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We study the homogenization problem for a diffusion process in a diver- R
gence-free random drift field. In particular, in case of a small Gaussian field
we derive an asymptotic expansion of the effective diffusion matrix in terms
of its spectral density.

1. Introduction. In R? d > 2, we study the asymptotic behaviour of a
rescaled version of a diffusion process X(¢) solving

(1.1) X(t) = [O’a(X(s)) ds + V2 B(t).

B(+) is a standard Brownian motion in R¢, and
0(x) = (0,(x),...,0,(x)),

(1.2) 8,(x) = f:ijjk(x), ke (1,...,d},

for some stationary, ergodic, sufficiently smooth, zero-mean random field H(-) =
H,(x), k, j€{1,...,d}, x € RY with values in the space of skew symmetric
matrices, i.e.,

(1.3) H,(x)= -Hy(x), x€R% &, je{1,...,d} as,
which is independent of B(-). By (1.3),

(1.4) divd(-)=v -0(-) =0 as.

Therefore the process X(-), which has the generator

d
k=1

is a Brownian motion in a “divergence-free” random drift field. We rescale X(-)
by the usual diffusion scaling and study the processes X (t) = §X(8%t) in the
limit 8§ — 0. '

In the case of bounded H(-), Papanicolaou and Varadhan [9] and Osada [8]
proved that for almost all realizations of H the distributions of the processes
X5(+) converge weakly in the space of probability measures Z(C([0, T']; R¢)) on
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HOMOGENIZATION OF A DIFFUSION PROCESS 1085

path space C([0, T']; R?) to the distribution of some nice diffusion process X,(t),
0 < t < T, with drift 0 and a diffusion matrix A = A,,, k, /€ {1,...,d}. Ais
given through the solution of a “resolvent equation” in some abstract Hilbert
space. X, is called the “homogenization” of the processes X; with the effective
diffusion matrix A.

Our starting point was to obtain a similar result for Gaussian fields H and to
investigate how the effective diffusion matrix A can be expressed in terms of the
correlation function of H or its spectral density. The answer to this question will
be obtained in three successive steps.

As a first problem, we treat existence and uniqueness of the homogenization
process X,(-) for unbounded H(-).

FIRST RESULT. Assume that H(-) and 0(-) are square integrable and satisfy
certain pathwise regularity and growth conditions. Then the processes X-)
converge in the limit as 8 — 0 to some Gaussian diffusion with drift 0 and
uniquely defined diffusion matrix A = 1 + D (cf. Theorem 1).

Unfortunately, by the unboundedness of H(-) we cannot directly apply the
results of [8] or [9]. To extend these results to our situation, we have to give a
new proof of the unique existence of the solution of the above-mentioned
“resolvent equation” (cf. Lemma 3.27). On the other hand, again the unbounded-
ness of H(-) makes the use of Nash estimates or suitable generalizations (e.g., [8,
Lemmas 1.1 and 1.2]) impossible, and therefore we have to be content with a
weaker notion of convergence than that of weak convergence in 2(C([0, T]; R¢)).
For that reason we use a kind of Vaserstein-metric [cf. (2.7)] on the space of
R%valued random processes. Except for the solution of the resolvent equation
and the use of the Vaserstein-metric, our proof of Theorem 1 essentially follows
the arguments of Osada [9].

On a formal level we can describe the matrix A as follows. First we have by

(L.,

8X(87%) = .sf“'z’o(x(s)) ds + 8W(87%),  W(t) = V2 A(¢).
0
Next let the random fields x*(-) be defined as the solutions of
d
(16) - ka = ok = Z errk'
r=1

Hence by Itd’s formula, ‘
k —2,\) — Avk 8%t 872,k
BXH(X(87%1)) = 8x*(0) = 8 [* 0, X(s)) ds + 8 [* v x*(X(s)) aW(s).
If 8x(-) is small enough, we obtain

SX*(87%) = 8[08"2‘(1 + vx*(X(s))) dW(s),
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i.e., v-8X(872%), v € R? behaves like a martingale with quadratic variation

d d 2 d
o+ Y ( > kazx”(X(S))) +2 ) UzUszXk(X(s))) ds.

