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ASYMPTOTICS OF A CLASS OF MARKOV PROCESSES
WHICH ARE NOT IN GENERAL IRREDUCIBLE

BY RABI N. BHATTACHARYA! AND OESOOK LEE

Indiana University

Let a, be a sequence of i.i.d. nondecreasing random maps on a subset S of
R* into itself and let X, be a random variable with values in § independent
of the sequence a,,. Then X, = a, - & X, is a Markov process. Conditions
for the existence of unique invariant probabilities are obtained for such
Markov processes which are not in general irreducible, extending earlier
results of Dubins and Freedman to multidimensional and noncompact state
spaces. In addition, a functional central limit theorem is obtained. These
yield new results in time series and economic models.

1. Introduction. One way to study discrete parameter Markov processes is
the following [Kifer (1986)]. Let (S, ¥) be a measurable space, I' a set of
measurable maps on S into itself. Endow I' with a o-field € such that the map
(v,x) = y(x) on T X S into S is ¥ ® &|Fmeasurable. Let P be a probability
measure on (I', ). On some probability space (2, %, @) define a sequence of
ii.d. random maps a;, a,,... with common distribution P. For a given random
variable X, independent of the sequence a,, define X, =, X,,..., X, =

a,X, ,=a, - aX;,---. Then X, is a Markov process with transition
probability p(x, dy) given by
(1.1) p(x,B)=P({yeT:y(x)eB)), x€8,Bes.

We shall often write X, (x) for X, in case X, = x. Denote by P" the joint
distribution of a,,...,a,,ie, P"=PX P X --- XPon (I'", €®").

Let B(S) denote the linear space of all real-valued bounded measurable
functions on S. The transition operator T on B(S) is defined by

(1.2) (TF )(x) = [{(»)p(x,dy),  feB(S).
Its adjoint is T * defined on the space .Z(S) of all finite signed measures on
(S, &) by

(13) (T*u)(B) = [p(x, Bu(dx), pe.(S).

Let 2(8) c #(S) denote the set of all probability measures on (S, .#). Recall
that a probability measure 7 on (S, &) is said to be invariant for p if it is a fixed
point of T'*: T *¢ = .

We shall write p'™)(x, dy) for the n-step transition probability, with p» = p.
Then p™(x, dy) is the distribution of a,, - - ax.
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1334 R.N. BHATTACHARYA AND O. LEE

The transition probability p may not be g-irreducible for any nonzero o-finite
measure ¢. Recall that p is g-irreducible if ¢(B) > 0 implies that for each x
there exists n such that p(™(x, B) > 0. There is an extensive literature on the
asymptotic properties of Markov processes with g-irreducible transition prob-
abilities. See, e.g., Jain and Jamison (1267), Orey (1971), Tweedie (1974), (1975)
and Revuz (1984). There is, however, no general theory for the nonirreducible
case. In the present context, the latter arises, for example, when P is discrete.
For some examples of nonirreducible models in biology and economics, see Reed
(1974), Bhattacharya and Majumdar (1984), (1988) and Rosenblatt (1980). Our
main interest in this article is to look at one such class of Markov processes, to
find general conditions under which there exist unique invariant probabilities =,
to study the stability of such measures and to identify broad classes of functions
f in L%, 7) for which the functional central limit theorem (FCLT) holds, i.e.,
the sequence of stochastic processes

Y.(¢)

e n/[[zl( 105) = fra) + 1= B 1) - f d")]

n

converges in distribution to a Brownian motion under every initial distribution.

In the class of problems considered in this article, S is a topologically
complete subspace of R*, i.e., the relativized topology on S may be metrized so
as to make S complete. The Borel o-field of S is #4(S). For T one takes a set of
measurable monotone nondecreasing functions y = (y,...,y*®) on S into
itself. In other words, Y®(x®,..., x®) is monotone nondecreasing in each
coordinate x, ..., x(®. Make the assumption on P:

There exists x, and a positive integer m such that

(1.5) Q(X, (x)<x,Vx)>0, Q(X,(x)=x,Vx)>0.

