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STRONG BOUNDS FOR WEIGHTED EMPIRICAL
DISTRIBUTION FUNCTIONS BASED ON UNIFORM SPACINGS

By JoHN H. J. EINMAHL AND MARTIEN C. A. VAN ZUIJLEN

University of Limburg and Catholic University, Nijmegen

Let U, U,,... be a sequence of independent rv’s having the uniform
distribution on (0, 1). Let Isn be the empirical distribution function based on
the transformed uniform spacings D, , == G(nD, ,), i = 1,2,..., n, where G
is the exp(1) df and D, , is the ith spacing based on U,, U, ..., U, _,. In this
paper a complete characterization is obtained for the a.s. behaviour of
limsup, _, ,b,V, , and limsup,_ bW, ,, where » € [0,3], {b,)7-;, is a
sequence of norming constants,

Gm MR MO

0<t<1 ¢ 0<e<1 (1—1¢t)'7" '

It turns out that compared with the i.i.d. case only W, , behaves differently.
The results imply, e.g., laws of the iterated logarithm for log( n"”‘V,,',,) and
log(n”~'W, ,). Of independent interest is the theorem on the lower-upper
class behaviour of the maximal spacing, which gives the final solution for this
problem and generalizes some recent results in the literature.

1. Introduction and main results. Let U, U,,... be a sequence of inde-
pendent random variables (rv’s), each having the uniform distribution on (0, 1).
For n = 2,3, ... we define the transformed uniform spacings by D, , == G(nD, ,),
where

D _=U

i,n itn—-1"

0:= UO: n—1 < Ul:n—l < -+ =< Un—l:n—l < Un: n—1 =1

U.

1 n—1s 1=1,2,...,n,

are the order statistics of the first n — 1 rv’s in the given sequence and G is
defined by G(x) =1 — e ™, x € (0, ). Note that for t € (0,1 — e™ "],

log(1 — ¢t) )"‘1

F(t)=PD; ,<t)=P(nU,,,_,< —log(l-¢t)=1- (1 + -
and for ¢t € (0,1),
F(t) >t asn - oo.

Finally, we define the empirical df FA,, based on the D, , by
n
F(t)=n"' ¥ 1p4(D;,), t€(0,1).
i=1

We will establish a complete characterization of the almost sure behaviour
of limsup,_, ,b,V, , and limsup,_, ,b,W, ,, for » €[0,3] and a sequence of
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positive norming constants {b,}5_,, where

n|F,(t) — ¢
(1.1) Vo= sUp ———
o<it<l1
and
n|F (t) — ¢
(12) W, , = |E,(t) — ¢

S - = -
o<t<1 (1 —1¢)

The study of these rv’s is motivated by similar studies for the i.i.d. case. In
that case for dimension one Csaki (1974, 1975, 1982) investigated the value » = 3,
Shorack and Wellner (1978) » = 0 and Mason (1981) » € (0, ;). Furthermore,
Mason (1982, » = 0) and Einmahl and Mason (1985, » € [0, ;]) obtained the
results in the multivariate i.i.d. case. Although in the i.i.d. case the results are
known also for » € (1,1], the behaviour for these values of the weighted
empirical distribution function based on uniform spacings is stlll an interesting
open question.

To prove the result for W, , we need the final solution for a problem on the
a.s. behaviour of the maximal uniform spacing. This result, which is of indepen-
dent interest and generalizes the results of Slud (1978), Devroye (1981) and
Deheuvels (1982), will be stated as our first theorem. For its presentation we
denote, as usual, the ordered D, ,, i = 1,2,..., n, by

D nSD2:ns SDn:n'

THEOREM 1.1. Let {a,}?_, be a sequence of positive constants. Then we
have

(1.3) [Ya,log(a;!) = w| = [P(nD,, , > log(a,") i.0.) = 1.

The proof of this theorem is deferred to Section 2.