I=1\k=1 k,l1=1

Qi(t) = 28 o

(1.3) implies that Lebesgue measure is invariant for the process X(-). Using this
fact, the stationarity of vx*(-) and an ergodic theorem, one can conclude from
the last formula that

d

2

®+ Y Do),
k=1

i 2(t) =2t
sl_ff(l)Qs( )

with
Dy, = E[vx*(0)vx'(0)].
(This last argument may be a weak point of this formal consideration. But, at
least when H, and therefore v x too, is periodic, it seems plausible.)
A martingale convergence theorem now shows that ¢t — 8 X(8~2t) converges to
a diffusion process with diffusion matrix 1 + D. To obtain D in a more concise
form, which is reminiscent of the starting point H(-), we apply v,(—A)~!
to (1.6). Hence we obtain for G = G,,= v, x' and /= —v ® v(—A)"! in
operator notation (1 + I'H)Y1 + G)=1, or 1 + G= (1 + T'H)™, ie., since
E[G]=0,
1+D=E[{1+G)0)"(1+G)0)]
(1.7)
= E[(1 + T'H)"(0)"(1 + T'H) }(0)].
The second step is the expansion of the uniquely determined diffusion matrix
A =1+ D for “small,” but still not necessary bounded random fields H(-).

SECOND RESULT. Assume additionally that H is L ?-integrable for anyp < co.
Then the effective diffusion matrix A* corresponding to the field aH(-) has an
asymptotic expansion of the form

M
(18) A*=1+D*=1+ Y oD@ + O(a«**?), asa >0, MEN

r=1

(cf. Theorem 2).
(1.8) follows formally by expanding (1.7):

1+D°=1+ fj (—a)””‘E[(er)‘(o)‘T(er)'"(o)]

l,m=1

(since E[(T7H)"(0)] = 0)

—14 Y a¥(~1) " E[(TH) (0)"(T'H)(0).

r=1
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This last equality follows from (1.3) and I'/T'/ = T'/, which imply
E[(T'H)*©)"(T'H)"(0)]
_ (=0 * 2B [(0H)*P2(0) " (T/H)*P7(0)], if & + Lis even,
0, if £ + 1 is odd.
Hence,
(1.9) De) = (=1)'E[(T'H)"(0)"(T/H)"(0)].

The L?-assumption for H(-) is needed to assure that each matrix D®" is finite.
For that we need an abstract version of the Caldéron-Zygmund theorem, which
in its classical form states that each I'J,= —v,v,(—A)~! is bounded on any
LPR?), p < oo.

As final step we consider Gaussian random fields H(-).

THIRD RESULT. Assume that H(-), and therefore 8(-) too, is Gaussian.
Then the matrices D" can be evaluated in terms of the spectral density of 0(-)
(cf. Theorem 3).

The organization of this paper is the following. Next we present a list of the
notation which is used. Then we describe in Section 2 our results, whereas their
proofs are deferred to Sections 3-5.

1.1. Notation. In this section we collect the notation which is used in this
paper. By L?(R?), respectively, L?(R% R?), we denote the usual spaces of R-,
respectively, R%, valued functions on R with bounded || - || p-norm. Moreover,

H}(R?) = {f € LA(R?): |Vf|l; < o},
H?(RY) = {f € L*(R?): f = v - g (= divg) for some g € L*(R%; R?)},

C*(R?) = space of real-valued functions on R¢ with continuous partial
derivatives of all orders < %, k € {0,1,...,0},

CkR?) = {f € CXR?): f has compact support}, k€ {0,1,...,00},
C*(R?) = {f € L*(R?): f(-) has compact support},
where

F(w) = @m) ™" [ e"f(x) ds

is the Fourier transform of f.

