzero components and satisfies  $||a - c|| \leq K_1 \eta$ .

PROOF. There is no loss of generality to assume that the sequence  $(a_i)$  is nonincreasing. Consider a sequence  $(\delta_i)$  of independent random variables, with  $P(\delta_i = 0) = 1/2$  and  $P(\delta_i = 1) = 1/2$ . We have, for  $i \ge 1$  and  $\lambda > 0$ ,

$$E\exp(-\lambda a_i^2 \delta_i) = \frac{1}{2} (1 + \exp(-\lambda a_i^2)),$$

so also

$$E \exp \left(-\sum_{i=1}^{\infty} \lambda \alpha_i^2 \delta_i\right) = \prod_{i=1}^{\infty} \frac{1}{2} \left(1 + \exp(-\lambda \alpha_i^2)\right).$$

It follows that

(7) 
$$P\left(\sum_{i=1}^{\infty} a_i^2 \delta_i \leq \eta^2\right) \leq \left(\exp\left(\lambda \eta^2\right)\right) \prod_{i=1}^{\infty} \frac{1}{2} \left(1 + \exp\left(-\lambda a_i^2\right)\right).$$

Consider now  $0 < \alpha_1 \le 1$  such that  $1 + \exp(-x) \le 2 \exp(-\alpha_1 x)$  for  $0 \le x \le 1$ . Let  $\alpha_2 = \log(\frac{1}{2}(1+1/e)) > 0$ . Since we can assume  $K_1^2 \ge 1/\alpha_1$ , there is nothing to prove if  $\sum_{i \ge 1} \alpha_i^2 \le \eta^2/\alpha_1$ , since we can then take c = 0. If  $\sum_{i \ge 1} \alpha_i^2 > \eta^2/\alpha_1$ , we consider the largest integer k such that  $\sum_{i \ge k} \alpha_i^2 \ge \eta^2/\alpha_1$ . In (7), we take  $\lambda = 1/\alpha_k^2$ . For i < k, we have  $\alpha_i^2/\alpha_k^2 \ge 1$ , so

$$\frac{1}{2}\left(1+\exp-\lambda\alpha_i^2\right) \le \frac{1}{2}\left(1+\frac{1}{e}\right) = \exp(-\alpha_2).$$

For  $i \ge k$ , we have  $a_i^2/a_k^2 \le 1$ , so

$$\frac{1}{2} \left( 1 + \exp\left(-\lambda a_i^2\right) \right) \le \exp\left(-\alpha_1 a_i^2 / a_k^2\right).$$

It follows that

(8) 
$$P\left(\sum a_i^2 \delta_i \leq \eta^2\right) \leq \exp\left[-(k-1)\alpha_1 + \left(\eta^2 - \alpha_1 \sum_{i \geq k} a_i^2\right) / \alpha_k^2\right]$$
$$\leq \exp(-(k-1)\alpha_1).$$

Fix now  $\varepsilon' = (\varepsilon_i')$  in L. For  $\varepsilon$  in L, we have

$$||M_{\varepsilon}a - M_{\varepsilon'}a||^2 = \sum_{i>1} \alpha_i^2 (\varepsilon_i - \varepsilon_i')^2.$$

For the canonical probability P on L, the sequence  $((\varepsilon_i - \varepsilon_i')^2)$  is distributed like the sequence  $(4\delta_i)$ . It follows from (8) that we can find a subset X of L, with card  $X \geq \exp(-(k-1)\alpha_1)$ , such that  $\|M_\epsilon a - M_{\epsilon'}a\| > 2\eta$  for  $\varepsilon$ ,  $\varepsilon'$  in X,  $\varepsilon \neq \varepsilon'$ . This shows that  $N(a,\eta) \geq \exp(k-1)\alpha_1$ , so  $k-1 \leq (1/\alpha_1)\log N(a,\varepsilon)$ . We note that if  $k=1, \sum_{i\geq 1}a_i^2 \geq \eta^2/\alpha_1 \geq \eta^2$ , so  $N(a,\eta) \geq 2$ . If  $k\geq 2$ , we have  $k\leq 2(k-1)$ ; so for some universal constant  $K_1$ , we have  $k\leq [K_1\log N(a,\eta)]$ . This completes the proof, by taking  $c=\sum_{i\leq k}a_ie_i$ , so that  $\|a-c\|\leq \eta\alpha_1^{-1/2}\leq K_1\eta$ .  $\square$ 

We now perform the main construction.