Next let us present our characterizations concerning V,, , and W, , and some
corollaries. The proofs of these are deferred to Sectlon 3 In both theorems
{a,}>_, is again a sequence of positive constants.

THEOREM 1.2.A. For each v € [0, ;] we have

(1.4) [Zan = oo] = |limsupal ™V, , = a.s.]
and
(1.5) [Za <ooalandnalogn—>0]=> lim a; "V, —Oas]

n— oo

COROLLARY 1.1.A. For each v € [0, 3],

log(n*~ 'V, ,
(1.6) lim sup ——g(—l—)— =1-» a.s.
e oo loglog n
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THEOREM 1.2.B. For each v € [0, ;] we have

(1.7) [Zanlog(a;l) = oo] = |limsupa), W, , = o a.s'.]
n—oo
and
(1.8) [Zanlog(a;l) < o0 andanlO] = | lim a),’W, ,=0 a.s.].
n—oo

COROLLARY 1.1.B. For each v € [0, 3],

log (n*~'W,_,)
1. limsup ———""" = 2(1 — ») a.s.
(1.9) 1'1111_)s2p loglog 1 1-7») as

COROLLARY 1.2.

(1.10) [Eanlog(a,:l) < ooanda, lO] = [P(nD,,: . > log(a;!) i0.) = O] .
Corollary 1.2 is more or less the same as Theorem 4.1 in Devroye (1981). The
only difference is that our monotonicity condition on the a, is somewhat milder

than his conditions.
Combination of Theorems 1.2.A and 1.2.B yields for

n|b(t) — ¢
Z,,= sup ——————
T o<e<1 (81 - 2))

COROLLARY 1.3. Theorem 1.2.B and Corollary 1.1.B hold with W, , replaced
by Zn, "

Comparison of Theorems 1.2.A and 1.2.B with the aforementioned results for
the i.i.d. case shows that the result for V, , is exactly the same as that for the
one-dimensional i.i.d. case. Surprisingly, the behaviour of W, , is different: It
coincides with the result for dimension two(!) in the i.i.d. case.

v

2. Proof of Theorem 1.1. Before we give the actual proof we need some
notation and some lemmas. For n € N define the stochastic interval I, =
(1,1, I,,], which is one of the intervals determined by two successive order

n

statistics of U,, U,,...,U,_,, by
(2.1) L= rn-1Usinal, #U_1 a0 <U, <7,

n tn—1°

The length of I, is denoted by S,. Next we define

(2.2) T

n

_ {S,,, itI, ¢ I,,Vin<k<n,
0, otherwise.
Of course, we have

(2.3) T,<S,<D,.,.
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For the proof of Theorem 1.1 we shall need the following extension of the
Borel-Cantelli lemma.

LEMMA 2.1 [Kochen and Stone (1964)]. If for a sequence of events A,, A,, ...
on some probability space

EZ <n<m PAnAm
(2.4) YPA, =0 and liminf —=2=m=V

< I’
N-o  (ZN_,PA,) ”

then P(A, i.0.) > 0.
The next three lemmas are distributional results for S,.
LeEMMA 2.2. Letc € (0,1). Then

(2.5) P(S,2c)=(1-¢)""'1+ (n-1)c).

The proof of this lemma is easy, uses only elementary probability theory and
will be omitted.

LEMMA 23. Let 0 <a <b<1andm> n. Then
P(S,>a;8,>2b;I,cI,)
=1-a)""((m-n-2a+1)n(n-1)
1- a?
(e
n

-1

(2.6) u—bv*—%u-bw+ a—br“}

n+1
-2(m—n-1)a2(1 —a)" "?
x{n(1 - a)1-b)"" - (n—1)1-b)"}.
PROOF. Observe that, with f,(x) = —dP(S, > x),/dx,
P(S,>a;S,>2b;I,,Cc1,)
=£Mﬂﬂ%2mhcuﬂ=ﬂw