It is then shown that there exists a unique invariant probability to which
p™(x, dy) converges exponentially fast in a metric stronger than the Kolmogorov
distance; this convergence is uniform for all x € S (Theorem 2.1). This gener-
alizes an earlier result of Dubins and Freedman (1966) and Yahav (1975) who
considered the case £ =1, S a compact interval. A necessary condition for
compact S and arbitrary % is given by Lemma 2.6. Theorem 3.1 provides an
FCLT of the type mentioned earlier. Section 4 contains two applications, one to
mathematical economics and the other to nonlinear autoregressive models; both
are new results.

2. Existence of a unique invariant probability. Let S Cc R* be topologi-
cally complete in its relativized Euclidean topology and let I' be a set of
measurable monotone nondecreasing maps y = (Y®,...,v®) on S into S. We
shall often write yx for y(x).

Let € be a o-field on I' such that the map (y, x) = yx is measurable on
(T X S, ¢® %(S)) into (S, %4(S)).
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Let &/ be the class of all sets A C S of the form
(2.1) A={yeS:y(y) <x},

where y varies over the class of all continuous monotone nondecreasing func-
tions on S into itself and x varies over R*.

On the space #(S) of all probability measures on (S, #(S)), define the
distance d by

(2.2) d(p,v) =sup{|p(A) —»(A)|: Aex}, p,veP(S).

This defines a topology on £(S) that is stronger than the weak-star topology.
Our first main result is

THEOREM 2.1. Suppose there exists a positive integer m and some x, € S
such that (1.5) holds. Then there exists a unique invariant probability = and

(2.3) sup{d(p™(x, dy), n(dy)): x € S} =0

exponentially fast as n = oo.
First let us show

LEMMA 2.2. The space P(S) is complete under the distance d defined by
(2.2).

ProOF. It is known that £(S) is topologically complete under the weak-star
topology [see Parthasarathy (1967), page 46], which is weaker than its topology
under d. Hence if p, is a sequence in #£(S) such that d(p,,p,,) = 0 as
n, m — oo, then there exists p € 2(S) such that p, converges weak-star to p.
Fix a continuous monotone nondecreasing y on S into S and write ¥, and F for
the cumulative distribution functions of p,°y~! and p°y~!, respectively. Then
F,(x) converges to F(x) at all points x of continuity of F. On the other hand,
sup{|F,(x) — E(x)|: x € R*} <d(p,, p,,)- Hence F, converges uniformly to a
function that is necessarily right continuous. This implies that this limit func-
tion is F and that F,(x) converges to F(x) uniformly for all x. This being true
for every continuous nondecreasing v, p,(A) converges to u(A) for every A € /.
But p,, converges uniformly on /. Hence d(p,, p) — 0. O

We now introduce a distance d, stronger than d. For a > 0, let ¢, denote the

class of all real-valued Borel measurable nondecreasing functions f on S satisfy-
ing 0 < f(x) < a for all x € S. Define

(24)  dy(p,») =sup{|ffdu—ffdv!: fe %}, v e P(8).

Clearly, d (p, ») = ad(p, ») for all a > 0.
Let the linear map T *" = (T™)* be defined on #(S) by

(2.5) (T*")(B) = fp(")(x, B)u(dx), n=1,pecH(S), Be B(S).
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In order to state the next lemma, fix x, € S and a positive integer m. Write
l11 = {(YI""’Ym) erm™ Ym " 1 X S X Vx},

(26)
r2= {(Yl”"’Ym) erm; Ym c lezxo Vx}.

LEMMA 2.3. If T, T, are defined by (2.6), then

(27) dl(T*np‘a T*nV) < s[n/m]dl(“’ V),
where
(2.8) 8 = max({1 - P™(T,),1 - P™(T,)).

If (1.5) holds, then § < 1.

