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Let {X,} be a stationary ergodic process with distribution P admitting
densities p(xy,..., x,_;) relative to a reference measure M that is finite
order Markov with stationary transition kernel. Let I,,(P) denote the
relative entropy rate. Then i

n~'og p(Xy,..., X, 1) = Iy (P) as.(P).
We present an elementary proof of the Shannon-McMillan—Breiman theo-
rem and the preceding generalization, obviating the need to verify integrabil-

ity conditions and also covering the case I;(P) = . A sandwich argument
reduces the proof to direct applications of the ergodic theorem.

1. Introduction. If p(x,,...,x,_,)and p(x,|x,_,,..., x,) denote joint and
conditional probablhty mass functlons of a statlonary ergodic process {X,}
taking values in a countable set %, then the Shannon-McMillan-Breiman
theorem asserts that

n—1

(1) -n'log p(Xe,..., X, ) = —n* ¥ log p(X)X,_,,..., X,) > H as.,

t=0

where H = lim,, | E{ —log p(X,|X,_,,..., X;)} is the entropy rate of {X,}. This
individual ergodic theorem of information theory was proved first by Breiman
(1957 /1960) for finite £, and later by Chung (1961, 1962) for countably infinite '
under the hypothesis E{—log p(X,)} < co. Convergence in probability already
implies the existence of a set of roughly (to first order in the exponent) exp(nH)
typical sequences of length 7 all having roughly equal probability exp(—nH); cf.
Shannon (1948). McMillan (1953) called this the asymptotic equipartition prop-
erty or AEP, and proved convergence in L.

The AEP has recently been generalized to processes with densities. Indeed,
suppose Z is a standard Borel space and (2, %) designates the sequence space
Zo° =T12 0% with its Borel o-field. Let P denote the distribution of a sta-
tionary ergodic process {X,} on (2, #), and M a finite order Markov distribu-
tion with stationary transition kernel. We assume absolute continuity of the nth
order marginal of P with respect to the nth order marginal of M and denote the
corresponding density by p(x,,...,x,_,), for n finite. The generalized

Received August 1985; revised April 1987.

!Partially supported by National Science Foundation Grant ECS-82-11568 and Joint Services
Electronics Program Grant DAAG 29-84-K-0047.

% Partially supported by National Science Foundation Grant ECS-82-11568 and by Bell Communi-
cations Research.

AMS 1980 subject classifications. Primary 28D05, 94A17; secondary 28A65, 28120, 60F15.

Key words and phrases. Shannon-McMillan-Breiman theorem, asymptotic equipartition prop-
erty (AEP), ergodic theorem of information theory, relative entropy rate, likelihood ratio, sandwich
argument, Markov approximation, asymptotically mean stationary.

899

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

WWW.jstor. org



900 P. H. ALGOET AND T. M. COVER

Shannon-McMillan-Breiman theorem then states that
(2) n~'log p(X,,..., X,_;) » I,(P) as.(P),

where I,,(P) = lim, 1 E{log p(X,|X,_,,..., X;))} is the relative entropy rate of
the true distribution P with respect to the reference measure M. Thus the
likelihood ratio p(X,,..., X,,_,) will grow exponentially fast almost surely with
limiting rate I;,(P). The outcomes X,,..., X,,_; will be distributed with nearly
uniform density exp(nl,(P)) over the typical set {|n"'log p(X,,..., X,_)—
I4(P)| < ¢} whose M-measure is roughly exp(—nl,,(P)), smallest possible for
sets whose P-measure is bounded away from 0. Stein’s lemma [cf. Chernoff (1956)
for the i.i.d. case] identifies I;,(P) as the best exponential decay rate of the error
probability when discriminating the null hypothesis P against the alternative M
on the basis of a growing number of observations X, X,..., X, 1