&7 = [1x)P(S, > all,, € L; S, = )P(L,, LIS, = x) dx
b

= [5f(x)P(S, = alI,, € L; S, = x) dx.
b
For the conditional probability in this last expression we have
P(S,> all, < L; S, = x)
(2.8) ~ P(S,zal,cI;S,=xU,<U,
X
= 2x—2f yP(S,=all,cI;8,=xU,<U;U, - I, =y)dy.
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Now define therv Z by Z = #{i € N: n <i <m and U, € (I, U,]}, where for
a set A, #A denotes its cardinality. Using Z we see that the conditional
probability in the last expression in (2.8) is equal to

m—n—1

Y P(S,>alZ=k;I,c1,;8,=xU,<U;U,-1I,=y)
k=0

XP(Z=kI,cI;S,=xU,<U;U ~1I,=y)

2.9 m-—n-1 e ke
29) = Y P(S., = a/y)(m Z 1)y’e(l -y) .
k=0

kZ_l (1—a/y) 1+ ka/y)(m “n- 1)yk(l _yymeneker,

Substituting (2.9) in (2.8) and in turn (2.8) in (2.7) we obtain
P(S,>a;S,=2b;I,cI,)=2n(n- 1)/1(1 —x)"?
b

(210) X/xm—f—l(m - n-— l)yk+1(1 _ y)m—n—k—l
k=0 k

a

x (1 -a/y)*(1 + ka/y) dydx.
Now elementary analysis, including Newton’s binomial formula, shows that the
last expression in (2.10) is equal to the last expression in (2.6). O
COROLLARY 2.1. Leta € (0,1) and m > n. Then
(2.11) P(I,cI,)S,=2a)=2/(n+1).

ProoF. Note that
(2.12) P(I,cI,S,=a)=P(S,=2a;S,2a;1,cI,)/P(S,=>a)
and apply Lemma 2.3 to the numerator and Lemma 2.2 to the denominator. O

LEMMA 2.4. Leta, b€ (0,1) and m > n. Then
(2.13) P(S,>a;S,>b;I,¢1,) <P(S, >a)P(S, >b).
PrROOF. By similar ideas as in the proof of Lemma 2.3 it can be shown that
forx<1-—a, ,
P(S,=>a|lS,=x;I1,¢1,)

(214) = m;gn; a- x)kxm—n—k—l(m —Z - 1)(1 —a/(1—x))"

X(1+(n-2+k)a/(1 —x)).

This last expression is decreasing in x. Hence, according to Lemma 4 in Lehmann
(1966) it follows that

(2.15) P(S,>a;S,=b|I,¢ 1) <P(S, > al|l,¢ IL)P(S, > bll, ¢ I,).
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Using (2.15) and Corollary 2.1 we easily see

P(S,>a;S,2b;I,¢1,)
=P(S,>a;S,>b|I,¢I,)P(I,¢I,)
<P(S,=al,¢I,)P(S,>bl,¢1,)P(I,¢1,)
<P(S,=all,¢I,)P(S,>b)
= P(S, > a)P(S, > b)P(I, ¢ I,S, = a)/P(I, ¢ I,)
= P(S,, = a)P(S, = b). O

(2.16)

Now we are prepared to give the proof of Theorem 1.1. First, we restrict
ourselves without loss of generality to a, with n=*? < a, < e™!, which implies
1 < log(a,;!) < 4log n.[For n~*? < a, we need that P(nD,., > $logni.o.) =0,
which follows from our Corollary 1.2 or from Theorem 2.1 in Slud (1978).] Note
also that on account of (2.3) and the Hewitt—Savage 0-1 law it suffices to show
that

(2.17) [Zanlog(a,jl) = oo] = [P(nT, > log(a;,") i.0.) > 0]
We shall prove (2.17) with the aid of Lemma 2.1. Hence we need to prove (2.4)
with A, = [T, > c,], where ¢, = n”'log(a; ).

Let us first consider P[S, > ¢,]. By Lemma 2.2 it is easily seen that we have
for large n,
P(Sn = cn) = (1 - cn)n(n - l)cn

n—1 1
> an(log(a;l))(-—n—)(l - nc?) > Eanlog(a,:l).