Proor. Let f € ¢,. Then

OShl(x)Ef (Y =+ 1x)P™(dy, --- dv,)
LN\ NTy)
< f(xo)(P™(T,) = P™(T, N T})), ‘
0shy(x)=[ (L= f(y o na)P(dy, - dv,,)
L\ NTy)
(2.9) < (1= f(x0))(P™(L,) = PYT, N T})),
0<hyx)=[ [t n&)P"(dy, -+ dy,)
I'\(IUTy)
<1-P™I,Uly),
fmrf(vm o nx)P™(dy, -+ dy,,) = f(x,)P™(T, N T,).
Now,

/de*mp— fde*'"v
(2.10) = [m(x)n(dx) = [hy(x)v(dx) + [hy(x)n(dx)
= [ha(n(dx) + [ho(x)u(a) = [y(x)v(dx).

Let a,, a,, a; denote the constants appearing on the right sides in (2.9) bounding
hy, hy, hy. Then, k), a, — h,, h, belong to 9, i = 1,2,3. Therefore,

dy(T*"p, T*™») < sup [{f(xo)(P™(Ty) = P™(T, N T3))

+(1 - f(xo))(P”‘(l"z) - Pm(rl N rz))
(2.11) +(1 - P™(I, U r2))}d1(”" ”)]
< [max{Pm(Fl) - P™(I,NT,), P™(T,) — P™T, N T}
+1 - P™(T,) — P(T}) + P™T, N rz)]dl(l’w v)
= max({1 — P™(T,),1 — P™(T,)}d,(p, »).
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For the last equality, if P™(T',) > P™(I}), then
max{P™(T) - P™(I', N I;), P™(T,) - P™(T, N T})}
= P™(T,) - P~(T, N T,).
Thus (the sum on) the left side of the equality in (2.11) is 1 — P™(T,). But the

right side also equals 1 — P™(T},) in this case. The case P™(I,) > P™(I)) is
exactly similar. Hence

(2.12) d(T*™u, T*™v) < 8d,(p, 7).
Also,

dy(T*p, T*v) = sup{‘f[ff(y)p(x, dy)]u(dx)

(2.13) _f[ff(y)p(x,dy)]v(dx)‘! fe f‘?l}
< d(p, 7).

Combining (2.12) and (2.13) one arrives at (2.7). If (1.5) holds, it is trivial to check
that § < 1. O

Since d(p, v) < di(p, ») < 1, the following is immediate from Lemma 2.3:
(2.14) d(T*™u, T*™) < §ln/ml; n=12,....

Corollary 2.4 is a consequence of Lemma 2.2 and (2.14).

COROLLARY 24. If (1.5) holds for some x, € S and some positive integer m,
then there exists a unique probability measure « on (S, #(S)) such that
(2.15) supd( p™(x, dy), 7(dy)) < 8("/™ 50 asn - .

xe€S

ProorF. For n’ > n, one has
216)  d(p™(x, dy), p"(x, dy)) = d(T*", T*") < ln/m),

with p = §, (point mass at x) and » = T*("~™§ . Hence p‘™(x, dy) is a Cauchy
sequence in the metric d. Let 7 be its limit, which exists by Lemma 2.2. Letting
n’ — oo in (2.16) one arrives at (2.15). O

If the probability measure # in Corollary 2.4 can be shown to be invariant,
then the proof of Theorem 2.1 would be complete. The next result shows this.

LEMMA 2.5. (i) Suppose there exista = (aV,..., a®) and b = (bW, ..., b))
in S such that a < x < b for all x € S. If, in this case, p™(x, dy) converges
weakly to the same probability measure w(dy) on S for every x € S, then = is the
unique invariant probability for p.

(ii) The probability measure w in Corollary 2.4 is the unique invariant
probability for p, whether or not there exist a and b as in part (i).
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Proor. (i) Let
(2.17) X(x)=@a, --ax, Y(x)=a - ax, x€8,

where a, o, a,,... is an ii.d. sequence of random maps (on S into S) with
common distribution P and defined on some probability space (R, %, ). The
distribution of Y,(x) is the same as that of X, (x), namely, p*X(x, dy). Now
Y, (a) increases and Y,(b) decreases, respectively, to Y and Y, say. Since Y,(a) <
Y, (b) for all n, Y < Y. Under the hypothesis, however, the distributions of Y
and Y are the same, namely, 7. Hence Y = Y, almost surely. Therefore,

P (a,8 N [a,x]) = Qa¥,(a) < x) > Q(a¥ < x)

- fp(z,S N [a, x])7(dz)
= Q(aY < x) > Q(aY,(b) < x)
=p"*(b,8N [a,x]).