Proposition 8. There exist universal constants  $K_2$ ,  $K_3$  with the following property. For each sign-invariant totally bounded subset A of H, each sign-invariant probability measure m on A and each  $\eta > 0$ , there is a finite sign-invariant subset B of H and a sign-invariant probability measure  $\mu$  on B such that

(9) 
$$\forall x \in A$$
,  $h(\sup\{\mu(\{t\}); t \in B(x, K_2\eta)\}) \le K_3 h(m(B(x, \eta))/2)$ .

PROOF. Step 1. We first describe the basic construction. Let A' be a sign-invariant subset of A. Let a in A' be such that

$$2m(B(a,\eta)) \ge \sup\{m(B(b,\eta)); b \in A'\}.$$

By  $B(\alpha, \eta)$ , we denote here and in the sequel the ball in H, not its restriction to A'. Using Lemma 7, we find k, such that there is a point b in H that has exactly k nonzero components, with  $||\alpha - b|| \le K_1 \eta$ , and that at least  $\exp(k/K_1)$  of the balls  $B(M_{\epsilon}a, \eta)$  are disjoint. Let B be the set of points of the type  $M_{\epsilon}b$ ,  $\epsilon \in L$ , so card  $B = 2^k$ . For t in B, we set  $\mu(\{t\}) = 2^{-k} m(B(\alpha, \eta))$ .

We note that all the balls  $B(M_{\epsilon}a, \eta)$  have the same measure for m, since m is sign-invariant; since at least  $\exp(k/K_1)$  of these balls are disjoint, we have

$$\log(1/m(B(a,\eta))) \ge k/K_1.$$

So, for each point t of the type  $M_c b$ , we have

$$\log(1/\mu(\{t\})) = k \log 2 + \log(1/m(B(\alpha, \eta)))$$
  
 
$$\leq (K_1 \log 2 + 1)\log(1/m(B(\alpha, \eta))).$$

Let  $(K_1\log 2+1)^{1/2}=K_3$ . Consider the set D, union of all the balls  $M_{\epsilon}(B(a,2\eta))$ . Let  $K_2=K_1+2$ . For each x in D, there is t in B with  $||x-t|| \leq K_2\eta$ . We note also that  $\mu(B) \leq m(B(a,\eta))$ , and that for x in D, we have  $m(B(x,\eta)) \leq 2m(B(a,\eta))$ .

Step 2. By induction over p, we construct sign-invariant subsets  $A_p$  of A, sign-invariant sets  $D_p$ , finite sign-invariant sets  $B_p$ , points  $a_p$  of  $A_p$  and a sign-invariant measure  $\mu$  on  $\bigcup_{i \le p} B_i$ , such that the following conditions hold:

- $(10) \quad a_p \in A_p;$
- (11)  $\mu(B_p) \leq m(B(a_p, \eta));$
- (12) for each t in  $B_p$ ,  $(h(\mu(\lbrace t\rbrace)) \leq K_3 h(m(B(a_p, \eta)))$ ;
- (13)  $D_p$  is the union of the balls  $B(M_{\epsilon}a_p, 2\eta)$  for  $\epsilon$  in L;
- $(14) \quad \forall \ x \in D_p, \exists \ t \in B_p, \|x-t\| \leq K_2 \eta;$
- (15) for each x in  $A_n$ ,  $m(B(x, \eta)) \le 2m(B(a_n, \eta))$ ;
- $(16) \quad A_{p+1} = A_p \setminus D_p.$

The construction starts with  $A_0=A$ , and is immediate by induction, using step 1. The construction continues until  $A_p=\varnothing$ , which occurs in a finite number of steps since A is totally bounded. We set  $B=\bigcup B_p$ . From (13) and (16), we see that any two balls  $B(\alpha_p,\eta)$ ,  $B(\alpha_q,\eta)$ ,  $p\neq q$ , are disjoint; it follows from (11) that  $\|\mu\|\leq 1$ . We now check (9). Let x in A. Let p be the largest integer such that  $x\in A_p$ , so  $x\in D_p$ . From (12), (14) we see that there is t in  $B(x,K_2\eta)$  such that

$$h(\mu(\lbrace t\rbrace)) \leq K_3 h(m(B(\alpha_p,\eta))).$$

From (15), we have

$$h(m(B(a_p,\eta))) \leq h(m(B(x,\eta))/2).$$

This proves (9). Proposition 8 is proved, except for the fact that  $\mu$  is not a probability but  $\|\mu\| \le 1$ . However, (9) will still hold if we replace  $\mu$  by a larger sign-invariant probability. The proof is complete.  $\square$ 

We can now prove the version of Theorem 5 that we need.