This strong AEP was recently proved by Barron (1985) and Orey (1985),
after Moy (1960, 1961), Perez (1964, 1974), and Kieffer (1973,/1976, 1974) sug-
gested its validity and proved L' convergence. Barron and Orey invoke
Breiman’s (1957,/1960) extended ergodic theorem when they observe that
8(w) = log p(Xy|X_,,..., X_,) almost surely converges to g(w) =
log p(X,|X_;, X_,,...) and hence (writing T for the usual shift on %% =
n?°= - co‘%‘) ’

n—1

(8) n7'log p(Xo,..., X, ;) =n7! Eogt(T‘w) ~ E{g} = Iy(P) as.(P)

provided {g, — g}, is dominated in L'(P) for some finite 2. The essential
contribution of these authors was proving that E{supX ,|g — &,|} < c0. We shall
present an elementary proof of the AEP which obviates the need to verify this
integrability condition. We argue that p(X,,..., X,_,) is sandwiched in
asymptotic growth rate between the kth order Markov approximation
p*(X,,..., X,_,) and the infinite order approximation p(Xgyeo o, X, 4|1 X_1.0),
with no gap as & — 0.

The paper is organized as follows. We exhibit the essence of the sandwich
argument in Section 2, while proving Breiman’s AEP for a finite-valued sta-
tionary ergodic process. The generalized AEP is proved in Section 3 for processes
with values in a standard Borel space. The reference measure M is finite order
Markov with stationary transition kernel, and we must define the densities and
consider the possibility of an infinite relative entropy rate as limiting expecta-
tion. In Section 4 we prove the AEP for processes that are stationary but not
necessarily ergodic, and for asymptotically mean stationary processes satisfying
an extra hypothesis.

If i < j are finite indices then X/, X'} and X%, will denote sequences in the
product spaces £/ =T1/_&, '} =TI{ZL & and 2%, = [12,,,%.

2. A sandwich proof of the AEP for finite-valued random processes.
We prove the AEP for a stationary ergodic process {X,} with values in a finite
set Z. The entropy rate H of {X,} is defined as lim, | H* where

(4) H*= E{~log p(XX,_y,..., Xo)} = E{~log p(Xo}X_y,..., X_,)}.



SANDWICH PROOF OF AEP 901

H* = E{—log p(X,| X% ")} is equal to E{—log p(Xo|X_})} by stationarity,
and H* is nonincreasing by Jensen’s inequality. H can also be defined as the
Cesaro limit,
n-—1

(5) H=lim| n"'E{-log p(X,,..., X,_;)} = lim{ n™* )} H*

n n t=0
It will be crucial [and argued in the following; see (17)-(18)] that H* \\ H = H ®,
where

(6) H* = E{-log p(Xo|X_1, X _,,...)}.

The following lemma will be used when g, is the likelihood ratio of an
alternative measure relative to the true distribution of {X,}.

Lemma 1. If {g,} is a sequence of positive random variables such that
E{g,} <1 for all n, then

(7) limsup n"'logg, <0 a.s.

n

PrROOF. If ¢ > 0, then P{n"'logg, > ¢} = P{g, > exp(ne)} < exp(—ne) by
Markov’s inequality. But X exp(—ne) < o and hence limsup,n 'logg, <
¢ a.s. by the Borel-Cantelli lemma. The lemma follows since ¢ > 0 was arbitrary.

O

THEOREM 1 (Breiman’s AEP). If H is the entropy rate of a finite-valued
stationary ergodic process {X,}, then

—n"log p(Xy,..., X,_1)

8 n—1
® =-n'!Y logp(X)X, 1,..., X,) > H a.s.
t=0

ProOF. We argue that the likelihood growth rate —n~'log p(X,,..., X,_;)
is asymptotically sandwiched between the upper bound H* and the lower bound
H®>, for all £ > 0. The AEP will follow since the sandwich closes in the limit as
k- co.