In Section 3 we need several spaces of functions on a probability space
(2, o7, P). These spaces are defined quite similarly as related spaces of functions
on R¢ with the operators D, [cf. (3.6)] replacing the usual derivatives Vv,. In
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particular, we define
HX(Q) = {fe L*Q): D,fe L¥(Q), k€ (1,...,d}},

H31(9)={f€L2(9) f= EDkg,, D - g for some g € L*(Q; IR )}
k=

Cr(Q) = {f: @ > R: (D --. D) fexists and is bounded for any
my,...,myz€ {0,1,2,...}},

V HP°(R? X Q) = space of those real-valued functions on R? X @ with f(-, -),
v, f(:,-) € LP(R? X Q), respectively, L?(R¢ x Q; R¢),
and supp( f ) = K X @, where K € R%is compact,1 < p < 0.
(v, denotes the “gradient” with respect to the spatial
variable x.)

We denote by ||-||,, respectively, || -|||,, the norm in LP(IR" ), respectively,
LP(Q). (f, &) = [paf(x)8(x) dx, respectively, ((f,&)) = faf(w)8(w)P(dw),
whenever the right side is well defined.

Z(X) denotes the distribution of some random variable or process X. By
Cy(a, b,...) we denote constants depending on parameters a, b, ... .

To write down the coefficients of the expansion for the diffusion matrix of the
limit process X, we need some additional notations.

Let I(k)={1,2,...,k}. For any interval I={m,m+1,....,m+1—1},
(1 even) of N, we denote by 2] the set of all exhaustive pair partitions of I. Any
7 € P] consists of the elements

{(1,1),7(2,1)},{=(1,2),7(2,2)},...,{=(1, r), n(2, 1)},...,
{n(1,1/2),7(2,1/2)} witha(1,r) <=(2,7), r € {1,2,...,1/2}.

7(-,1) w(+,2) 7(-,s) w(, t)
/\

VN <O\ N

mm+1m+2 - k—1kEk+1 --- m+Il-2m+1-1

The set of all “bonds” {m,m +1},(m+1,m+2},...,(m+1-2,m+1-1}
may be enumerated by I’ = I\ {m + I — 1}, i.e., the left endpoints. Let A(r, 7)
be the set of pairs {=(1, n), m(2, n)} “encircling” the bond {r,r + 1}, i.e,
A(r,m)={n<1/2: #(1,n) <r <w(2,n)}. By H(w), respectively, Hy(m), we
denote the set of left, respectively, right, endpoints of pairs in =, i.e.,
H(w)={qe€Il.q==(1,r)forsomere {1,...,1/2}},
Hy(7)={qeIl:q=m(2,r)forsomere (1,...,1/2}}.
The sets H\(7) and H,(7) are disjoint with H (w) U Hy(w) = I. Moreover they
" generate a partition of I’ into three sets,
By(7) = {r el''reH(n), r+1e Hz(w)},

B(r)={rel:r,r+1€H(m)orr,r+1¢€H,y(m)}
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and
Bym)={reI:reHym), r+1e€H(n)}.
Obviously |B,(w)| is even, since
(1.10) |B,(7)| + 2|B0(1r)| = [,
For g € By(7), let
, q, if q € H2(W),
q'(7) = .
q+1, ifqgeH(n).
Finally, let
Ple={reP|: Nq,m) + forallg eI},
i.e., 2] ¢ is the set of “elementary” pair partitions.
2. Formulation of the results. Instead of boundedness assumptions we
assume in addition to (1.3) that the random field x - H(x) = H(x, w), w € {,

which is defined on some separable probability space (R, &/, P) with expectation
operator E, satisfies

(21) I H(x, I3 = E[Hy(x, )] <0, k1l (1,...,d},
(2.2) x — Hy(x,0) € C}(R?), k,1€{1,...,d}, P-as.
and
1 ak1+ kg
sup H,(x,w)| < oo,
(2.3) xeﬂd 1 + |x| (axl)kl cee (axd)kd kt

ky,....,ky;€{0,1,2), b, + --- +k,;<2, k1€ (1,...,d)}, P-as.
Additionally, we shall use
(2.4) 02, IZ = E[6,(x, )?] <0, ke{1,...,d},

where 6,(-, -) is defined in (1.2).
For fixed w € @, let ¢t - X(¢, w) be the diffusion process solving

(2.5) X(t,0) = jo‘o(X(s,w),w)ds + W(t),

where W(¢) = V2 B(t), 0 < ¢ < o0, for a standard Brownian motion B8(-) in R?,
which is stochastically independent of the random fields H(-) and 6(-). There-
fore we can assume that the random elements in our setting, i.e., the random
fields H(-) and 6(-) and the Brownian motion W(-), are defined on a probability
space (R, &,(&,);5 0 P), &, some filtration in &, such that H and 6§ are
measurable with respect to (%, &7y, P|, ) = (R, &,P), and W(:) is (&,),¢"
adapted.