PROPOSITION 9. For any sign-invariant subset A of H, there is a sign-invariant probability measure  $\mu$  on A such that if D is the diameter of A, we have

(17) 
$$\sup_{x \in A} \int_0^D h(\sup\{\mu(\{u\}); \|x-u\| \le \eta\}) d\eta \le KE \sup_A X_t.$$

**PROOF.** Let m be the sign-invariant measure on A given by Proposition 6. According to Proposition 8, for each  $k \geq 0$ , there exists a sign-invariant probability  $\mu_k$  on B such that for all x in A,

$$h(\sup\{\mu_k(\{t\}); t \in B(x, K_2D2^{-k})\}) \le K_3h(m(B(x, 2^{-k}D))/2).$$

Let  $\mu = \sum_{k=0}^{\infty} 2^{-k-1} \mu_k$ , so  $\mu$  is a probability. Moreover,

$$\begin{split} &h\big(\mathrm{Sup}\big\{\mu(\{t\});\ t\in B\big(x,K_2D2^{-k}\big)\big\}\big)\\ &\leq h\big(\mathrm{Sup}\big\{2^{-k-1}\mu_k(\{t\});\ t\in B\big(x,K_2D2^{-k}\big)\big\}\big)\\ &\leq h(2^{-k-1}) + h\big(\mathrm{Sup}\big\{\mu_k(\{t\});\ t\in B\big(x,K_2D2^{-k}\big)\big\}\big). \end{split}$$

We note now that for a decreasing function f, we have

$$\sum_{k\geq 0} 2^{-k-1} Df(2^{-k}D) \leq \int_0^D f(\eta) d\eta \leq \sum_{k\geq 0} 2^{-k} Df(2^{-k}D).$$

It then follows that for x in A

$$\int_0^D h(\sup\{\mu(\{t\}); t \in B(x, K_2\eta)\}) d\eta \le K_4 \Big(D + \int_0^D h(m(B(x, \eta))) d\eta\Big).$$

Making a change of variables and noting that  $D \leq K_5 E \operatorname{Sup}_A X_t$ , we obtain the result.  $\square$ 

PROOF OF THEOREM 2. Since the proof is very similar to the proof of the Theorem 2 of [1], we only indicate the necessary modifications. Consider the

probability  $\mu$  given by Proposition 8. Then, for each  $k \geq 1$ , consider the set

$$\begin{split} B_k &= \Big\{ (t_1 - t_2) \Big( 2^{-k} Dh \big( 2^{-k} \mu \big( \{t_1\} \big) \mu \big( \{t_2\} \big) \big) \Big)^{-1}; \, \|t_1 - t_2\| \leq 2^{-k} D, \\ & \mu \big( \{t_1\} \big), \mu \big( \{t_2\} \big) > 0 \Big\}. \end{split}$$

Since  $\mu$  is sign-invariant, so is  $B_k$ . Hence  $B' = \bigcup B_k$  is sign-invariant. As in [2], one checks that B' satisfies

$$\forall u > 0, \quad \operatorname{card}\{b \in B'; \|b\| \ge u\} \le \exp(Ka^2/u^2)$$

and that each t in A can be written as a sum  $\sum_{b \in B'} \alpha_b(t)b$ , where  $\alpha_b(t) \geq 0$ ,  $\sum_{b \in B'} \alpha_b(t) \leq 1$ . This completes the proof, by setting  $B = a^{-1}K^{-1/2}B'$ .  $\square$ 

PROOF OF THEOREM 3. Let B be as in Theorem 2. B is sign-invariant; we pick one element in each class of the action of  $M_{\varepsilon}$  on B; in other words, we consider a sequence  $(b^n)$  in B such that  $b^p$  is not of the type  $M_{\varepsilon}b^n$  if  $p \neq n$ , but that each b in B is of the type  $M_{\varepsilon}b^n$  for some n, some  $\varepsilon$  in L. Let  $I_n$  be the support of  $b^n$ , and let  $\eta_n = ||b^n||$ . Then  $C(I_n, \eta_n)$  contains all the points  $M_{\varepsilon}b^n$ , and there are  $2^{\operatorname{card} I_n}$  of them. It follows that  $B \subset \bigcup_n C(I_n, \eta_n)$ . Moreover, for u > 0,

$$\sum \left\{ 2^{\operatorname{card} I_n}; \ \eta_n \geq u \right\} \leq \operatorname{card} \{ b \in B; \ \|b\| \geq u \} \leq \exp \left( 1/u^2 \right).$$