The kth order Markov approximation of the probability p(X,,..., X,,_,) is
defined for large n (n > k) as

n—1

(9) pk(XO’ AR Xn—l) = p(XO’ AR Xk—l) t_l_.!ep(XtIXt—h'“’ Xt—k)'
In view of the expansions

- n~og p*( Xy, ...y X,_1)
(10) n—-1

= —n_llogp(XO,..., X, ) —n! Z logp(X,|X,_1,..., X, 1)
t=Fk
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and
—nogp(X,,..., X, 1| X_1,...)
(11) ~ n—1
=-n"! Z IOgP(XAXt—v---, X, X—1:-~-):
=0

the ergodic theorem asserts that
(12) - n"Yogp*(X,,..., X,_,) > H* = E{-log p(X,|X,_1,..., X,)} as.
and

—nog p(X,,..., X, 1|1 X_4,...
(13) gp( 0 Xy )

- H* = E{-log p(X,|X_,,...)} as.

The expectation of the likelihood ratio of an alternative measure relative to
the true distribution is equal to the mass of the absolutely continuous part of the
alternative measure, and this is no larger than its total mass. Thus

k
p (XO"“’Xn—l)}
14 E <1
(14) {p(XO,...,Xn_l)

and
Xoseoos X
(15) E{ p(X, ) } <1.
p(Xgyos X |1 X 1, X _p,.-0)
By Markov’s inequality and the Borel-Cantelli lemma (cf. proof of Lemma 1),
k
pH(Xy,.oey X, 1)
(16 lim sup n~ 'log <0 as.
) n p(Xp,..., X,,_1)
and
p(Xy,.-ey X,_1)
17 lim sup n'llog( <0 as.
( ) n p(XO,"',Xn—IIX—I: X—27'")

Writing the log-likelihood ratios in (16) and (17) as differences of log-likelihoods
and applying the limit theorems (10) and (13) we obtain the chain of asymptotic
inequalities
H*=E{-log p(X,|X_,,..., X_,)}

> limsup — n"'log p(X,,..., X,_1)
(18) 8§

> liminf — n"'log p(X,,..., X,_,)

n
> E{-log p(Xo|X_,, X_5,...)} =H" as.

It remains to show that no gap exists between H* and H* in the limit as
k — oo. Indeed, Lévy’s martingale convergence theorem for conditional probabil-
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ities asserts that
(19) p(xoX71) - p(xoX3") as.forallx, e Z.

Since Z is finite and p log p is bounded and continuous in p as 0 < p < 1, the
bounded convergence theorem implies that

H* = E{— Y p(x0/X=})log p(xOIXZ,le)}
(20) ”
- E{— Y p(x0l XL )log p(xOIXZ},O)} = H*.

*o
Thus H* \\ H = H® as k — 0, and the AEP follows. O

3. The generalized AEP for processes with densities. Let % designate a
standard Borel space, ({2, #) the sequence space Z° with its Borel o-field, T
the left shift on (£, #), and X,(w) = X(T %) the usual coordinate projections.
If P and Q are probability distributions on (2, #) and ¢ is a sub-o-field of &,
then (d@/dP)|, will denote the likelihood ratio of the restriction Q|, with
respect to the restriction P|y. This %measurable random variable on (2, %, P)
is obtained by evaluating the Radon-Nikodym derivative of the absolutely
continuous part of Q|4 relative to P|y, at the actual outcome w.

Let (2, #) be equipped with two probability measures, a reference measure
M that is vth order Markov with stationary transition kernel M(dx,|x%~') and a
stationary measure P that is the true distribution of the process { X,}. The finite
dimensional marginals of M are assumed to dominate the corresponding margi-
nals of P, and p(x,,...,x,_;) will designate the density of the restriction
P|,(xz-1) relative to the restriction M|, xp-1y- Thus

X dpP
(21) P(Xo,---, n—l) - TJM— a(Xg")'

Let P be extended to a stationary distribution on the two-sided sequence
space 2. We designate by R the probability measure on =, such that X -y
is distributed as under P and the transition kernel R(dx,|x 1) is a copy
M(dx,|x}{~)) of the transition kernel of M, for all ¢ > 0. In particular R|,xo_, is
obtained by extension to o(X? ) of the set function

(22) R(BXC)= jBM(C|x:}) dP, Beo(X-L),Cea(X,).