REMARK 2.6. In our results we shall consider the whole family {X(-, w):
w € Q} as one (&,),, -adapted random process ¢ = X(¢).
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By the unboundedness of H(-) and 6(-), we cannot use estimates like those in
[8, Lemma 1.1] to show the weak convergence of the distributions of the
processes t > X (t) = X(87%t) as § — 0. For the weaker notion of convergence
we have to be content with, we introduce on the space S¥ of all R%valued
random processes Y = Y(¢), 0 < ¢t < T, the metric

. T
@) prn2)- ot E|[1A 160 - Quo)dr]

where K(Y, Z) is the set of all R? X R%valued processes @(:) = (@,(*), @x(*))
fg(léi)’)) @x(t)), 0<t<T, such that L(Q(-))=L(Y(:)) and L(Q"))

We can formulate now our first result.

THEOREM 1. Assume that H(-) is a stationary ergodic zero-mean matrix-
valued random field on R?, d > 2, satisfying (1.3) and (2.1)—(2.3). Furthermore
let 0(-), defined in (1.2), satisfy (2.4). Next let Xy(t) = 8§X (8 2t), where X(t) is
considered in the sense of Remark 2.6 [i.e., (R, &,(&,), o, P) measurable] and
Xo(+) the Gaussian diffusion with generator A + X3 ,_,D,~v v, and X(0) = 0,
where the positive semidefinite matrix D = D,,, k,l € {1,...,d}, is defined in
(3.38) and (3.44). Then for any fixed T > 0,

;i_r)r:)p#(Xs(-), Xo(+)) = 0.

Consequences of Theorem 1, respectively, its proof, which can be found in
Section 3, are:

COROLLARY 28. For w € @, B,8 > 0 and g € LAR?), let uy(-, w), respec-
tively, uy(-), be the solution of the resolvent equation

uy(-, 0) = &(+),
k,l=1

d
(2.9) ("A_ )y ViHs (-, 0)v, + B
respectively,

L
(_A_ )y Dkzvkvz"'ﬁ)uo('):g('),

k,l=1
where Hy(x, w) = H(x/d, w). Then

(2.10) lim [P(do)|uy(-, 0) = ()3 = 0.
-0JQ

If g € LY R?) N C°(R?), then for any x € R®,

(2.11) lim [ P(dw)|us(x, 0) = uo(z)[" = 0.

COROLLARY 2.12,
d

d /20 4 1/2
|Dyl < ( )y |||H,-k|||§) ( > |||H,-1|||%) < X Hl3
Jj=1 Jj=1

m,n=1



HOMOGENIZATION OF A DIFFUSION PROCESS 1091

Although the unique existence of an effective diffusion matrix 1 + D is
deduced by Theorem 1, its representation through the solution of an abstract
differential equation (3.38) and (3.44) is unsatisfactory. A problem that naturally
arises is the calculation of D in terms of the random field H(-). One possibility is
to derive an asymptotic expansion for small H based on modifying the classical
scheme for L® perturbation of the diffusion matrix [as in the work of Bergman,
Milton, Golden and Papanicolaou (cf. [5] and the references therein)]. More
precisely, for any a > 0 we replace H(-) by H%(-) = aH(-). This random field
H*() defines a process X%(-). By Theorem 1 the rescaled processes Xj(t) =
8X*(87%), 0 < t < T, converge for any fixed « > 0 as § - 0 to some Gaussian
diffusion X¢(-) with infinitesimal generator A + £f ,_, Dy ,v,. We shall derive
an asymptotic expansion for Dj; as a — 0.

