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REGENERATIVE SYSTEMS ON THE REAL LINE

By H. KAsp1 AND B. MAISONNEUVE
Technion-Israel Institute of Technology and IMSS

We consider regenerative systems on the real line and study their struc-
ture. Local times and exit systems are defined. This leads to time changes and
last exit decompositions. We establish a correspondence between stationary
regenerative systems and Markov additive processes which are stationary in
the space component.

1. Introduction. The theory of regenerative systems on the real line unifies
the notions of strong Markov processes indexed by R, renewal process on the real
line, regenerative processes, semi-Markov processes, etc. A regenerative system,
as defined in this paper, consists of a closed random set M C R and a process
(X;);er such that, with D, = inf(s > t: s € M}, (M — D,) N (0, 00), (Xp,+5)s0)
and (M N (— o0, D], (X, 1 p)ser) are conditionally independent on {D, < oo}
given X, , for each ¢ € R. If the state space of X is reduced to one point, this
definition reduces to the definition of a regenerative set on the real line given in
[20].

This paper is devoted to a study of the structure of (M, X). We shall define a
local time for M and an exit system which provides the structure of the
excursions of X outside of M. In the stationary case this will lead to a last exit
decomposition of the invariant measure of the incursion process. We also estab-
lish a correspondence between stationary regenerative systems and invariant
measures of the process X time changed by using the local time of M (after some
modifications of the jumps of the local time to the effect that the time changed
process be Markov; similar procedures were already used in [1] and [5] in the
context of Markov processes). In particular we extend the formulas for the
stationary distributions of the backward and forward recurrence times which
appear in the classical renewal theory and in the context of regenerative sets
[3, 20 and 24]. Finally, we give a general result for constructing stationary
regenerative systems via Markov additive processes (MAP)—these results rely
on representations of invariant measures obtained in [11, 12] for Markov processes
and are somewhat connected with [8].

2. General definitions and preliminary results. We first define a canoni-
cal setting for regenerative systems. Consider the set Q° of all closed subsets of
R, the set Q! of all functions from R into a Lusinian space E and the set  of all
(0% w') € Q° X Q! such that the restrictions of ' to w? and to R \ «? are right
continuous, where w? denotes the set of right accumulation points of w°. The
space E is equipped with its Borel field &. The projections («°, w') > «° and
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(«% ') = ' are denoted by M and X, respectively, so that (M, X) is just the
canonical map on Q. For £ € R we set (with the convention inf & = + c0)

D,=inf{s>t:se M}, R,=D,—-t  X,=X(t),
H=0{D,p;, X pp,sER}, H#°=0{D, X,, teR},

P = (((M - t) N (O’Oo))_’ X5, S E R)’ ‘P(t) = P

where A~ denotes the closure of A C R and s*= s v 0. The Q valued random
variable ¢, represents the future of ¢ for our system (M, X). More explicitly,

P (w0, ') = ({s —tsew, s>t} ,s>w(t+ s*)).

Note that the set M is (5#,°) predictable since M = {t: R,_= 0} and that the
processes (D,), (R,), (Xp,, t < sup M) are right continuous and (J#,°) adapted.
The process (X,) is (#,°) optional, since for every continuous real function f on
E one has

f(Xt) = f(XD,)I(R,=0) +Z, with Z,= Z f(Xt)I(Rs_ =0,R,>0,5<t<D,}*
seER
[Z is a limit of right continuous and (5#,°) adapted processes.] The process (g,),
with values in (R, #°), is measurable and satisfies ¢,,, = ¢,°¢q, t€ R,
seER,.

We now introduce a Borel subset E° of E, equipped with its Borel field
€% = E° N & and restrict Q (without changing the notation) to the set of all «’s
such that X,(w)€E O for ¢ < sup M(w). We consider a measurable family
P'= (P*),  go of probability measures on (£, #°) such that

(2.1) ¢(P*)=P*, PYX,=x)=1 VxeE°.

The previous measurability assumption is in most examples too restrictive (only
universal measurability of P° should be required), but it is made for simplicity.
We shall state in the sequel the conditions under which it may be relaxed.

(2.2) DEFINITIONS. (1) Given a stochastic basis (2, 5, (), g, P) and a ran-
dom variable (M, X) from (@, #) into (2, 5#°), the system (2, H(H),cr>
M, X, P) is called regenerative with regeneration laws (P*), . po provided [for
every function Z on Q we set Z = Z (M, X)]: (i) (M, X) is 5#)#," measurable

for each ¢ € R [equivalently D, and X(s A D,) are 5, measurable for all
t € R, s € R] and (ii) for every ¢ € R,

(23) PrDt)p?} = PX(D‘) on {l_)-t < OO}

(2) Let 2(P’) be the family of all probability measures P on (2, #°) such
that (2, #°, #,°, M, X, P) is regenerative relative to (P*), ¢ zo. For P € #(P")
we shall denote by (#,”) the P completion of the filtration (£,°) (#,” includes
all P null sets).

(3) The family (P¥), . go is called regenerative provided P* € #(P") for each
x € E°. The system (Q, #, %, M, X, ¢,, R(P")), with #,=N{H" Pe
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R(P’)}, o=V ,#, is then called the canonical regenerative system associated
with P'. In this context a.s. means P a.s. for each P € R(P).

It is convenient to set X =8, ¢, = A with 6 € E, A ¢ Q. We set E; =
E U {8}, & = &V {8} and define similarly (EY, &), (24, #°). For x € E° the
measure P* extends to #° so that P*({A}) = 0 and P? is defined as the Dirac
measure ¢, on 5. With these notations the process (X p,) is EJ valued and
in (2.3) the restriction “on {D, < c0}” can be dropped.

It is important to realize ' that J, represents the (possibly enlarged) past of
the system (M, X) at time D,. The consideration of the past at time ¢ arises in
the following definitions, where p. stands for progressively.

(2.4) DEFINITION. Given a stochastic basis (, 9?,(57;),6“,1_3) with the
usual conditions [right continuity and completeness of (%,)] and a random
variable (M, X) from (£, ) into (®, #°), the system Q, #, %, M, X, P) is
called a p. regenerative system, with regeneration laws (P*), .o provided
(i) the random set M and the process X are (#,) progressive and

(i) (Q, 2, 9_'5 , M, X, P) is regenerative with regeneration laws (P~*), . zo.

(2.5) DEFINITION. Let (Q, 5, 5, M, X, @, Z(P’)) be a canonical regenera-
tive system. We denote by (%,°) the natural filtration of the process G, X,),
where

(2.6) G,=supMN(—-o,t], te€R (sup® = — o),

and for P € Z(P’) we denote by (%) the P completion of the filtration (£#9).
We shall say that (2, 5, #, M, X, ¢,, Z(P")), with #, = (F,": P € R(P)} is
a canonical p. regenerative system provided (Q, #F, %, M, X, P) is a p.

regenerative system relative to (P*) for each P € Z(P").

Note that (G,) is a right continuous (%) adapted process, so that M =
{t: G, = t} is (#,°) optional. Hence the requirement of Definition 2.5 is equiva-
lent to (#,F) progressiveness of (X,) together with

(2.7) P?’(Dt)l‘th = PX(Dt), t (S R,
for all P € #(P").

(2.8) PROPOSITION. Let (Q, 5, Fu M, X, @, Z(P")) be a canonical p. re-
generative system. Then

(2.9) Fp, =KL,  Fp =0H, foralPeR(P), tcR.
PrRoOF. Let P € Z(P’). In order to prove (2.9) it suffices to check that for
H e b#?,
P(H\FL) = P(HWEP).
But for H=H,- fog,, with H,€ bi#° fe&bi#°, both sides are equal to
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H,PX®P)(f) since &, c #. The general case follows by monotone class and
completion arguments. O :

(2.10) REMARK. If (Q, 2, ﬂ;, M, X,P)is a p. . regenerative system as de-
fined in Definition 2.4 and if J is generated by (M X) up to completion, the
same argument as before shows that 5 = #, where ), denotes the P
completion of (M, X)~Y(#)).