The finite dimensional marginals of P are dominated by the corresponding
marginals of R. For finite £ > » let p(xylx_,,..., x_,) denote the density of P
relative to R after restriction to ¢(X?%,). It is well known [cf. Neveu (1972),
Proposition I11-2-7] that {p(X,|X"}), 0(X°,)}, <z <o, is an R-martingale, con-
verging a.s. (R) to the density of the absolutely continuous part of Plyxo_y
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relative to R|,xo )

dP
_’I’(X0|X_1 ) = 75

X\X7}) = =
( 0| k) d (X0,

b
(23) . dR |o(x2,)
as.(R)ask — .
Let p(X,X}!"}) denote the random variable obtained by shifting p(X,|X-})

over ¢ periods. ..
The relative entropy rate is defined as I w(P) = lim,, 1 I (P), where

(24) IE(P) = E{log p(X,IXk 1)} = E{log p(X,|1X})} fork>».

If I,,(P) < oo, then Pis dominated by R on o(X?° ), with dens1typ(X0|X_1 )=
lim, p(X,|XZ k) “as. (P), and {log p(Xo|XZ1), 0(X°%,)}, ch<o is a uniformly
integrable P-submartingale. Consequently if the limit of expectations I, M( P) =
lim,, 1 IX(P) is-finite, then it coincides with the expectation of the limit, i.e.,

(25) I (P) = E{log p(X,|X-%)} if Is(P) < co.
A proof of these facts is given in full in Moy (1961) and as Exercise IV-5-5 in

Neveu (1970). ~
The AEP will-follow from a lemma that may be of independent interest.

~

LEMMA 2 (Sandwich lemma). Let {Z,}, {Z,} and {Z,} be sequences of
positive random variables.

(a) If sup, E{Z,/Z,} < oo or more generally if E{Z,/Z,} has subexponential
growth (i.e., limsup,n~'log E{Z,/Z,} < 0), then

(26) ~ liminf n 'log Z, < liminf n~logZ, a.s.
n
(b) If sup, E{Z /Z,} < o or more generally if E{Z,/Z,) has subexponential
growth (i.e., limsup,n~'log E{Z,/Z,} < 0), then
(27) . limsup n‘lloan < limsup n"'log Z, a.s.
n n
Proor. Let C, = E{Z,/Z,) and suppose ¢ > 0. By Markov’s inequality,
P{n"Yog(Z,/Z,) > ¢} = P{Z,/Z, > exp(ne)} < C,exp(—ne).
Since ¥,C,exp(—ne) < oo for arbitrary & > 0, the Borel-Cantelli lemma gives
limsupn~'log(Z,/Z,) <0 as.
One obtains the chain of asymptotic inequalities
limsuprn~'log Z, = limsup [n~Y0g(Z,/Z,) + n"tog Z,]
n n
< limsupn~'log(Z,/Z,) + limsupn~'log Z,

< limsupn~log Z,,.

n

This proves (b) and the proof of (a) is analogous. O
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We obtain the AEP by applying the sandwich lemma to likelihood ratios,
which have expectations bounded by 1.

THEOREM 2 (Generalized AEP for stationary ergodic P). Suppose M is vth
order Markov with stationary transition kernel M(dx,|x}™'), and the finite
dimensional marginals of M dominate the corresponding marginals of a sta-
tionary measure P. If P is ergodic, then

(28) n~log p(X,,..., X,_1) = Iy(P) a.s.(P).

ProoF. For finite 2 > » let P* designate the kth order Markov approxima-
tion of P, that is the stationary kth order Markov distribution on Z§° having
the same (k + 1)st order marginals as P.If » < k£ < n < oo, then P is dominated
by M on o( XZ~ ') with likelihood ratio

dP*

=pk(X0" () Xn—l)

(X5

(29)

=p(Xy,.-» Xp_1) t_]—[kp(Xt|Xt_1,..., X, ;) as.(P).
By the chain rule for densities,

_ pk(Xo,“" Xn—l)
o(X2 ) p(Xg,---, Xn—l)

dpP
M

dP*

T aM

dP*

—5 as. (P).