Hence we have LP(S, > c,) = c. We also have
P(T,>c,)=P(T,>c¢,; T,=8S,)+P(T,>c¢c,; T, #8S,)

(2.19)  =P(8,>c¢; T, =8,
=P(T,=8S,S,=¢c,)P(S,>c,).
So for establishing YP(T,, > ¢,) = o we only have to show that

liminf P(T, = S,/S, > c,) > 0.

n— oo
But by Corollary 2.1 we have
P(Tn * Snlsn 2 cn) = P(ak:2n/3<k<n In c Iklsn = cn)
n—1
Y P(I,cIS,>c,
k=[2n/3]+1

n—1

= Y  2/(k+1)

k=[2n/3]+1

n
<2 x ldx
2n/3

(2.18)

IA

(2.20)

=2logd < 1.
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Hence P(T, = S,|S, = ¢,) > 1 — 2log2:= § > 0, which proves that the first con-
dition in Lemma 2.1 is fulfilled.

Now it remains to show that the second condition in Lemma 2.1 is fulfilled. It
is sufficient to prove that for large n and m > n,

(2.21) P(T,>c,; T,>c,) <(267%)P(T,, > c,,)P(T, > c,),

with 8 as above. In the proof of (2.21) we need that for large n and m > 2n,
(2.22) P(S,=>c,;S,>¢,; I,cI,)<P(S,>c,)P(S,>c,).

We shall now establish (2.22). We have to distinguish between the cases ¢, < ¢,
and c,, > c,. The case c,, > c, is the easiest one, hence its proof will be omitted.

So let us assume c,, < c,. By an application of Lemma 2.3, using me,, > 1, we
have

.
n?

(2.29) P(S,>c,; S, >c,;I,cI)<12me,ncX(1—¢)" " *1—-¢,)" "
. < 18me,a,ncia,(l — c,) .

Now elementary analysis shows, using m > 2n and a, > k%3, k =n, m, that
for large n,

(2.24) c,(1—¢c,) "<nV®50, asn - .

But (2.23) and (2.24), combined with (2.18), imply (2.22).
Now we consider (2.21) for large n and m > 3n. Then we have

P(T,>c¢,;T,>2c,) <P(S,>c,;S,>¢c,)
<P(S,=2c¢,; S, =2¢c,; I,cI,)
(2.25) +P(S,>c,;S,>2c¢,; I, ¢ 1,)
<2P(S, >c,)P(S,=c,)
<287 *P(T, > ¢,,)P(T, > ¢,),

where for the third inequality also Lemma 2.4 is applied. Next, we consider (2.21)
for large n and n < m < 3n. Then we have

PT,>c,; T,>c,)
=P(T,>c¢,; T,2c,; I,cL)+P(T,>c,; T,>c¢c,, [, 1,)
(226) <P(S,>c,;S,=2¢,;1,2¢1)
<P(S,>c¢c,)P(S,>c,)
<8 *P(T,=c,)P(T,>c,),
which completes the proof of (2.21) and hence the proof of Theorem 1.1. O

3. Proofs of Theorems 1.2.A and 1.2.B. Before giving the actual proofs we
need some lemmas. Let E, E,,..., E,,... be a sequence of independent ex-
ponentially distributed rv’s with parameter 1; let H, be the df of ¥ | E; [the
gamma (n,1) df], and let T, be the empirical df based on U,, U, ..., U, from the
original sequence of independent uniform (0,1) rv’s. We define D*,:=1- D, ,
fori=1,2,...,n; let Fn* denote the empirical df based on these D*, and note
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that
n|b(¢t) - ¢ n|Bx(t) — ¢
o<t<l1 (1 - t)l_” o<t<l1 tl_y

The first lemma is well known [see, e.g., Pyke (1965), Beirlant, van der Meulen,
Ruymgaart and van Zuijlen (1982) and Devroye (1981)].