Here are three classical examples of regenerative systems.

(2.11) ExampLE. If (Q, 2, .9?,, M, X, P) is regenerative with respect to
(P*), o and if E° is reduced to one point x,, then M is a regeneratlve set
relative to (%) in the sense of [20] [provided the definition of T in this paper is
replaced by 7, = (M %~ #) N (0,0))"] and on {D < o0}, tpD is independent of
X, with a fixed distribution P, If further M is P a.s. dlscrete then X is a
regenerative process in the sense of [4].

(2.12) EXaMPLE. Let (2, #, %, X,,0,, P; s € R, x € E) be a right pro-
cess with a Borel sexgigrgup_ax_lg M a homogeneous optional closed random
subset of R ,. Then (Q F,%,M, X, P¥) is a p. regenerative system for each
x € E (we set F, =%, and X X, for t <0 and X = X)) with regeneration
laws P* = (M \ {0}) X )(P"), x € E, E° = E. Here the strict measurability
assumptions are not met, namely (P%¥),. is only universally measurable.
However the assumptions of Remarks 3.11 of the next section are satisfied and
therefore all our results will apply to this example. Note that the family (P*)
can be restricted to x € E°, for some E° € & provided X p €E O for t < supM
a.s.

(2.13) ExampLE. Let(Q, 4, #, S, E, 5, P, t€ R, x € E) be a Markov
additive process in the sense of Cinlar [2], with S nondecreasing additive and
continuous or strictly increasing and additive. Let C, = inf(s e R,: S, > t}, t €
R and X,= E;, X = X. Then (2, /4, Mg, M, X, P*) is regenerative for each
x € E with regeneration laws (P*), .  defined as in Example 2.12. This result
will be generalized in Section 6.

In these three examples the regenerative systems are strong in the sense that
the filtration (%) is right continuous and that
(2.14) P,z = P* withS =D,
for every (%) stopping time T (all our stopping times are (— oo, + 0o] valued).
We end this section with a useful left regeneration property satisfied by strong
regenerative systems. Let D be the set of all right end points in R of M
contiguous intervals. Note that D is (5#,°) predictable since

1
D= U {t ER: R, =0, R(t—l/n)‘= ;}

nx>1
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(2.15) THEOREM. Let (Q, 2, 9?}, M, )_g, ﬁ) be a strong regenerative system
relative to (P*),cgo and let T be an (5¢,) predictable time in D (U{+ }).
Then X is 5#;_ measurable and

(2.16) P

_ = pXr
PrlHr_ P,

PRrOOF. For simplicity we drop the bars from the notations %, X,, ¢,, P. If
the time T is announced by a sequence (7)), one has Dy = T for large n on

{T < 0}. Therefore Xy is V,5#y = #_ measurable and letting n — oo in the
equality

P(f(o(Dy) Wy, ) = PXPr(f),  feba#®,
yields (2.16). O

(2.17) REMARK. If (SZ 9f %, M, X, P)is a p. regenerative system relative
to (P¥) and if we set J, = ./D , it is equivalent to require (2.14) for every (%)

stopping time T or to require that
(2.18) P

PP P
for every (%) stopping time S in M, where M denotes the minimal right closed
set with closure M (see [17] and note that #, = JD for every (J%,) stopping
time T by (2.10) and [7] or [15]). Note also that every (9? ) predictable time T in
D is also an (%,) stopping time and that #,_= Fr, so that (2.16) writes
Pwl Z = PXr in this case. A p. regenerative system (M, X ) which satisfies (2.18)

as indicated previously will be called a strong p. regenerative system.

(2.19) CoROLLARY. In the conditions of Theorem 2.15 and if the filtration
(H#,) is complete, the set I of isolated points of M is (¥, predictable and
included a.s. in {t: X, € E° \ F}, where F = {P'(R = 0) = 1} with R = D,

ProoF (without bars). The set D is predictable and contained in {D,,
r rational}. By [6, Chapter 4, Theorem 17] there exists a sequence (7)) of
predictable times with disjoint graphs such that D = U ,[7,]. By (2.16) applied
at T, one has
P(R(9(T,)) > 0p#y,_) = PXTY(R>0) =0 on{X(T,) € F}.

Since X(T,) is #p_ measurable, this shows that R(e(T,))=0 as. on
{X(T,) € F). Similarly using the fact that P(R=0)=0 on E°\ F (by
Proposition 1.4 of [16]), one shows that R(¢(T},)) > 0 a.s. on {X(T,) € E° \ F}.
Hence I = U,[T,] as. P, where T,) = T,,on {X(T,) & F}, + oo elsewhere, and I
is (indistinguishable from) a predictable set. O

3. The incursion process.

(3.1) DEFINITION. Let R = D,. For t € R we set
R,=D,—t=Rog, i,=agpop,
where a,(w° ') = {W(s A7), s€R, )} for r eR,.
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The process ((R,,i,), t € R) is called the incursion process and is denoted
by (Y)).

We note that the processes (R,), (i,) and hence (Y,) are homogeneous. For (Y)
this means that Y,,, = Y, c ¢, for ¢ € R, s € R,. Note also that (Y,) is R, X
valued, where { denotes the set of all right contmuous functions from R, into
E, and that (Y,) is right continuous provided  is equipped with the metric

(3.2) d(i,i’) = [R e 8(i(t), i"(¢)) dt, i,i' €,

where 8 is a bounded metric on E, compatible with its topology (see [21] for
details concerning this metric).

We now consider a regenerative family (P*),_zo as defined in Definition
2.2(2). The state space of (Y,) can be restricted to the set

U={(r,i)eR,xQ:i(r)€E%i(-Ar) =i} U {(+c0,i)ic Q).
For (r,i) € U let P™ be the probability measure on (£, 5#°) defined by
8(¢’i), ifr= OO,

3.3 pPri= )
(33) ¥, (P), ifr< +oo,

where for u € U, ¢, is the Dirac measure concentrated at u and
(3.4) ¥, (0% 0) - ({r} U (e +7),i/r/ab).

As usual i/r/w' is the element of Q' which agrees with i [extended by setting
i(¢) = i(0) for t<0] on (—oco,r) and with w!(-—r) on [r,). Note that
P* = P%¢ whenever i(0) = x. The same argument that led to Theorems 2.3 and
2.5 of [20] proves

(3.5) THEOREM. (1) (2, #°% #° Y, ¢,P”% teR, ye U) is an a.s. U
valued right continuous Markov process with shifts (¢,). That is, for eachy € U
and t € R one has

P} 00 = PY.

(2) A probability P on (2, #°) is in Z(P") if and only if P, o = PY: for all
t € R. In particular P* € Z(P") for every probability measure p. on U.

Note that, as a consequence of this result, a property which holds a.s. [in the
sense of Definition 2.2(3)] holds a.s. P* for every probability u on U. Note also
that the semigroup (P,),cg, of (Y)), given by (% denotes the Borel field on U)

(3.6) P(y,B)=P!Y,€B), yeU Be4,

admits branch points, namely the points (0, i) € U such that i(0) ¢ F. As usual
F is the set of regular points for M,

(3.7) F={xe€E% P*(R=0)=1]}.
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We shall be able to eliminate these branch points and obtain a right process
under the following assumption.

(3.8) ASSUMPTION For each s > 0 and each bounded continuous function f
on R, X { the mapping ¢t — PX(P)(foY,)is a.s. right continuous.

Under this assumption, using the arguments of (1.9) and (2.3) of [20], we can
prove that for every P € #(P") and for every stopping time T of (3#,) [as defined
in Definition 2.2(3)], we have

(3.9) P, x,,= P*s with S =D,
(3.10) P, x..=P" on{T< w}.