If x is a point of continuity of the cumulative distribution function (c.d.f.) of =,
then the two extreme sides of (2.18) have the same limit #(S N [a, x]). Hence
one must have the equality

(2.18)

(2.19) (SN [a,x]) = fp(z,Sn [a,x])7(dz).

Since the class of sets S N [a, x] for which (2.19) holds is closed under finite
intersections and generates %(S), it follows that [see, e.g., Billingsley (1979),
Theorem 3.3, page 34]

(2.20) 7(B) = fp(z,B)w(dz) VB e %(S),
i.e., 7 is invariant for p. If #’ is also invariant, then
(2.21) 7(Sn[a,x]) = /pw(z,Sn [a,x])7'(dz) V=

In particular, for points x of continuity of the c.d.f. of #, one may take limits to
get 7/(S N [a,x]) = #(S N [a, x]). This implies #’ = =, proving uniqueness.

(ii) First consider the case m = 1. In case there do not exist @ and/or b as in
part (i), reduce the problem to that of a bounded S, by an increasing homeomor-
phism. Let now a® = inf{x®: x € S} and b = sup{x®: x €S}, 1 <i<k.
Write a = (a®,...,a®), b= (bY,...,b®). Let S=S U {a, b}). For y e T},
set y(a)=a and y(b) =x, for y €T, set y(a)=x, and y(b) = b; for
y € I, UT,, set y(a) = a and y(b) = b. Then the hypothesis (1.5), with m = 1,
still applies on the new state space S. Therefore, by Corollary 2.4 and the
preceding part (i), there exists a unique invariant probability #(dy) to which
p™(x, dy) converges in the d-metric, for all x € S. Since p(™(x, dy) converges to
7(dy) forall x € S, 7 = 7.
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To deal with the case m > 1, take for T’ the set I'™ of all compositions
Y, ** v, withy, € T, 1 < i < m. For the o-field €™ on I'™, take the class of
all sets B whose inverse images under the map (y; - v,,) = ¥, *** ¥ are in
#™. Let P™ be the induced probability measure on (I'™, €(™)). The (one-step)
transition probability arising from the map (y, x) = yx on '™ into S is then
p™(x, dy), with the associated adjoint operator T *™. By the preceding para-
graph, = is the unique fixed point of T'*™: T *™g = . Also, one has

T *q = T*(T*m”ﬂ) = T*(mntly _ o

in the d-metric. Hence T *7 = #. O
This completes the proof of Theorem 2.1.

REMARK 2.5.1. If one can show that #£(S) is complete in the metric d,
defined by (2.4), then the contraction mapping theorem immediately yields
T *¢ = o. This is true for £ = 1 and we are uncertain for & > 1.

REMARK 2.5.2. Theorem 2.1 and its proof go over to a topologically complete
S c R™.

In case k=1 and S is compact, the hypothesis of Theorem 2.1 is also
necessary, leaving aside the case P({y(M) = M}) = 1 for some unique M [see
Dubins and Freedman (1966) for the continuous case].

More generally, one has the following result. As before, S is always taken to
be topologically complete.

LEMMA 2.6. LetS C R*, T a set of measurable nondecreasing functions on S
and let P be a probability measure on (T, €) such that p™(x, dy) converges
weakly for each x to the same probability w(dy). Assume that there are two
points a, b € S such that a < x < b for all x € S. Then (1.5) holds for some x,,
and some m, provided there are two points ¢ = (c¢,...,c®) and d=
dD, ..., d®) in the support of m(dy) such that c® < d® for1 <i<k.