W,

n,v

LEMMA 3.1.

(i) The random vector (E,/nE,, E,/nE,,...,E,/nE)) is distributed as
(D, > Dy 1y .., D, ,) and is independent of E,, where E, := n~'L_|E,.

(ii) Uniform spacings are exchangeable and negative lower orthant depen-
dent (NLOD), i.e.,

n,n =

n
P(Dl,nsxl; D2,nsx2;.“;D <xn)S l_.[P(Di,nSxi)‘
i=1

(iii) For nonnegative numbers c,, c,, ..., ¢, we have

n n—1 n
1-— c; , or c; <1,
P(Dl,nzcl; D2,nzc2;"';D >cn)= ( igl l) f igl :

n,n =
0, otherwise.

e

LEMMA 3.2. For each A > 0 and each interval A C [0,1] we have

(3.1) P( supn'/2(E(t) — t) = }\) <

teA

P(supnl/z(f‘n(t) —-t) > )\),

teA

1
H,(n)
(3.2) P(flelgnlﬂ(t - E (1) = )\) <TTHD Ilin(n)P(fggnlﬂ(t -T(2) = }\).

Proor. With = G~ }(t) we have with the aid of Lemma 3.1

P( supn/2(F,(t) — t) = )x)

teA

= P|supn'?n™' } 14 4(D, ,) - t) > )x)
tea i=1

n
= Pl supn'?|n~' ¥ 14 4(E/E,) - t) > \NE, < 1)

teA i=1

= Pl supn/?{n~' ¥ 14 5(E/E,) - t) >\ E, < 1)(P(£_7n < 1))_1

teA i=1

n
< P|supn'?n7' } 14 5(E;) - t) >\ E, < 1)(Hn(n))_1

< (Hn(n))‘lP(fggn‘”(fn(t) -t) = A),

which shows (3.1). The proof of (3.2) can be given in a similar way by
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conditioning on the event [E,, > 1]. Compare with Einmahl (1985), where a
similar technique is used. O

LEMMA 3.3. There exist ¢, cy, c3 € (0, 0) such that for every A >0 and
every 0 € (0,1),
n'2E,(t) — n'2\Fx(t) -
max| P sup —— >A|, P Sup ——— 55— > A
(3.3) t>60 t>0

< cl(logg)exp( - c2)\2¢(c3)\(n0)_1/2)),

where Y: [0, 0] = (0, ) satisfies Y(6) ~ 26 'logo as ¢ = .

Proor. The given upper bound in the inequality of the lemma can be
obtained as in Einmahl, Ruymgaart and Wellner (1984) from the well-known
upper bounds for the right-hand sides of the inequalities in Lemma 3.2, taking
into account that

n'/YFx(t) — ¢ n?|E(t) - ¢
Plsup ——77—— > A| = P| sup ————>5— >A|,
t=0 t t<1-6 (1 —1¢)

and that both (H,(n))"! and (1 — H,(n))"' are bounded above by some M €
(0, 0). O

ProoF oF THEOREM 1.2.A. Throughout the proof let » € [0, ;] be fixed.
Suppose that Ya, = co. From Theorem 3.1 in Devroye (1982) we see that
P(D,. , < a, i.0.) = 1 under the extra condition that a,/n |. With the aid of
[ ,a, = o] =[PU,,, < a, i0.) = 1] and a suitable transformation it can be
shown that this extra condition is superfluous.

Hence

(3.4) P(D,.,<ea,io.) =1, foreverye> 0.