By a classical argument using (3.10) with T' =t we have J,,= 5, and 5,
can be replaced by 5, in (3.9) and (3.10). It follows from (3. 9) that X p, € Fa. s
on {D;< o0, Ry = 0} and by the section theorem the set of branch points
{(0,2) € U: i(0) & F} is polar for the process (Y,) [under each P € Z(P")].

As a consequence of this discussion, if we get rid of the branch points (without
altering the notation U), (Q, #, #,,Y,,¢,; s€R,, y € U) becomes a strong
Markov process which is as. U valued and has no branch points. Since the
semigroup (P,) is Borel, the process (Y,) satisfies the right assumptions of

Meyer.

(3.11) REMARKs. (1) If E® and (P%), . go are only universally measurable,
(P,) is not Borel any more. But if we assume that F is nearly Borel for (X p,) [or
only that {&: X, € F} is (/¢ P) optional for each P], we can still get rid of the
branch points. This condition holds in Example 2.12.

(2) Note that the condition [s —» P,f(Y,) is a.s. right continuous for all
bounded and continuous f], which one usually assumes to make Y a right
process, is slightly different from Assumption 3.8. However, the expression of the
resolvent of (P,),

Uf(r,i) = [[ef(r ~ s,8,0) ds + e~ [“e= P 1(¥,) ds,

where (6,) is the usual shift, and arguments used to prove Theorem 7.6 of [23]
show that the two conditions are actually equivalent.

4. Local times and exit systems. Let (2, #, 5, M, X, ¢,, Z(P")) be a
fixed canonical regenerative system as defined in Definition 2.2(3). We assume
that (P¥) is measurable and satisfies Assumption 3.8 or more generally that (Px)
is universally measurable and that (Y,) is right. We shall say that the system is

right.
Consider the random set
(4.1) G={teR:R,_=0,R,> 0},

which consists of the left end points in R of the contiguous intervals of M. The
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set G is (#,°) optional and homogeneous,
(4.2) (G-t)Nn(0,+w) =G(p,) N (0,+), tER.

For every homogeneous random subset I' of G we define the homogeneous
random measures

43) AT = ¥ (1-eRo)e,
tel

(4.4) LT = ¥ MX))e,,
teTl

where A(x) = P*(1 — e” ®)if x € E°, 0 otherwise.

Note that for every homogeneous random measure N on R such that
P(N(s,t]) < oo forall P #(P"), s, t € R, there exists a homogeneous random
measure IIN which is the () dual predictable projection of N under each
P e R(P).Infact P € #(P’) if and only if P is a probability on (2, 5#°) under
which (Y,),cr is Markov with semigroup (P,) by Theorem 3.5(2), so that the
existence of IIN follows from a general result for Markov processes indexed by
R ,, which extends easily to Markov processes indexed by R.

(4.5) DEFINITION. The random measure L = ITA, where A = 1,,(¢) dt + A°,
is called the local time of M.

Note that supp L = M as., since suppA = M and M is (5#,°) predictable
(M = {t: R,_= 0}). Owing to Corollary 2.19 and (2.16), one has ITA! = L (I is
the set of isolated points of M) and

(4.6) L=1,(t)dt + LT + L', with L’ = TIAG™.

We shall denote by oJ, J’ the sets {¢: L{t} > 0}, {¢: L’{¢} > 0}. One has J =
I'U J as. and clearly the diffuse and point parts of L, L’ satisfy the relation-
ships

(4.7) Le=1,(¢t)ydt+L°,  Li=LT+L"

The exit system (I, + P, L) is introduced in the following result.

(4.8) THEOREM. (1) The measure L€ is a.s. carried by {¢: R, = 0, X, € F}.
There exist a universally measurable positive function l on E°, carried by F, and
a universally measurable family (, P*), < of measures on (R, #°), carried by
(R > 0), such that () Ly(t)dt = UX)Lde), (i) PZ,co,Z.f°0, =
P(Z, ,PX(f)LYds) for P€ R(P"), f € #, and Z positive and (#,F) predict-
able and (iii) [ + 4P (1 —e ®)=1o0nF.

(2) Suppose that the following left regeneration property holds: For every
x € E° and every (#,) predictable time T in (M \ D) U {+ )} Xy is P* a.s.
EQ valued, #F_ = #f. measurable and satisfies

X — pXr
P‘P'rl"?'f— P,
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Then J C {seG X, € E°\ F}as., L¢=L7 a.s. and
(4.9) 1,(¢)dt = U(X,)L(dt) a.s.,

(4'10) P Z Zsfoq)s =P Zs *PXS(f)L(ds),

seG

with P*(f)= P*(f)/P*Q — e ®)if x € E° \ F and for all P, Z, f as before.

Proor. (1) The measure L€ is as. carried by M = {¢: R, = 0}. Since
{t: R,_= 0, R, > 0} is countable, L¢ is also carried a.s. by {¢: R, = 0}, which is
a.s. equal to {t R,=0, X, € F} by the discussion following Assumptlon 3.8.
By Motoo’s theorem there exists a universally measurable function { on U such
that lM(t) dt = l(Y)L”(dt) Since L° is a.s. carried by {: R,=0, X, € F} =
{t: Y, € F}, where F= {(0,[x]): x € F} ([x] is the constant map x), [ can be
chosen so that {=0 on U \ F. The desired function / is I = [(0,[-]) on E°.
By the arguments of [17] or [18] we also establish the existence of a kernel N
from F to £ such that

M Y (1-e®)fope,=N%(f)L(ds), fexp.
seG\J
If we modify N so that [+ N'(1) =1 on F and set P (f)=N'(f/1 - e %)
for f € 0, we get (ii) and (iii).

(2) Let us first argue under P*, x € E°. Let (S,) be a sequence of ()
predictable times in M \ D, with disjoint graphs such that J’ = U,[S,] P* as.
[note that L’ = II(A°™P) is a.s. carried by M \ D]. By left regeneratlon at the
S,’s one has J'NG=dJ' N {t: X,€ E°\ F} P* as. and LC¢"Y is the (%))
dual predictable projection of AG”" under P*. But ITA¢"Y = L’¢ and so J’ C
G N J' P* as., proving that J' C {s € G: X, € E° \ F} P* as. and that L? is
the (%) dual predictable projection of A? under P*. Therefore L¢= LI +
L7 = L7 P* as. and we have proved that J C {s € G: X, € E°\ F} and
L¢= L7 as. under P*; the extension to P € #(P’) follows from P, (DI, =
PX(D) | t € R, by homogeneity. (4.9) is now immediate.

In order to prove (4.10) it suffices to consider f such that 0 < f<1— e %
For such an f we already know that ITX, . 5. ,;f © 9,65 = « P*+(f )L%(ds), and so
we only need to prove that IIA = B, where

A=) foepe, B=,P%(f)L(ds)= Y P*(f)e,as.
sed sed

[Note that P(A(s,t]) < o for s,t € R.] Let x € E°. By left regeneration on
J = I U J’ the (/") dual predictable projection of A is B under P*. From this,
from the definition of P™* and from the assumption P* = @y(P¥) it follows that
for all (r,i) € U and u € R, [with the convention (0, t] = @ for ¢ < 0]

P A0, u]) = PXO(fo@olio<rsu, inerinry + A, u~r])
= Pi(r)(PX°(f)I{0<r5u, inee’~Fy t B(0,u - r])
= P B(0, u]).
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By the Markov property of (Y;) under P it follows that
P(A(t, t + ulof) = P(B(t, t + u]t,),
proving that the (5%F) dual predictable projection of A is B under P. O

The following result does not depend on any left regeneration property. The
filtration (%#,) was defined in Definition 2.5.

(4.11) PROPOSITION. The local time L is (%#,) optional.

PROOF. The measures L! and 1,,(¢) dt are (%,) optional, since the sets I and
M are (#,F) optional for each P € #(P’). The (%,) optionality of L follows
from (4.6) and Lemma 4.12. O

(4.12) LEMMA. The measure L’ is (%,) predictable.