ProOF. Let Y, (a)1Y, Y,(b)!Y [see (2.17)]. Since p™(a, dy) and p™(b, dy)
converge weak-star to the same limit, Y=Y as. Choose 6 > 0 such that
e+ 0 <d®—0forl<ix< k Writing e =(1,1,...,1), there exists a positive
integer m such that prob(X,,(b) < c + fe) = prob(Y,,(b) < c + fe) >0 and
prob(X,,(a) = d — fe) = prob(Y,,(a) > d — fe) > 0. Then (1.5) holds for this m
and any x, € [c + fe,d — fe]. O

3. A functional central limit theorem. One of the principal objectives in
this article is to obtain functional central limit theorems for

(3.1) Y(t)=n"V [g(f(xj) - [1dn). 0st<m,
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or its polygonal version defined by (1.4), for broad classes of functions f in
L%(S, ) under the general assumptions made in Section 2. In many situations,
especially when P is discrete, the Markov processes X, considered here are not
g-irreducible with respect to any nontrivial o-finite measure ¢. As a consequence,
the processes, even though ergodic, are not even strongly mixing. Indeed, the tail
o-field may be nontrivial [see Rosenblatt (1980) for an example].

The process Y, defined by (3.1) or (1.4) takes values in the space D[0, c0) of
real-valued right continuous functions on [0, c0) having left-hand limits with the
Skorohod topology. The distribution of Y, is then a probability measure on the
Borel o-field of D[0, ), and its convergence in distribution to a Brownian
motion means the weak-star convergence of this sequence of distributions to a
Wiener measure [see, e.g., Parthasarathy (1967), Chapter 7].

THEOREM 3.1. Let the hypothesis of Theorem 2.1 hold.

(a) Then for every f that may be expressed as the difference between two
monotone nondecreasing functions in L%(S, 7), f — [f dw belongs to the range of
T- I

(b) Whatever the initial distribution, the functional central limit theorem
holds if f is as in part (2), and the variance parameter of the limiting Brownian
motion is given by [g’dm — [(Tg)?dw, where g is an element of L*(S, )
satisfying (T — I)g = f — [fdm.

For the proof let us begin with two simple but crucial lemmas. Let || - |,
denote the norm in L%(S, 7).

LEMMA 3.2. Let p be a probability measure on (R, #(R')) such that
Jx%u(dx) < oo. Then

2

Jxta) = ( fan(a@)| =4 [z = »’uldx)n(an).
Proor. Expand the right-hand side and integrate. O
LEMMA 3.3. Letf € L%S, 7) and write

(3.2) f= ffdvr.

If 2ol (T™(f = F))ll, < o, then f — f belongs to the range of T — I; indeed,
(T—1I)g=f—f, where

(3.3) g=—§T"(f—f')-

Proor. Apply T — I to the right side of (3.3). O
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ProOF OoF THEOREM 3.1. Let f € L%(S, 7) be monotone nondecreasing. By
Lemma 3.2,

l=(1 - DI
= J{J() = Do ) o)
(3.4) = f[f( () = ) p™(x, dy)
5[ JUH3) = KPP, dy)p (i, do)| )
=If-fiz-1f [ [ [(#(3) = 1(2))*p™(x, dy)p™(x, dz)]w(dx>.

Now
[ J(1(3) = 1(2))*p™(x, dy)p™(x, dz)
z ‘/;zzx }'[{ysx }( f(5) = f(xo))2p('n)(x, dy)p™(x, dz)
+[ () = ()P, dy)p™(x, de)
{z=x0}{y>x0}
(3.5)
2 PP [ (1) = 1(x) P (e, )

+PT) [ (1) = f(x)) ™, )

> min{P™(T,), P™(L,)} [(1(3) = 1(x0))*p™(x, dy),

where T, and T, are defined by (2.6). Hence

f[ff( f(3) = £(2))*p™(x, dy)p™(x, dz)]w(dx)

e = min{P'"(I‘l),P’"(Fg)}/[f( f(3) = £(x4))" p™(x, dy) | 7(dx)

= min{P™(T,), P™(T3)} [((3) = F(x,))*n(dy)

> min{P™(L,), PM(T)}f = FlIF = (1 - 8)IIf - I3,
where 8, defined by (2.8), is less than 1. Using (3.6) in (3.4) one gets

(3.7) IT™(F=F)ll, < elf = Flla
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where
(3.8) c=(1-11-8)"<1.