1: n

Next we suppose that a, < o, a,| and na,logn — 0 as n = o0. Define

tn(F(t) —¢
(3.5) V,F=  sup #
0<t<logn/n t

The inequality V, , > (2D} ;)" and (3.4) easily lead to (1.4) if we let £]0.

and let us start by showing that limsup,_ .al ’V,) <1 as, hence that
1-»

lim,_, .a),”"V,” = 0 as. According to a version of the Borel-Cantelli lemma we
need to show that YPC, < o0 and PA, — 0 as n — oo, where

—» n‘*n—-1°

1
n

A,,=={V,;“2 } and C,:=A,A°
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Let b, = logn/n and let y, , be the solutions of the equations, n = 1,2,...,

f(t) =k, fork=0,1,....k,=[f.(b,)] +1,

where
t 1-»
(3.6) f.(t) = nt + (a_) , te]0,m).
Note that
- (logn\'""
(3.7) k,=1+ |logn + .
nan
Clearly, since na, logn — 0 we have
logn\'™”
(3.8) k,<3 , forlarge n.

Moreover, let x;, = x;, , = ¥,

. A b,. Observe that for large n, f, is increasing in
t, fo1<f,sincea,l, b, ;>

. X, = b, and x;, < k0 "a,. We have

+ 1 + 1
C.={V. = al—v;Vn—1<;§

n

sup
1—» 1-»? 1—-» 1—»
o<t<b, L na, 0<t<b, , 4 (n—1)a,2y

{ E(t)—t 1 E,_(t)—t 1 }
~ ! sup - :

(3.9 c {:'lte(o, 5,1 nﬁn(t) > f(t); Yicp, 5,1 (n— ]‘)ﬁn—l(t) < fn(t)}

k,
c U {ate(xk_,,xk] nFn(t) = k; Vte(x,,_l,xk] (n - l)Fn—l(t) <k- 1}
k=1

nnk,
= U Bn,k’
k=1
where
(8.10) B, 1= Dy ey > %, Dy, < 2}
and where D,., < D,., < -+ <D,,, are the ordered D, ,, i =1,2,..., n. De-
fine
n
An,k = Z3l(o,zk]('Dj,n)’
j=

where

2pE 2y = G~ '(x,)/n.
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By conditioning on the event {U,_, = U,, ,_,} and using the independence of
the order statistics and the ranks, we find for n > 3,

n—1
PB, ,=P Z Lo, (n/cn- 1))zk](D no1) k=15 Z L, z,,]( j,n) > k)
J= J=1

—<—P(D1n—zk’D2n Zps nk=k_2)
+P(D2’n 25 A, g —k—1)+P(D1n_zk, nk =k —1).

Because of the exchangeability and the negative lower orthant dependence of
uniform spacings we have [by convention ( ) Ofor k<Oork >nj

P(Dy, < 23 Dyn< 265 An = k= 2) < (22 2)(Fw)".
Moreover,
P(D, < 2 A= k= 1) < (32 3)(Fx)"
and
P(D, < 23 Ay u=k=1) < (2 2)(E(x0),

so that we obtain (F(x) < ex for x € [0, 3])

PB, , < 3(2 - })(Fn(xk))k

<3(7 21 )(exn)”

nk—l
< 3ef——RF/ A"k
(3.11) (& —1)! "

pR/A-n+1
k!

< 3ane2k(nan)k_1kk"/(l"')“

< 3a,e*(na,) "

E—1 _
< 3ane2k(nank;/(l_")) p/a-n,
where
na,k/*" < 3(na,log n)1/2.

Since na,logn — 0 as n —> oo, it follows that PC, < M,a,, for certain M, €
(0, o) (for large n) and hence X PC, < co.
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For the proof that PA, — 0 we note that for large n,

PA, < P(3,c 0,5, "F(2) = (1))

< P( nCJkn{ sup nF (t) > k})

k=1 ‘il<x;

nAk,

< X P(Dg o< %)
k=1

(312) nAk,

z (3)EE)

k=1

IA

nAk,

< T 2(B1) (e

k=1

< EM,,nan—>0, asn — oo,

which completes the proof of
(3.13) lim al’V; =0 as.

n-— oo
Remark that also

2v—1

(3.14) al "V, < (na,logn)' ~"(logn)