This completes the proof.  $\Box$ 

PROOF OF THEOREM 4. Denote by  $Y_1^*$  the unit ball of  $Y^*$ . Denote by A the image of  $Y_1^*$  in  $L^2(\mu)$  by the canonical injection from  $Y^*$  into  $L^2(\mu)$ . Denote by H the closed linear span of A in  $L^2(\mu)$ . For each  $n \geq 1$ , let  $e_n = f_n^*/\sigma_n$ . Then  $(e_n)_{n\geq 1}$  is an orthonormal basis of H. Each  $x^*$  in  $Y^*$  is the sum of the series  $\sum_{n=1}^\infty x^*(f_n)f_n^*$ , where the series is weak\* convergent. For  $\varepsilon=(\varepsilon_n)$  in L, we have  $\|\sum_{n=1}^\infty \varepsilon_n x^*(f_n)f_n^*\| = \|x^*\|$ . This shows that, when H is provided with the basis  $(e_n)_{n\geq 1}$ , the set A is sign-invariant. Moreover, it is clear that  $E \operatorname{Sup}_A X_t = \int_Y \|x\| \ d\mu(x)$ . Consider a sequence of finite sets  $I_n$  and a sequence  $\eta_n > 0$  that satisfy the conclusions of Theorem 3. Fix x in Y. For each  $x^*$  in  $Y_1^*$ , we have

$$x^{*}(x) = \sum_{i \geq 1} x^{*}(f_{i}) f_{i}^{*}(x) = \sum_{i \geq 1} (f_{i}^{*}(x)/\sigma_{i}) (\sigma_{i}x^{*}(f_{i}))$$

$$\leq \operatorname{Sup} \left\{ \sum_{i \geq 1} a_{i} (f_{i}^{*}(x)/\sigma_{i}); \ a = (a_{i})_{i \geq 1} \in A \right\}.$$

If  $a \in C(I_p, \eta_p)$ , we have

$$\sum_{i\geq 1} a_i f_i^*(x) / \sigma_i \leq \eta_p \left( \sum_{i\in I_p} \left( f_i^*(x) / \sigma_i \right)^2 \right)^{1/2} \leq N(x),$$

so this inequality still holds whenever  $a \in A$ , so  $x^*(x) \le N(x)$ . Since this is true whenever  $x^* \in Y_1^*$  we have  $||x|| \le N(x)$ .

It remains to show that  $\int_Y N(x) d\mu(x) \le K \int_Y ||x|| d\mu(x) = Ka$ . If C denotes the union of the sets  $C_n = C(I_n \eta_n)$ , we have  $\int_Y N(x) d\mu(x) = E \operatorname{Sup}_C X_t$ . Now,

for some universal constant  $\beta$  and for each n, we can find a subset  $B_n$  of H, consisting of vectors of length  $2\eta_n$ , such that card  $B_n \leq 2^{\beta \operatorname{card} I_n}$ , and such that the convex hull of  $B_n$  contains  $C_n$ . Let B be the union of the sets  $B_n$ . Then the convex hull of B contains C, so  $E \operatorname{Sup}_C X_t \leq E \operatorname{Sup}_B X_t$ . On the other hand, for u > 0, we have, from condition (2)

$$\begin{split} \operatorname{card} \{b \in B \colon b \geq u\} &\leq \sum \left\{ 2^{\beta \operatorname{card} I_n}; \; \eta_n \geq u/2 \right\} \\ &\leq \left( \sum \left\{ 2^{\operatorname{card} I_n}; \; \eta_n \geq u/2 \right\} \right)^{\beta} \\ &\leq \exp(4K\beta a^2/u^2). \end{split}$$

As mentioned in the Introduction, this implies (by homogeneity) that  $E \operatorname{Sup}_{B} X_{t} \leq Ka$ , and finishes the proof.  $\square$ 

**Acknowledgment.** This research was stimulated by discussions with Professor W. J. Davis.

## REFERENCES

- [1] DUDLEY, R. M. (1967). The sizes of compact subsets of a Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1 290-330.
- [2] TALAGRAND, M. (1987). Regularity of Gaussian processes. Acta Math. To appear.

EQUIPE D'ANALYSE-TOUR 46 UNIVERSITÉ PARIS VI 4 PLACE JUSSIEU 75230 PARIS CEDEX 05 FRANCE DEPARTMENT OF MATHEMATICS THE OHIO STATE UNIVERSITY 231 WEST 18TH AVENUE COLUMBUS, OHIO 43210