Next note that if f is monotone nondecreasing, so is Tf and therefore T™f.
Hence iteration of (3.7) yields

(3.9) NTm(f =)l < e/f=Flles  J=1,2,....
Since T is a contraction on L%(S, 7), one has, finally,
(3.10) N7(f = P)ll, < >™Nf=Fll,  Vn

It now follows from Lemma 3.3 that f — f belongs to the range of T — I. This
proves part (a). _
In order to prove part (b), let (T — I)g = f — f. Then

X (1(x) =) = X (Te(x;) - &(x))
@Ga1) ;1
/ - - (Tg(Xf—l) - g(Xj)) + (g(Xn+1) - g(Xo))-

Since Tg(X;_,) — &8(X;), j 2 0, is (under the initial distribution =) a stationary
ergodic sequence of martingale differences, the functional central limit theorem
follows [see Billingsley (1968), Theorem 23.1; Gordon and Lifsic (1978) and
Bhattacharya (1982), Theorem 2.1]. In this case the variance parameter of the
limiting Brownian motion is E(Tg(X,_,) — g(X;))* = g5 — IITgl|3.

It remains to prove the functional central limit theorem starting from an
arbitrary initial state x. Let f € L*(S, =) be monotone nondecreasing. Let { X}
denote the process with initial distribution 7. Write

S () =12 3 (1(X,(2)) — F),

(3.12) o
Sm,m’=n_1/2 Z (f(Xj)_f)
Jj=m

Then S ,(x) = 8y ,,—1(*) + S,,, (x). Now, for every n,,

(3.13) So, ng-1(x) >0 as.asn— oo.
Also, for all r € R},
(314)  Q(S,, %) > 1) = Bhy(X, (%)) = [h(3)p"(x, dy),

where @ is the probability measure on the basic probability space and

(3.15) Ro(¥) = Q(So, e ¥) > 1)
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is an increasing function of y. Hence, by Lemma 2.3,

(3.16)  sup

n>ng,

Jru(3)p " (x, dy) ~ fhn(y)ﬂ(dy)l —0 asng— co.

Therefore, given & > 0, one may choose n, = n(e) such that the left side of
(3.16) is less than /3. Then choose n(¢) such that for all n > n(e),

(3.17) ‘Q(S"o'n(x) > 1) = Q(Sy, o(x) > r)] <e/3,
|Q(So,n > 7) = @(So,n_n, > 7)| < /3.

It follows that

(3.18) 1Q(Sy, (%) > 1) = @Sy, >7)| < Vn>n(e).

Hence the distribution of S, ,(x) converges in the weak-star topology to the
appropriate Gaussian law. In this manner one proves convergence of the finite
dimensional distributions of Y,(#) to those of a Brownian motion when the
initial state is x. It remains to prove that the distributions of Y,, n =1,2,...,
form a precompact set. To prove the latter, for an arbitrary set of positive

integers n, < n, < -++ <ny,,; = n and a positive number r, write
A(y) = { OrsntaXNsn —ng, n.+1_n0_1(y)] > r}’
(3.19) B

B(y) = {[ max 8, np.n.-ni(2)] = =1)-
Let A, B denote the corresponding events for the sequence {X;}. Since Q@(A(y))
and Q(B(y)) are increasing in y, Lemma 2.3 may be used again to show that, as
ng —> o,

oL s 6] > 1] o -]

O_zsN

(3.20)
= [QA(»)p™(x, dy) ~ [Q(A(7))m(dy) >0,

uniformly for all N, n; and r. A similar relation holds for the min and B(y).
Since the partial sum process under the initial distribution 7 converges to a
Brownian motion, it now follows by Prohorov’s theorem [see Billingsley (1968),
Section 15] that Y, converges in distribution to the same Brownian motion.