Finally, Lemma 3.3 immediately yields for large n,

E(t) - 1
P( sup n| (?) t|2 )

log n/n<t<1 [ al~”
n|ﬁn(t) - tl 1 1
<P sup > <.
( log n/n<t<1 /2 a/? n?
so that because of the Borel-Cantelli lemma
n|F(t) -t
(3.15) lim ;™"  sup —|é:)—| =0 as.
noe log n/n<t<1 t

Combination of the obtained partial results in (3.13)—(3.15) yields
n|F(t) — ¢| B

1-»

(3.16) lim al,” sup 0

n— o o<t<l1

-0 asn— o0.
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Proor orF THEOREM 1.2.B. We follow the lines of the proof of Theorem
1.2.A; however, the tools and the calculations will be different. Let » € [0, ;] be
fixed. Suppose that Xa, log(a‘l) = co. Let D¥, < DS, < --- <D,*, denote
the ordered D*,, i =1, 2 , n. From Theorem 1.1 we have

P(nD,,, > log( Yio.) = P(D,, , >
= P(I[I»1 <a,io)=1,
and hence also P(D;* , < ea, i.0.) = 1 for every ¢ > 0. Now (1.7) follows by the
argument used below (3.4) since W, , > (D )' )L
For the proof of (1.8) we suppose that Ya,loga,! < © and a, |0 (which

implies that na,logn - 0 as n > o and Xa,logn < o). Without loss of
generality we restrict ourselves to sequences {a,}?_, with a, > n~%/2, Define

Ex(t) -t
(3.17) W=  sup (#l
0<t<logn/n 4

To obtain lim,_ a. "W, =0 as. we need to show that XPC}* < oo and
PAY > 0asn — oo, where now

>1-a,i.0.)

n‘tn—1°

1
(3.18) AF = {W,:' > a“”} and C}:=AXAX¢
Let b,, ¥ > fu(?), k, and x, be the quantities which are defined in the proof of
Theorem 1.2.A. Note that
(3.19) (2n¥?) ' < x, < YO,

and similarly as in (3.9) we have

1
Cr = {WI 2 1/a, Wi, < — }

-V

S+

(3.20)

nAk,

c U B

k=1
where now
(321) n*:k = {Dl’: n—1 > Xps D;:: n < xk}'
Letting

G '(1-x,) log(x;!)
Z: = Z: n'= = ’

’ n n

n
(3.22) Uy = p— lz,;“,

~
1

n
.= 2, 1/(D, ,), forintervals I,
i=1
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we obtain

n—1 n
PBy, - P( S e (B, <E-1; 1o (D) > k)

Jj=1 Jj=1
n-1 n
(323) = P( El Lo1-xp(Dj ne1) 20— k; Ell(o,l_xk)(nj,,,) <n- k)
= P((0,u) .y =n—k; (0,2%),<n— k)
=P +P,+ P,
where
P = P((0,up), ,2n—k;(0,2),<n—k; [2F, up) 1 =0),

P2 = P((O’ uk)n—l 2n— k; (0’ zl:‘)n <n-— k; [Z]?, uk)n—l = 1)’
P3 = P((O’ uk)n—l =n-— k; (0’ zl:‘)n <n- k; [Z;:, uk)n—i = 2)'

Next, we define the rv’s

n

n
Jn,k = Z 1(0 2f )(Di,n)’ Kn,k = E 1(0,2,‘,')(Di,n)’
- i=4

i=3

(3.24)
Sn, .

I

n
E l[uk,l)(Di,n)’ T, r= E l[uk,l)(Di,n)'
i=3 i=4

We obtain, again by conditioning on the event {U,_, = U,. ,_,}, with the aid of
Lemma 3.1 for n sufficiently large,

P1=P(Jn,k kDln—z:;D2,n2z:;Sn,k=k_2)

<(k > (1= kzp)* !