(30)

a(X§™h) a(X§™Y)

This likelihood ratio has expectation no larger than 1. Using part (a) of Lemma 2
and the ergodic theorem we obtain the asymptotic lower bound

liminfn~og p(X,,..., X,_,) = limn~'log p*(X,,..., X,_1)
(31) n n
=Ik(P) as.(P).

Now suppose I,,(P) < 0, so that p(X,|X_.) is a bona fide density and
I,(P) = E{log p(X,|XZL)}. Let P* denote the distribution on £, such that
X’} is distributed as under P, and the conditional distribution P*(dx|X his
equal to P(dx|X¢ 1) for all ¢ > ». If n > », then by the chain rule for condi-
tional densities
dP> _ p(Xosooos X)) /0( X0, X, 1)

dP |oxnzyy ;2p( XX L)
This likelihood ratio also has expectation no larger than 1. Using part (b) of
Lemma 2 and the ergodic theorem we obtain the asymptotic upper bound

limsupn_llogp(XO,"" Xn—l) < E{lng(XO|X_1, X—27 e )}
(33) n

(32)

as. (P).

—1,(P) as.(P).
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But If(P) » I;(P), so the AEP follows by chaining the asymptotic inequalities
(31) and (33) if I,(P) < o and from (31) alone otherwise. O

Note that I} (P) = I,,(P*) is the relative entropy rate, relative to M, of the
kth order Markov approximation P* of P. The difference I,,(P) — I%(P) can be
interpreted as the mutual information I(Xy; X_% !\ XZ1) = I(X,; XZ1|XZ}),
and also as the information divergence rate I,«(P) of P relative to P*. The AEP
(28) with M = P* gives

pM(Xy,..os X,_1)
p(Xgseoey X,_y)

It is perhaps worthwhile to point out the relation between entropy rate and
relative entropy rate. If p is a (necessarily o-finite) reference measure on a
standard Borel space 2 and {X,} is an %-valued stationary ergodic process with
distribution P admitting conditional and joint densities p(x,|x,_,,.-., xo) and

p(xg,...,%,_,) relative to p (respectlvely, relative to the product of n copies of
1), then the entropy rate H,(P) is defined as lim, | H¥(P), where H¥(P) =
E{—log p(X,| X% 1)). Although H,(P) is always nonnegatlve if pis countmg
measure on a countable set £, no such claim can be made in general, e.g., if p is
Lebesgue measure on the real line. Nevertheless,

(34) li'rln n"'log

) = Ip(P) = I(Xp; XZL,|XZ}) as. (P).

n-—1

—n " og p(Xg,..., X,_1) = —n~' Y log p(X)X,_1,..., Xp)
(35) t=0

- H(P) as.(P).
If M is the product of copies of a distribution m that dominates u on %, then

(36) H(P) = E{log(::—:l(Xo))} ~1,(P).

In particular, if p is counting measure on a finite set 2 with cardinality || %’|| and
M is the product of copies of the normalized measure m = /|| %||, then I,,(P) =
log||Z|| — H(P).

4. The AEP for stationary and asymptotically mean stationary P.
Two generalizations of the AEP due to Barron (1985) will now be proved using
the sandwich technique.

If P is stationary but not ergodic, then the o-field of invariant events
J={F € %: T"'F = F} is nontrivial. The relative entropy rate I,,(P) is then
the expectation of the invariant random variable i,, = lim 1 i%,, where

(37) il = E{log p(X,1 X3 1)1#} = E{log p(Xo|XZ})l#} fork >».
To prove that i¥, is nondecreasing it suffices to observe for » < £ < I < n that

k
D (Xo’--~aXn—1)}
38 E <1,
(38) {p’(XO,...,Xn_l)
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and hence, by Lemma 2 and the ergodic theorem,

it = ]i'rlnn‘llogpk(Xo, s X,21)

39
(89) < i}, = limn~'1og p"(X,,..., X,_,) as.(P).
n

THEOREM 3 (Generalized AEP for stationary P). If P is stationary but the
other hypotheses of Theorem 2 hold, then

(40) n~'og p(Xy,..., X,_,) = iy = lilrznTij’fl a.s. (P).