PrOOF. Let P € #(P’). The measure L’ is (.?;DP ) predictable, since J,F
.?'D , and satisfies L'(¢, D,] = 0 a.s. for each ¢t € R, since L’ is carried by M \ D
By the argument of [22, page 229] it follows that L’ is (%) predictable. O

(4.13) REMARKS. (1) Suppose that for each P € #(P’), the P outer measure
of the set { X/ existsin E° for all € M \ D} is 1, with X,” = X/, , and let us
restrict € to this set without changing the notation, so that on £ the process
(XP) is everywhere defined and E; valued (the existence of X2 is clear for
t & M \ D). We also assume that for every x € E° and every (#,) predictable
time T in M \ D one has
(4.14) P

[ 2

= P*r- on {T < ).

Note that (4.14) implies the left regeneration property of (4.8), since (4.14)
combined with the assumption P*(X, = x) = 1 implies that X, = X?_ as. on
{T < oo}. Hence the results of Theorem 4.8 hold in this case. We also have an
interesting characterization of the predictable part J and the totally inaccessible
part G \ J of G in this case. In fact let us prove that the equalities

G\J=G"~ withG' = {teG:XP eF},
(4.15) { ! )

J=G" with G"={te G: XP € E°\ F}

hold a.s. P* for each x (and hence a.s.). The set G~ is totally inaccessible under
P~*, since for all (%) predictable time T one has by Theorem 2.15 and (4.14),

P (T€G")=PRogs>0,TEM, X2 €F)
= P¥(PX-(R>0); Te M,X2 €F)=0.

Let us now check that G~ is P* as. equal to the predictable set T =
{t€R: R,_=0,XP2 ¢ F}. The set I is a.s. contained in the set of jump times
of the process (R,, XP), since {0} X F* is polar for (R,, X7). By [6 Chapter 4,
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Theorem 17], T can be written U,[T,], where (7)) is a sequence of (/%)
predictable times with disjoint graphs. By (4.14) we have I' ¢ G and GI"=T
P~ a.s. This remark and the results of Theorem 4.8 and Proposition 4.11 provide
a full generalization of the results obtained in [14] for Hunt processes.

(2) Without assuming any left regeneration on M \ D, the totally inaccessi-
ble part G \ J of G equals {t € G: Y, € U, Y, # Y} as., where Y~ is the left
limit process in a Ray-Knight compactification of U. It follows from (13.7) of [9]
that for t€ G \ J, Y,_ exists in U and is equal to Y,. Hence X2 exists,
XP € Fand Y,_= (0,[ X2]) for t € G \ J. Therefore one has a.s.

(416)  G\J={teG: XD exists, X € F, Y, = (0,[ X2])}.

We next turn our attention to p. regenerative systems, for which we introduce
the following notion of regularity.

(4.17) DEFINITION. A canonical right p. regenerative system (2, ¢, %,, M, X,
@,, Z(P")) is called regular provided for every x € E° and every (/,) predictable
time S in M \ D X4 is P* as. E{ valued and
(4.18) _ Prigs = PXs,

Ps

(4.19) F& =F§ (with FF = Z,77).

(4.20) THEOREM. If (Q, ¥, %,, M, X, ¢,, Z(P")) is a regular p. regenerative
system, then

(a) the regeneration property (4.18) holds at every (%#,) stopping time S in M,,,
where My=MUJ [M=1U(M\ G) is the minimal right closed set with
closure M] forx € E° orx € U;

(b) the left regeneration property of Theorem 4.8(2) holds under each P*,
x € E°.

Proor. (a) For this part of the proof we shall not use (4.19). Let (S,) be a
sequence of (%) predictable times in M \ D, with disjoint graphs and such that
U,IS,] = J'(= {t: L'{t} > 0}). The existence of such S,’s follows from Lemma
4.12. Given an (.%,) stopping time S in M,,, the regeneration property (4.18) holds
at each S, and at S" = Sgcyy (S4 =S on A, + 0 on A°) by (2.18). Since
My=MU(GNJ), MN(GNJ)=@ as. and since G and M are (%F)
progressive for each P, it follows that for x € E°,

Pyiss = Poysslisemy + 1Py, 175 L(s=s,<c)
n
= PXS’I(SEM) + ZPX(S")I{S=SnEG) = PXS.
n

In order to prove the same formula under P ¢, where (7, i) € U, we note that
S is P™' as. greater than or equal to r since M C [r, 0] P™' as. and that
S™ = Sey, , — risan (% ") stopping time PX") as. in M, (the argument is the
same as for Lemma IV.1 of [16] or (4.5) of [17]); in addltlon Y i(F) C FHD,
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(b) Let T be an (5#,) predictable time in M \ D, announced by a sequence
(T,) a.s. P*. Then T is also announced a.s. on {0 < T < oo} by the sequence
(Dr,) of (#;°) stopping times and one has #7_ =V, #f =V, F5 =Ff_,
where the second equality follows from Proposition 2.8. By (4.18) and (4 19) we
obtain P .. = P*r. O

In Sections 5 and 7 we shall only consider regular p. regenerative systems. For
such systems Theorem 4.8(2) holds. We shall indicate in Remark 4.21(2) how to
modify the results if we only assume (4.18) in the definition of a regular p.
regenerative system.

(4.21) REMARKS. (1) As a consequence of Theorem 4.8(1) and of Theorem
4.20(a) [or simply (4.18)] a regular p. regenerative system satisfies (4.10) with
P = P* x € E°, also for a positive process Z of the form Z, = Ul,c gy +
Vi1 G gy Where (U)) is () predictable and (V,) is (#,) optional.

(2) If we drop the assumption (4.19) from the definition of a regular p.
regenerative system, the property L{t} = PX(1 — e %) on {L{¢} > 0} [and
hence (4.10)] does not necessarily hold any more. Nevertheless one can produce a
modified local time L, which still has this property and could replace L in all
subsequent results. For this we set

(4.22) L=Lc+ L1679

This measure is clearly (#,) optional. Let us prove that its support is M a.s. P*
(and hence a.s.). Since supp L \ supp L C J’ a.s., it suffices to prove that [S] C
supp L a.s. for each (%,) predictable time S in J". But on{Xg€ E°\F } one has

S € G and L{S} >0 as., so 1t is enough to check that S € suppL as. on
{(Xs€ F}). Let T = S(Xsep}, = inf{u > T: L(T, u] > 0}. Since L¢"7 is the

(&%) dual optional projection of A°"¢ under P* one has
PxfI(T<s<T’)AGnJ(ds) = PxfI{T<s<T')LGnJ(ds)°
On the other hand

PxfI{T<ssT’)(1M(s)ds + A°NY(ds)) = PxfI(T<ssT’)Lc(ds)'

Therefore

PxfI{T<s<T’)A(ds) = PxfI(T<s<T')E(ds) =0.

But R; =0 as. on {T < o} by regeneration at S, and so T € suppA as. on
{T'< o}. Hence T" =T aus.

Note that (4.9) still holds with L in place of L, since the point part of L is
carried by {t: X, € E° \ F}. (4.10) with L and P = P~ follows from Theorem
4.20(a), since every (") predictable time T in J’ satisfies J5_ = FF C Ff.

5. Markov additive processes associated with p regenerative systems.
This section is devoted to the time change of a regular p regenerative system (as
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defined in Definition 4.17) by means of its local time (L, = L(0, t],. ;). This will
lead to a MAP in the sense of [2]. Since the local time is not continuous, we shall
first have to modify its jumps by exponential amounts defined on an enlarged
space in the same manner as in [5] (see also [1] for a similar, but more analytical
approach). We have inserted some necessary changes in the construction of [5]
and we therefore shall repeat it in full detail.