)

(3.25) =(Z:§)(1— Log’(lﬂ)n_l
)
)

n—2 k(n—1)/n
< ( n- 2
<(B27)ex
Moreover, observe that
P2=P((O’zk)n lzn_ _1;(0’zl’ak)nsn_k;[zl:"uk)n—l=1)

=P21"'P22+P23’
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where
i =P((0,2%),_,2n—k—1;(0,2F),<n—k;
[z, up),_1=1; D, ,+D,,< z,;“),

Py=P((0,2}),_,2n—k—1;(0,2¢),<n—k;
[zk’ uk)n 1= L; D + D2 n = uk)’
Py == P((0,2¢),.,>2n—k—1; (0, zk) —k;

[zk’uk)n 1 1 D1n+D2ne[zk?uk))
We obtain, similarly as in (3.25), with the aid of the mean-value theorem for n
sufficiently large,

P21 = (n_ 2)P(Kn,k=n_k_2; 1)3,ne [zl:’uk);
D, +D, <2t T, ,—k—1)

S(n_2)(z )P(Dln—uk; D2,n uk;”°;Dk—l,n2uk;

=(n- 2)(2 - %){(1 — (k= Dup—2F)" = (1 — ku,)" "'}
< (n-2)(F 2 3)ar( - kep)™
T e

< (27 et o

< (Z ~ })(2xk)'“log(x;1),

e =2(n = 2)P(K, y=n—k—1;D; ,€[2f,u,); D, + Dy, = u;
Dln<zk;D2n zk;Tn,k=k_2)

+(n—-2)P(K, ,=n—k; Dy, €[2},u,); D , >z}
D, 22T, ,=k—3)
<200 =R SVP(D, ,> 25 Dy 2 2+ Doy = 285
Dy, , € [2}, uy))
+(n—2)( )P(Dln—z:§D2,n 285Dy 2 25

Dy . € [2f,uy))
<3(n-—- 2)(n— l)z (1-

s#ZZﬂd“ﬂ@%duU

<372 1)(@x) og(x5")
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P23= 2P(Jn,k=n_k_ 1; Dl,n-|-1)2,nE [zl:"uk); Dl,n<z:;
D, ,>2%8,,=k—-1)

2,n =

1 *
1 P(Dl n = Up; D2,n = Up; ’Dk—l,n 2 Uy; Dk,n 22z )

Finally, for n sufficiently large,
Py < P([2},ux)p 12 2)
<n’P(D, ,_, € [2f,u); Dy oy € L2, 43))

= (- 22)"" = (- 2 - )" )

—((1—u—22)" " = (1 - 20,)" 7))

n—2 3 n—2 _3
5n2{n_1z,;"(1—2z,;")" - n_lz,;"(l—2uk)" }

< 2n2%2;2(1 - 2z)" !

logx;1)\?
$2n2( & Xk x Xn=4/n)
n

< 2(2x;)"(log x;1)2,
so that

PB, , < 7(2 B })(2xk)klog(x;1) + 2(2xk)2(log(x,;1))2

(3.26) log n

i )2(log n)’.

As in (3.11) we obtain (since a, > n~3/2) for certain M,* € (0, ),

_ 2
< 11(” - })(2xk)klogn + 5(

k, )
PC* < Y 1llog nane2k(3(nan10g n)l/Z)k Lpi/a-»
k=1

logn\'~” (log n)*
60(;;) (log n)

na, n?

< M,,*(anlogn + (log n)sn‘3/2),
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so that Y PC* < oo. Moreover,

nAk,
PA: = E P(Dl’::nsxk)
k=1

nAk,

z (p)a—rep)

k=1

(3.27)

IA

nAk,

< Y (Z)(2xk)k—>0, asn — oo,
k=1

which completes the proof of
(3.28) lim a}*W; =0 as.

n— oo

Finally, from the reasoning in (3.13)~(3.16) with V,* replaced by W,* and F,
replaced by E* it follows that

n|FX(t) -t
(3.29) lim al™” —I—-%——' =
n—owo o<t<l1 t

0 as.,

which completes the proof of (1.8). O
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