Finally, in case f f, — f, with f; monotone nondecreasing and in L%(S, m),
i = 1,2, the preceding argument easily extends to the joint distribution of the
processes Y, and Y,® associated with f; and f,, respectlvely Instead of the
function (3. 15), one now looks at Q(S{"),_,(¥) > ry, 8§,_,(¥) > 1), where S®
and S® are partial sums corresponding to f, and f,, respectively. Hence
Y, =Y® — Y® converges in distribution to the appropriate Brownian motion
when XO = x. It follows, on integration with respect to x, that this convergence
holds under an arbitrary initial distribution. O
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4. Two examples.

EXAMPLE 4.1. We shall write vectors in bold face in this example in order to
distinguish them from scalars. In mathematical economics it is quite common to
take S = (0, 00)%, T a set of nondecreasing and continuously differentiable maps
Y= v9,...,v®) such that each vy is strictly concave, which may indi-
cate, e.g., a law of diminishing returns. For simplicity, we take P to have finite
support I'. Assume, in addition, that for each y €T, (i) yx){0 as x|0,
(i) lim, ;o Dy®(x) > 1, 1 <i <k, (i) im D,yP(x) <1 as x) 1 oo for all J,
1<j<k 1<i<k, (iv) imDy“)(x)=0 for i #i’, as xP 100 for all j,
1<j<k1<i+#i <k .HereD,=3/9x®.

Let us show that for each y € T there exist two points x, < X, € S such
that the range of y on [x,,X,] is contained in [x,, x,]. First note that YI(x) =
yO(x) — yP0) > Lx)Dy(x), which is greater than x® for all sufficiently
small x in view of (ii). Hence y(x) > x for all sufficiently small x. Choose
X, such that y(x) > x for all x < x;. Next, let the limit in (iii) be B; < 1 and take
B = max{B,,..., B,}. Let 0 <& < (1 — B)/2. Choose a > 0 so that D,y@(x) <
B + &/2Fk and Diy®(x) < e/2k for i # j,if x > (a, a,..., a). For all b > a, one
has § = 6(a, b) € [0,1] so that

Y9(b,...,b) =y a, a,...,a)

+(b— a)ZQy(i)(a +0(b-a),...,a+0(b-a))

(4.1) <Ya,a,...,a) + (b - a)(B + ¢/2)

<va,a,...,a) + b(B + ¢)
<v9a,...,a) + b(1 + B) /2,

which is smaller than b for all sufficiently large b. Hence v(b, b,...,b) <
(b, b,..., b) for all large b. Let x, = (b,..., b) for such a large b. Then x, and
X, satisfy the requirement mentioned previously.

Using the Brouwer fixed point theorem on [x,,x,], it follows that y has a
fixed point x, € [x,,x,]. If X, < x, and x* = (b, b,..., b) > X, forall y e T,
then every y maps [x,,x*] into itself. In particular, X, € [x4,x*]forall y € T.
Since the range of y™ on [x,, x*]is contained in [y™(x,), y™(x*)]and y™(x4)1x,
and y™(x*)|x, as m1 oo, the distance between the range of y™ and {x,} goes
to zero as m — oo. Here we have used the fact that a strictly concave y cannot
have more than one fixed point in [x;,x,] since y(0) = 0.

Assume finally that (v) there are v, y’ € T such that xP <x®forl <i<k
It follows from the preceding paragraph that if x,, is any given point in (x,x.,),
then the ranges of y™ and y’™ are contained in [X4, X(] and [x,, x*], respec-
tively, for all sufficiently large m. Thus (1.5) holds. Hence, by Theorem 2.1, there
exists a unique invariant probability 7 on the new state space [x,, x*] such that
T *"u converges in the d-metric to # uniformly for all probability measures pu on
[x4, x*]. Since x, can be taken arbitrarily small and x* arbitrarily large, the
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invariant measure 7 is unique on S = (0, 0)* and T *"u converges weakly to =
for every p on S, although an exponential rate of convergence may not hold in
general, unless the support of p is compact.

The assumption of finite I' may be easily relaxed to the assumption of
compactness of the support of P, where the topology on T is that of uniform
convergence on compact subsets of (0, c0)%. In particular, it is enough to require,
in addition to (i)—(v), that (vi) for some x € S the set {y(x): y € I'} is bounded
and (vii) the sets {Dy®: y €T}, 1 <, j < k, are bounded on every compact
subset of (0, o0)~.