Let (Q, %, #,, M, X, ¢,, Z(P)) be our regular p regenerative system. For
m,n € N* = N \ {0} we denote by S;* the nth time that (L,),., jumps by an
amount in (1/m,1/(m — 1)]. For t € R, and m € N* let

(5.1) N = Z I(S,’,"st)’ N, = (]Vtm)mzl'

nx>1

5.1. Enlargement. Let n be the exponential distribution on R | with param-
eter 1 and let (2, #', P) =R, Bg,n) ™. The coordinates on ' are
denoted by U (m, n € N*). For » = (v"‘) € NV we define the o-algebra %’ =
o(U™n < v’”) and the shift ¢, such that
(5.2) Uleq,=Un,,.

Set W=R,XQXQ, 9°=F, ® #°® %’ and for x € E°, @*=
7" e® P*® P, wheren —nlfxEE \F, g if x € F. For y =(r,i) € U we
also set @ = ¥ ® P? ® P’, where n” = n if i(0) € E° \ F, ¢, otherwise. Note
that for any probability A on E°, @* is equal to Q*, with p = Y, (P™).

All notation introduced on Q,Q’,Q X €’ is extended to W in the obvious
manner. In particular @, ¢, N,, ¥, = (¢, ¢}y,) are defined on W. Note that
Yios = Yoo ¥, On W we consider the filtration (%,),> o obtained by completmg
with respect to the measures @* [ probability on (U, %)] the filtration (¢3),
where

g0 = {A € By ®F' @ F":
(5.3)
Vo €QL(-,w,-)is Bg, ® F . measurable}.

We set 9=V, 9%, and recall that M, =M U JJ.

(5.4) THEOREM. If T is a (9,) stopping time in M, one has for all y € U
(and hence for all x € E°),

Q(fovr9) =Q*(f) on{T<w}, feXF',.

Proor. By the monotone class theorem it suffices to show that for

Z € bx#° 7' € bF',
Q*(Zo9rZ o 9iy,|9r) = PX7(Z)P(Z') on (T < }.

Since (¢, w) — g (w) is By ® #°#° measurable and since w — (T(w), w) is
Gy VHO\ By ®H Omeasurable, Z o gy is 95 V # measurable and the proof will
follow from the two steps

(@) Q(Z> @}y, |9 v ) = P(Z) on (T < co),

(b) @*(Z- ‘PrlgT) = P*1(Z).



REGENERATIVE SYSTEMS ON THE REAL LINE 1319

For (a) it is enough to consider Z' = f(U,", ..., U;™), where f is continuous
and bounded on R%. Then Z’'c ¢}y = f(U,(,'z,,‘.l gt UI(,':,,‘?p .,,.) is right continu-

ous in ¢, and by a classical argument all we have to prove is that

Q’(HK - Z'“P?v,) = Q’(HK)P'(Z)
fort€R,, He b¥ , K € b¥). The left-hand side is equal to

fny(dr)ny(dw)H(w)fP’(dw’)K(r, w, w’)Z’(quvt(w)(w’)).

But for each r,w the variable K(r,w,-) is %, measurable and so it is P’
independent of @Y, which yields the desired equality.

For (b) it suffices to consider the case where T is a (%) stopping time. Let
K € b%?, . Then for each (r, ') € R X &, T™ = T(r, -, ) is an (£}3) stop-
ping time in M, and K™ = K(r, -, ') is %, measurable, since KI;r ., is
Bgp,® #° ® F' measurable by the definition of %2. By Theorem 4.20(a) applied
at S = T"* we get

P(K"2($(T"*))) = PY(K"<PXT"(Z))
and by integrating against n?(dr)P’(dw’) we obtain (b). O

5.2. Time change. Let U denote the projection (r, w, w’) = r from W onto
R, and let SO = 0. We set A(x) = P*(1 — e~ %) for x € E°, 0 otherwise, and for
t>0, :

C,=Li+ X A(XS,’,")UnmI{S,’,"st)’

m,n

S, =inf{s:C,>t}, E,=Xg,

V.= A(E,) (EE ), 0t=(Vt,tPs) on {S, < w0},
-/”to = gS,—v O(Et)’ ‘/”t =‘/”t(i ,

where ¢,_ is by convention o(X,). Note that C, = A( X,)Uy and that (S, E,) is
right continuous, (.#,) adapted and such that Q%(S,=0, E,=x)=1 for
x € E°(Q* a.s.0is aright increase point of C if x € Fand C, > Oifx € E°N F).
Note also that a.s. one hasfor all £, s R,

Oprs = 05 ° 0y, Sirs =S+ 800, E,,=E;c00n{S <o}

The following result shows in particular that (W, ¥; 4,,S,, E,, 0,,Q%; t €R ,,
x € E®) is a strong MAP with state space E°.

(5.5) THEOREM. Let T be an (M,) stopping time and lety € U or y € E°.
Then

(5.6) Yer= Q" on {Sp < o).
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PROOF. Since #,C ¥ for all teR,, Sy is a (¥,) stopping time and
Mp C Gs . But Sp € M, U {+ 0} and by Theorem 5.4 one has

(5.7) Qg = ® PXr® P’ on {S; < }.

Hence (5.6) is satisfied on {E; € F} C (V; = 0} a.s. It remains to prove (5.6) on
(Er € E° \ F}, which in view of (5.7) amounts to proving that

(5.8) QYyu,=m on{E € E°\ F}.
It suffices to prove that for f bounded and continuous on R,, A € #; and
m,n €N,
T - Csn
(59) Qy(f(Un’"—m)— AN{S;=8"< o}

=n(f)Q(A N {Sy =8 < w}).
We first consider the case T = tfort € R, and A € #. Since (S, = S™ < w0} =
{Csn_<t < Cgn, 7" < 0} and since A, 0 C ¥,V i, it suffices to show that for
Z bounded and (? ) predictable [and such that Z, is o(X,) measurable], for
H € bs# and with V = (¢t — C5_)/MXg) (we drop m, n from the notation),

(5.100 QY(f(U-V)ZsH; Cg_<t,U>V) =Fkn(f) (Zz,=0)

for some k2 € R, that does not depend on f. But U is independent of
(V, Z4, H,Cg_), by Lemma 5.11, and has exponential distribution, which implies
(5.10) and (5.9). Now (5.9) for T=t, A € M, =MH7, follows by noting that
Iis,.\ h=sm <oy = I(s,=sp <) hence (5.9) holds when T is discrete, in particular
when T is replaced by T, = X, n(I + 1)/2* I(,/2k<T<(,+1)/2k + olip_ . The
general case is obtained by noting that I ;g =S <o0) > Lg gmccy 8k > 0.0

(5.11) LEMMA. For each (m, n) U." is independent of Ygn_V H# under Q.

ProOOF. The result is clear for m = n = 0, since ¥,_= o( X)) is trivial under
Q’. For m,n > 1, §"> 0 as. and Yg._ is generated by the class & of the sets
AN{t<SM), teR,, A€ g, Since % is N stable and contains W, we only
need to show that

(5.12) Q(G-Heoo,f U) = QG- Heg)n(f),
for G € b¥, carried by {t < S}, H € b#, f € bBg . But this follows from

Theorem 5.4 with T' = Sgn, since @(w) = @, 7, (Prw), U," = U™ np () P, 0)
for t < S™(w) (note that N is ¢, measurable). O

(5.13) REMARK. In the results of the present section (L,),. o can be replaced
liy any additive functional (Lt),>0 with support (M N (0,00))” as long as
= {t: AL,> 0} € G as., AL, = \(X,) for t € J (where A is some fixed func-
tlon) and the regeneration property holds for every (%,) stopping time T in
M U J. For instance without assuming (4.19) we can choose the modified local
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time defined in Remark 4.21(2).

(5.14) THEOREM. The process (S,),, is quasi left continuous relative to
(M,) under each Q” [without assuming (4.19)].