Proor. If I,(P)= E{iy,} is finite, then (40) follows by substitution
of the invariant random variables i% = E{log P(Xo|XZ)I#) and iy, =
E{log p(X,|XZ_,)|#} for the limiting expectations I%(P) and I w(P)in (31) and
(33). It I);(P) = oo, then we define Qy = {i,, < N} for integer N and observe
that {©,} is an increasing sequence of invariant events such that the asymp-
totic lower bounds (31) (upgraded by writing i%, on the right) and hence (40)
hold on the complement of U,2y. But (40) holds on Q,, for finite N such that
P(Qy) > 0, since it holds under the conditional measure P(-1Qpy) =
P(- N Qy)/P(2y) and the constant log P(Q,) may be added to or subtracted
from both sides without making a difference. Thus (40) holds without restriction.

a

A probability distribution P in (2, #) is called asymptotically mean sta-
tionary (a.m.s.) if the Cesaro averages n™'L?-P(T~‘F) converge for all Borel
sets F € . Setting the limit equal to P(F') then defines a stationary measure P,
which is called the stationary mean of P. Clearly P and P have the same
restriction to the invariant ¢-field .#, so that E{-|.#} = E{-|#} if E{-} denotes
expectation with respect to P. See Gray and Kieffer (1980) for further discussion
of a.m.s. measures, and Section 34.2 in Loéve (1978) for a proof that the following
strong law of large numbers holds for nonnegative measurable g(w):

n—1
(41) n' ) g(T) - E{gl#} = E{g|#} as.(P)andas. (P).

t=0

THEOREM 4 (Generalized AEP for asymptotically mean stationary P). Sup-
pose M is finite order Markov with stationary transition kernel and the finite
dimensional marginals of M dominate the corresponding marginals of an
asymptotically mean stationary measure P as well as those of its stationary
mean P. The AEP will hold for P with the same limiting rate as under P if

limsup,n~'log p(X,,..., X,_,) is an invariant random variable. In particular
if P is ergodic then the AEP for P asserts that
(42) n~'og p(X,,..., X,_,) » I;(P) a.s.(P).

PROOF. We consider the ergodic case. Let p*(xy, ..., %,_1), p(Xg,-..,%,_,)
and p(xy,...,x,_;) denote the densities of P*, P and P relative to M after
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restriction to o( X2 '). Then

=k

p (XO""’Xn—l) —{p(XO""’Xn—l)
43 E <1 d E <1
(43) {p(XO""’Xn—l) o P(Xos-es Xph)

Part (a) of Lemma 2 in conjunction with the ergodic theorem (41) proves that

liminfn~Ylog p(X,,..., X,_;) = limn~'log p*(X,,..., X,_1)
(44) n n

=I,,(P*) as.(P)
and part (b) in conjunction with the AEP for the stationary mean P yields

limsupn~'log p(X,,..., X,_;) < limn~log p(X,,..., X,_,)
(45) " "

=1,,(P) as.(P).

If limsup,n~'log p(X,,..., X,,_;) is an invariant random variable, then (45)
holds not only a.s. (P) but also a.s. (P) and the AEP (42) follows. O

Notice that limsup,n~'log p(X,,..., X,_,) is invariant if a sequence {k,}
exists such that k, —» o, k,/n — 0, and n"'log p(X,,..., X; ) = 0 as. (P).
Barron (1985) put forward this condition in his Theorem 3, and reduced it to
existence of {m,} such that the mutual information I(X§™; X2|X}F*™1) is
finite for all £ > 1.

Algoet and Cover (1988) provides a gambling interpretation of the AEP and
further motivation of the sandwich argument.

Acknowledgments. We thank A. R. Barron, R. M. Gray and J. C. Kieffer
for helpful comments. We are especially grateful to the referee for suggesting
Lemma 2 and for bringing Orey’s (1985) paper to our attention.
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