The case 2 =1 and T finite is known in mathematical economics and is
described in Bhattacharya and Majumdar (1984) and Mirman (1980).

We now turn to nonlinear autoregressive models. An autoregressive process of
order g > 1 is a sequence of random variables U, with values in R” satisfying a
relationship of the form

(4.2) Ui g =9(UnUpirse o Upigo1) #F Mpigs n=0,1,...,

where ¢ is a measurable function on (R")? into R” and n,, n = q,q + 1,..., is
an iid. sequence with values in R” independent of the initial variables
Uy, Ui, ..., U,_,. Then the process X, = (U,,U,,,..., Uyig-1), n=0,1,..., is
a Markov process on the state space S = (R")%.

ExAMPLE 4.2 (Nonlinear autoregressive models with ¢ nondecreasing). Sup-
pose ¢ = (¢¥,..., ¢") is a bounded nondecreasing function of its arguments
and that a® < ¢® < bV, 1 < i < r. Assume

rob(n, < (c®,...,c™)) >0,
(4.9) proby(n,, < ( )

prob(n, = (d®,...,d™)) > 0,
where the constants c¢¥ and d® satisfy
(4.4) d®—cD>pD—a® 1<ic<r.
Write a,b,e,d for (a¥,...,a™),(dY,..., b"),(cY,...,cM),(dDY,...,d").
Let us show that the Markov process X, = (U,,...,U,,,_;) then admits a
unique invariant probability and Theorems 2.1 and 3.1 apply. For ¢ = 1 condi-
tion (1.5) applies with m = 1, since prob(X,(x) < b + ¢ V x) > 0, prob( X,(x) >
a + d V x) > 0 and one may take any x, € [b + ¢,a + d]. In general it may be
shown that (1.5) holds with m = q. For example, in the case q = 2,

(45) Xn+1 = (Un+1’Un+2) = ‘P(Xn) + En+1s
where Y (x®, @) = (x®, p(x)) for x = (x®,x®) e R" X R” and ¢,,, =
(09 nn+1)‘ Hence

X,(x) = x = (2, x®),
Xi(x) = (2@, p(x) +m,),
Xy(x) = (@(x) + 1y, (X,(x)) + n3)
= (p(x) + 15, (2@, p(x) + 1) + mg),

(4.6)
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so that
prob(X,(x) < (b + ¢,b + ¢) V x)

> prob(7, < ¢, n; < ¢) = (prob(n, < ¢))*> 0
and

prob(Xy(x) > (a + d,a + d) V x) > (prob(n, > d))’ > o.
Thus one may take x, to be any point of (R")? in
[b+ec,b+c),(a+da+d)]=[b+c,a+ d]’.

The general case is now clear.

Since U, is a nondecreasing function of X, it follows that for every integer
8§20, as n - oo the (joint) distribution of (U,,U,,,,...,U,,,) under an arbi-
trary initial distribution of (U, ..., U,-1) converges in the d-metric on (R")* to
its steady state distribution (i.e., its distribution when the initial distribution is
the invariant distribution ).

If, in addition to (4.3) and (4.4), one assumes that E|n,|2 < oo, then by
Theorem 3.1 applied to the function f(x) = x®, x = (x®, x®, .., x@) e (R")9,
the functional central limit theorem holds for the summands U,.

It may be noted that (4.4) means that the error distribution is well spread out.
Indeed, if 1, has a distribution whose support is unbounded in each coordinate
(e.g., if it has full support R"), then this hypothesis is automatically satisfied and
the support of the invariant probability in (R”)? is noncompact.

Acknowledgments. The authors wish to thank the referee and the Associ-
ate Editor for a careful reading of the manuscript and for pointing out a number
of misprints.

Note added in proof. A recent unpublished manuscript by H. Hopenhayn
and E. Prescott entitled “Invariant distributions for monotone Markov processes”
has come to our attention. In this, the authors prove a result similar to our
Theorem 2.1.
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