PrOOF. Let U be a finite (.#,) predictable time and let (U,) be a sequence
which announces U @ a.s. We have to prove that the set A = {0 < S;,_< Sy}
has @~ measure 0. By Lemma 5.15 one has S;,_, = S;;_ and A(Xg, ) > ¢ for
some ¢ > 0 @” a.s. on A. Therefore it suffices to show that @*(U = T') = 0 for
each jump time T of (S,) satisfying Sy_, = Sy_, M Xg, ) > ¢ for some ¢ > 0. But
for such a T and for all a« > 0, one has by using Theorem 5.5,

Q (U =T) < @(liminf{Cy ° 0y, < @, N(Ey,) > ¢})
< liminf Q*(Q"(C, < a); MEy, ) > ¢)

= liminf @(1 - exp{ —a/A(Ey,)}; M(Ey,) > ¢)
<1-—e e ‘
proving that @*(U=T) = 0.0

LEMMA 5.15. One has S;;_€ G N J, Q@ a.s. on A.

PROOF. OnehasS;_€G @?as.onAand Sy_€J @”as.onU,{Sy, =Sy_}.
It remains to show that Sy_€J Q” as. on N,(Sy < Sy_< Sy} For this,
consider (%)) stopping times V,,V_,V in M which are @” as. equal to
Sy,» Sy—»Sy, respectively, and set B = ﬂ,,{V < V_< V}. For n’(dr)P'(dw’) a.e.
(r, w’) the (%) stopping time V™' is in G and is announced by (V" “) P” as.
on B™¥.But G \ J is totally inaccessible under P, proving that V_€ J @ as.
on B.O

6. Images of semi-Markov additive processes. Let (M, X, Z(P-)) be a
regular p regenerative system as in Section 5 and let M, be as in Theorem 4.20.
It follows from Theorem 5.5 that M, and X restricted to M, are determined by
the MAP (S, E,) (defined on an enlarged space). More precisely one has M, =
Sg, X, = E, Q as. for each x € E°.

Conversely if (S, E,);», is a given MAP with state space E such that S is
increasing and such that S, =S, = E, = E, as. we can define N, = Sz N R,
N = N, and for s € R,

H,=sup{t<s:t€ N,} =sup{t<s:te N} (sup @ = — ),
I'(s) =inf{t: S, > s}, C,=inf{¢t:S,> s},

Ec, if s is a right accumulation point of N,

(6.1)

Z:\ By, otherwise, with E_,, = x, (fixed in E).

Then the process Z is right continuous and is constant on each N contiguous
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interval of the form [a, b). It will follow from Theorem 6.5 that (N, Z) is then a
regenerative system. Actually this result will be stated in the more general
setting of the semi-Markov additive processes (SMAP), which was used by
Weidenfeld [25] in the study of discontinuous time changes of Markov processes.
We shall first fix some definitions and notations concerning the SMAP’s, espe-
cially since they will be indexed by R.

Let (E, &) and E; be as before, but in this section W denotes the set of all
right continuous functions from R into (— o0, + c0] X E which are increasing in
the first component. In the example of Section 5 E; plays the role of E here. The
process of the coordinates on W is denoted by (U,),.g and its natural filtration
by (A),cr- Weset #° =V, #2. Denoting by S,, E, the two components of U,,
we also define the shifts (¢,) and the set = by

Uyeo,= (S, +— Sy Eppy+) (oo — + 00 = t00),
={t:8,_<S8 <o} U{t: S, >8,Ve>0}.

(6.2) DEFINITION. Let (W, 4, J/l,, U,, Q) be a stochastic process, where
the filtration (J{ ):er is right continuous and complete and where the process
(U),cr is (A,) adapted and satisfies Ue W @ as. Given an & measurable
family (@*) of probability measures on (W, # %) that satisfy Q*(S, =0,
E, = x) = 1, the process (W, .#, .//lt, U, Q) is called a SMAP with respect to
(@*) provided (with the notation Z =ZoU for a function Z on W)

~

(6.3) Q;,14, = Q% on (T € 5}
for each (.#,) stopping time 7.

(64) REMARK. If S,=sup{s <t:s€ M} (sup @ = —c0), where M is a
random closed set, then M = {t: S, = ¢} is (#,) progressive, and it follows from
(6.3) t~hat (W, M, M o M, E", Q) is a strong p. reggnerative system, since then
2 = M (the minimal right closed set with closure M, see Remark 2.17).

On W we define Ny = S "R and N, H, Z as in (6.1). The process Z is right
continuous, except possibly at a = inf N, if —c0 < a &€ N,

(6.5) THEOREM. Let (W, A, A,,U,, Q) be a SMAP with respect to a fanuly
(Q%) satisfying one of the conditions

(6.6) S,=S,=E,=E, a.s.Q@,
(6.7) QU ({S.-<8,Cye0,>0,8;,°0,=0} =0.
t>0

Then with C,=inf(u:S,>t}, t € R, the system (W, #, M, N,Z,Q) is a
strong regenerative system with regeneration laws P* = ¢(N, Z )(Q*) provided
a € NyU {—o0, +00} a.s. @ for each x.
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ProOF. By our assumptions (including the condition on «)
Q((N,2)€9)=Q((N,Z) =) =
(D,, Xp)°(N,Z)=U;, Q as.on{t<supN},
(D, Xp, )O(N Z)="U;@Q as.on{t< sup N}.

One checks also that X, , p, o(N Z)is .//lc measurable for each s. Let T be an
(.//{C) stopping time. Then CT is an (.//{ ) stopping time and (./”C)T c .llc It
follows from (6.3) that on {CT S 2} = {T < sup N }, one has

~

Q%(N,Z.)Wc'rlj’cr = PP on {Sé'r < °°}

or, equivalently, with the notation F=Fo(N,Z) for a function F on @ and
with S = DT SC s

~

Q*‘vsIMc'T =P% on {S<o0}.
Finally note that P*(X, = x) = 1, since Q%(S, =0, E,=x)=1.0 -

(6.8) REMARKS. (1) Without the preceding assumption on a the result would
still hold with a slight extension of the definition of a regenerative system: (2. 3)
should be required only on (D, € M"}, where M’' = M if inf M is isolated in
M, M \ {inf M} otherwise.

(2) The assumption (6.7) amounts to requiring that every maximal interval
of constancy of S which is bounded and preceded by a jump of S is also
followed by a jump of S. It is automatically satisfied in the example of
Remark 6.4, and the statement of Theorem 6.5 then reduces to the obvious
fact that (W M, '/”c ,H,E, Q) is a strong regenerative system, prov1ded
(W, M, M H E,Q) is a strong p regenerative system (note that C =
inf{s > & s eM }). Note that each of the conditions (6.6), (6.7) of Theorem 6.5
can be replaced by the weaker condition

67) QU ({SC'_< Se,} N5 {0 < Cy< 0,8, =0,Eq, # EO}) =0
£>0

(6.9) DEFINITION. The family (Q%) is called a semi-Markov additive family
(SMAF) provided (W, #, #7,U,, @) is a SMAP relative to (Q*) for each x,
where (/) denotes the completion of (/) under Q.

It follows from Theorem 6.5 that, if (@*) is a SMAF satisfying (6.6) or (6.7),
then the associated family (P¥) is regenerative [Deﬁnition 2.2(3)]. Therefore the
process E (S¢,— ¢ E¢) = (R,, Xp)°(N, Z) is Markovian under each @*.
Actually th1s Jast property holds even in the general case, owing to Weidenfeld
[25]. Here we shall produce a nice realization of the process (E ) on the space W
itself. The construction is similar to that used for the process (Y,). Let (@) be a
general SMAF. On W let us consider the measures Q™* = 1(Q*) for re R,
x € E, where 1,: W » W issuch that U,o 7, = (r + S,, E,) and @* % = g, sy
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(the constant function [(+ o0, §)] is added to W). The completion of (A2 with
respect to all measures Q°, where 7 is probability on E = R, X E U {(+ 0, §)},
is denoted by (.#,). For t € R we define n: W —> W by

U,on, = (Se,s0— 8 Ec,ige)

(6.10) THEOREM. Let (Q%), .z be a SMAF and let E, = (S¢, — t, E,). Then
the collection (W, M, M, E,n,Q@"%5teR,, (r,x)€E E) is a strong Markov
process with shifts (n,), i.e.,

ey = Q% on (T < »)

for every (M) stopping time T (in R,).

The proof uses the fact that Cr is an (.#,) stopping time in = and it follows
the lines of (1.17) of [20]. Note that the semigroup (Q,) of (E,) is given by

f(r—s,x), ifs<r,
Qf(E,_,), ifsxr.

It is Borel since (Q*) is assumed to be measurable. Therefore, if we eliminate
the branch points, (W, 4, 4, E,, M, @™ %) is a right process. If we assume
only that (Q%) is universally measurable, and if (W, #, #,, E,, @*) is a right
Markov process, then using the method of Glover [10] we can show that

(W, M, M, E, 1, Q%) is still a right process.

(6'11) QAsf(rsx)=Qr’xf(EA’s)= {

7. Stationary p regenerative systems. Let (2, #, %, M, X, ¢,, Z(P"))
be a regular p regenerative system as defined in Definition 4.17 and let
(1, « P, L) be its exit system as defined by Theorem 4.8. Then (4.10) and the
results of Section 5 hold. In particular the process (E, = X, t > 0) is Markovian
on the enlarged space (W, ¢, @*) with respect to the filtration (.#,) and the

semigroup (@Q, ), o given by
(7.1) Q.(x,A) = Q(E,€ A), «xcE° Acé&"

(7.2) THEOREM. Each of the following formulas establishes a 1-1 correspon-
dence between (P,) invariant probabilitiecs p on (U, %) such that
p({+0} X Q) =0 and (Q,) invariant measures v on (E°, &°) such that
v(l + « P(R)) = 1 (in particular v is finite):

(7:3) w(1) = Prf (X)L(ds),  feér,
@4 w) = (#LD + P [TF(X)da),  fea.

The following complementary result will be proved simultaneously. (A,)
denotes the age process (¢t — G,). The process (X,*) is defined a.s. on £ [see
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(4.16)] by

@5) X*=XP, ifte G\ J,

= X,, otherwise.

Note that under the assumption of Remark 4.13(1) we would have X* = X for
all t € G as.

(7.6) THEOREM. Assuming that p and v are associated by the correspon-
dence of Theorem 7.2, let P be the element of Z(P*) such that ¢,(P) = P* for
each t € R [one says that (M, X, P) is a stationary p_ regenerative system].
Then for all t € R and positive appropriately measurable functions f on E° X
RXQorE°XR XU

(7.7) PY (X2 s,9)= [ v(dx)ds.P(x,s,"),
seG E°XR

P(A,<®)=1 and
o  PIX& ALY = [ p(an)(1=)f(x,0,0,[])
+,,Pxf0Rf(x,a,Ya)da).

ProoF. It will be convenient to denote by <7 and # the sets of measures on
U and E° involved in Theorem 7.2. For p € &/ we denote by a(p) the measure »
on E° given by (7.3), and for » € # we denote by B(») the measure p. on U given
by (7.4).

(1) Let p €.« and let P be the element of #(P-) such that Y(P) = p [or
¢ (P) = P*]for all t € R.

Since the process (X2 ) (with X?2 = § when the limit does not exist in E°) is
(%) predictable for each x, it follows from Remark 4.21(1) and a monotone
class argument that

P* Y {(X},5,9) = [[PA(de) [L(w, ds)s PXOF(XF(a),5, ).

seqG

In this equality one can replace X* by X, in the right-hand side, since L is a.s.
carried by {s: X* = X,}, and one can replace P* by P by noting that

P Y ((Xr,5,) = lim [P(de)P*® T f(X, D) +5,9,).

seqG seqG
Therefore setting g(x, s) = . P*f(x, s, -) we get
(7.9) PY f(X*s,)=P[e(X,s)L(ds).
seCG

Let v = a(p). » is finite [since P*(L(0,1]) < e]. By stationarity of (¢,) under
P and by homogeneity of L one has (using a classical argument)

(7.10) P[g(X,,s)L(ds) = /EOXRv(dx)dsg(x,s),
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establishing (7.7). As a consequence of (7.7) one has for f € £° ® Br ® U,

P( f(XSt’ At7 th)I{A,>0)) = P( Z f(Xs*’ t— s7Yt—s((ps))I{R((ps)>t—s))

seG,s<t

(7.11) = onv(dx)fR da P*(f(x,a,Y,); R> a)

- /Eov(dx)*Px/ORf(x,a,Ya)da:

Note that the property P(A, < o) =1 follows from the assumption that
P(R,< o) =1 and from the stationarity of (M, X, P) [see (4.2) of [20]]. In
order to prove (7.8), and thereby (7.4) and the equality »(I + P(R)) =1, it
remains to show that

(712) P( f(XC?,’ At’ Yt)I{A,=0)) = j‘EDV(dX)l(X)f(x,O, 07 [x])'

The left-hand side, equal to P(f(X*,0, Y;)I,c 5), does not depend on t. Hence
it is equal to

P f(X*,0,¥)1u(t)dt = P[ f(X,0,0,[X,])I(X,)L(dt),
0,1] 0,1]

proving (7.12).
Let us now check that »Q_ = ». As a particular case of Lemma 7.14 one has for
f e b&?

vW(f)=Q[ f(X,)dc,
0,1]
(7.13) - @ fcf‘f(E,,) du,

»(Q,f) = Q* :‘st(Eu) du.

By the Markov property of (E,) relative to (.#,) under @* (Theorem 5.5), one
has

QF(st(Eu); CO <ux Cl) = Q”( f(Eu+s); CO <ux< Cl)’

Therefore
C,+s

vQ.f = Q" °f(E,) dt.

Cy+s
In order to prove that »Q,f = »f, it remains to prove that Q*(F,) = Q"(F,),
with F, = jgtt”f(Eu) du. But F, is #® %' measurable and satisfies F, = Fy(y,)
and the result follows from the stationarity of (y,),., under @* (see Lemma
7.16).

(2) We saw that for each p € o/ one has a(p) € Z and B(a(p)) = p. Let us
now prove that for » € &, B(v) € & and a(B(»)) = ». Note first that » is finite
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sincel=1+ ,P-1—e B)<l+ ,P-(R)and that B(») is a probability on U
since B(»)(1) = »(Il + +P - (R)) = 1. We shall split the rest of the proof into
three parts.

@) B(»)(f) =p(f)= QSf(Y,) dt for f € b¥,. In fact, since 0(Q") = Q"
due to (5.6),

of ™4(Y,) da = @’ [ *1(Y,) da

- P["{(Y,) da

<v(xP- (R)IfIl < co.
Therefore p'(f) = @*/£5 f(Y,) dt and by using Lemma 7.17, we obtain

W) = @[ d+@ T ([*1(¥)da)es,

selG,s<S,
= @ [loerzsy8(X) dC, (with g = §(0,[-]) + P[*}(¥,) da)
- @ [“g(E,) du.
foA
But G5 =1 + C,° 0, and since 0,(Q") = @”,
v CSI . 14 q)
Q fl g(E,) du=Q fo 8(E,) du

= Q" (8(X)MX,)UY) < v(g) < oo.

Therefore p'(f) = @fy 8(E,) du = v(g) = B(»)(f).
(ii) The measure ' is invariant for (P,). In fact let f € b%,. Then by the
Markov property of (Y,) under @’ (see Lemma 7.15),

@ [PRAY)de =@ [Pi(Y..,) de
- @ [*71(¥,) du
=@ [P10) da+ @ 7Y du
= @ [Py du+ @ [(1(Y,) du
- @ [O1(¥,) du,

where the fourth equality follows from

S, +s s v\ — O
L du= [V du)eo,,  0(@) =@

S5,
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(iil) a(p’) = ». Since p’ is (P,) invariant, (¢,), . is stationary under P* and
for f € b&0

a(w)(f) = P¥ [

e *f(X,)L(ds)

(0, 00)

= Q[ e'f(X,)dC, = Q“(F),
(0, 0)

with F = [, e *f(X,) dC,. By the definition of p" and by the Markov property
of (Y,) under @’ one has

() =@ SQU(F)dt = @ fole“I/tdt

C@fta] e,
0

(2, 0)

—u Sy Au
-Q /(O’w)dCue f(Xu)fO et dt
Q[ (-e™H(X)dC,+ @[ e (eS -1)f(X,)dC,
(O)Sl] (Slroo)

= Q[ f(X,)dC,~ Q(F)+Q(Fea)
©,5,]
— v CSI = v : =yp .
= @[ 1(B,) du=@Q [f(E,)du=v(f) 2

(7.14) LEMMA. For all y€ U or y € E° and all positive # measurable
process Z on W one has

Py[ ZtL(dt)=ny Z,C(dt).
(0, 0) (0, 00)

Proor. It suffices to prove this equality for the point parts of L, C. But

P zLYdt)= @ ¥ ZgNXg)

(0, 00) m,n>1

> Qy(Zs,':'A( XS’,:.)U,{")

m,n>1

= Qy/ Z,0(dt). O
(0, 00)

(7.15) LEMMA. Let X, be defined like 9, with #,° instead of %° in
Theorem 5.4. Then for every y € U and every (X,) stopping time T,

Q(f(Yr)ty) = Q" on{T < 0}, fEHRF',.
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PROOF. Same as for Theorem 5.4, by using (3.10) instead of Theorem 4.20(a)
at the end of the proof. O

(7.16) LEMMA. If p is a probability measure on (U,%) which is (P,)
invariant, then (y,),., is stationary under Q".

ProoF. By Lemma 7.15 one has ¢,(Q*) = QXQY) = Q*.O

(7.17) LEMMA. For everyy € U ory € E°, every positive (X,) predictable Z
and every [ € 5, one has

QY Zsf°<ps=ny(0 L ZenPR(£)C(ds).

0<seqG

PrOOF. Owing to the Markov property of (Y,) relative to (2¢;) we only need
to prove this equality for Z, = 1 ,(s) with u > 0. Then the right-hand side
equals (Lemma 7.14)

P[ L PN(IL(ds) =@ L Zfow. o
©, u]

seqG

(7.18) REMARK. If g € 0%y ® By, it follows from (7.8) that

Pg(A,R) = [ o(d)(Ux)g(0,0) + P ["g(a, R - a) da).

If E° has only one point x,, (S;) is a subordinator with drift « = /(x,) and
Lévy measure A = R(, P*). Then »{x,}m = 1, with m = a + [ ., rA(dr), and
we have as in [20]

4 1 r
Pg(A, R) = —g(0,0) + f(o i [ 8@, r =~ a)da,

(7.19) 1 o
> = —

P(A,> u, R, > 0) = — /mx(a, ) da.

If @ = 0 and A is finite, A, m can be replaced by » = A /(A(0, 20)), ¥ = [(g, )X?(dx)

in (7.19). This is the known formula for the joint distribution of the forward and

backward recurrence times in renewal theory, » being the distribution of the

interrenewal epochs (see [4]).

We now turn to regenerative systems constructed from MAP’s as in Example
2.13. This is a special case of what was done in Section 6 where one assumes the
Markov property to hold on R, and not on Z only. Let (%),  z be a MAF, by
which we mean that (Q*) is a SMAF (as defined in Remark 6.9) such that S, is
finite a.s. for each t and

Qz 1w, = Q" on {T < 0}

for any stopping time T of the filtration (.4,),.,. We shall use the notation
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(Et), E, N (QS), ... of Theorem 6.10, as well as the other notation N, Z,... of
Section 6.

It was shown by Cinlar [3] that S,= K, + S where K is a continuous
additive functional of (E,) and S¢ is a pure jump process. If we assume that the
process (S,) is quasi left continuous with respect to (.#,), then it follows from [2]
(see also [19]) that there exists a continuous additive functional B of (E,) and a
kernel N from (E, &*) into (R, X E, #x ® &) such that for all
fECR By ®E,

Qx Z I{Ss_*ss)f(Es—7 Ss - Ss—y Es)

s<t

(7.20)
=Q*[ dB,[ N(E,drdy)f(E,r, ).
(©, t] R,XE

(7.21) THEOREM. Let v be a finite invariant measure for the semigroup (Q,)
of (E,) and consider the Revuz measure of K (resp., B),

vk(v5) = Q[ Iz, <. dK,(dB,).
0,1]
Then the measure ji defined on E by

ﬁ(f) = ./;EVK((ix)f(O’x)
(7.22) .
+[Eu3(dx)[R M, drdy)fof(r— a,y)da

is invariant for the semigroup (Qs) provided it is o-finite. If one of the
conditions (6.6), (6.7) is satisfied, then the process (Y,),., is a stationary
Markov process under P = ¢y(N, Z }(Q").

(7.23) REMARKS. (1) Although ji is not necessarily a probability measure, the
system (2,5¢,5¢,,M,X,p,,t > 0; P) deserves to be called a stationary regenera-
tive system (indexed by R ), with regeneration laws P* = gy(N, Z )(@%). Note
that the process Z could be modified in this statement as long as the equality
(Xy, X )N, Z) = (E,, E'.), with X, = (R,, X}, ), remains satisfied a.s. @". In fact
it is easy to verify that, given a regenerative family ( P*) and a measurable map
®: (Q, #) > (Q, #) such that (X,, X)o® = (X,, X) as. P%, then (®(P¥)) is
still a regenerative family. Note that in the theorem of Section 6 of [13] we have
implicitly identified two such regenerative families (P*) and (®(P*)) [© in that
paper was restricted to the points of the form w = (@’ w'), where «° € Q° and
w' € Q' is constant on each interval [a, B) contiguous to «° but despite this
restriction the statement of the theorem remains incorrect].

(2) In the conditions of Theorem 7.2, it follows from this theorem that, given a
finite (Q,) invariant measure » on E° such that »({ + ,P(R)) < o, then the
measure i defined on R, X E by

W(F) = 2(50.) + P [“H(R - a, Xy) da)
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is invariant for the semigroup (133) of the process (X't). This formula can be
understood as a special case of (7.22) with K, = [{I(E,) ds, B, = t,
N(x, drdy) = «P*(R € dr, X € dy).

(3) Note that

fR N, drdy)/o'"f(r— a, y) da =fIR dthN(x,(t,oo) x dy)i(t, ¥).

In particular in the case of Remark 7.23(2) one has
aCf) = v(lf(O, )+ [ dtf JP-(R>t Xz dy)f(t, y)).
R, YE .

When E° = {x,}, the measure fi, considered as a measure on R ,, is of the form
ag, + A(Z, 00) dt that appears in [8], [20], [24].

Proor. By the definition of »x,rz and by (7.20) one has (with AS,=
St - St—)

.‘“:( f ) = QV(-/(‘O 1]f(0’ Et)I(AS,=0) dSt + E I(AS,>0)fAStf(ASt - a, Et) da)

0<t<l1 0
S ./ A Sie( B
=Qv( o f(Es)I{AS(Cs)=0)ds+f0 f(ES)I(AS(Cs)>°)ds)
S, A
=Q"| ‘f(E.)ds.
Q[ (£,

Replacing Y,, P, and o, by E,, @, and 7, in part (2ii) of the proof of Theorem
(7.2), we obtain the (Q,) invariance of fi. The second assertion of the theorem is
clear by Theorem 6.5. O
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