THEOREM 2. Assume (1.3) and (2.2)-(2.4) and, additionally,

(213) "lHkl(x’ )|||1I: = E[IHkl(x’ )lp] < o0,

k,le(1,...,d}, pe[1,0).

Then for any M € N,

M
(2.14) D= Y o«*DE” + O(a®+*2) asa — 0.

r=1

The precise definition of the coefficients D27, which are formally derived in

(1.9), is given in (4.15). The matrices (—1)""'D®"), r € {1,2,...}, are positive
semidefinite. Moreover the expansion (2.14) converges uniformly for a small
enough if H(-, -) is uniformly bounded.

This theorem is proved in Section 4.

Probably an expansion like (2.14) is only of theoretical importance. In practice
one would like to express the coefficients D" in terms of the correlation
functions of the random field H. Then one has to replace the relation (4.15)
defining DZ” in terms of H and the abstract operators T, in L?(Q) by a
corresponding expression involving integrals over Euclidean spaces, correlation
functions of H and concrete integral operators. Such a program may be quite
tedious for general H.

For that reason, we assume now in addition to (1.3) that the random field
H(-) is Gaussian with mean 0, since in this case all correlation functions are
completely determined by the covariance functional

RE () = E[H,/(x, )H,,,(0, )], k,l,m,ne {1,...,d}, x € R%

We assume that H has a spectral density o}] ,,,(-), i.e., that Rf] ,,.,(-) can be
written as

—d/2 —ipx
R (%) = @)™ [ off (w)e™ ™ dp,
R

k,l,m,ne{l,...,d}, x € R%

(2.15)
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It is not hard to conclude from [1, Theorems 3.4.3, 6.5.3 and 6.9.4], that the
assumptions of Theorem 2, in particular, the ergodicity and (2.2)-(2.4) and (2.13)
are satisfied if

(2.16) 0k ma(*) € L2(R?), k,l,m,ne{1,...,d},

and

(217) j‘;dlolg,mn(y’)l(l + I""ls) dp'< oo, k’la m,n¢& {laad}

(1.2) and (2.17) imply that 6(-) has a spectral density o} ,(-) too, namely,

d
(218)  og(n) = X wmof (n), kle{l,..,d},peR™
J,r=1

To avoid the complications caused by the fact that the covariance functional and
the spectral density of H are fourth order tensor fields on R¢, we shall continue
our calculations now in terms of the random field 6, respectively, its covariance
functional and spectral density, which are tensor fields of order 2 only.

For the following result we use the definitions about pair partitions given in
Section 1.1.

THEOREM 3. Suppose that H, respectively, 0, is Gaussian. Moreover, as-
sume d > 3 and (1.3), (2.16) and (2.17). Then the coefficients DZ" of (2.14) can
be expressed in terms of the spectral density of the random field 0(-). The explicit
formulas are given by

(219) D= ¥ Dlen,

nePferre

with

) 12
D, n - 4
DuIt(> W= (2'”) 8"171 DPI/ / ( pqr(l ) Pre2, r)(p'r))

X l_'[ ( E ui’q‘(w))
(2.20) g€ By(m) qE€EB(7) \seA(q, n)

x( I1 ( )y u;,)( > ui,q“) X

Zus X ¥

s€A(q, )

]

s€A(q, n)
-2
qE€By(m) \ seA(q, 7) seA(g,m) seA(q,m)
2-1 -
X(=1)"* "t .- dp?,

for any m € 2] In (2.20) repeated indices are summed for 1,...,d. In
particular,

D@ = (277)_'1/2[ ouw)lpl ~* dps

I'(d/2)
= d- 227"

(2.21)
f RY,(x))x|> ¢ dx.

The proof of Theorem 3 is given in Section 5.



HOMOGENIZATION OF A DIFFUSION PROCESS 1093

REMARK 1. The proof of Theorem 3 shows that (2.21) remains true for
non-Gaussian H, respectively, 8, as long as in addition to (1.3), (2.2)-(2.4) and
(2.13) the assumptions on the spectral density, namely (2.16) and (2.17), are valid.

REMARK 2. The assumption d > 3 has technical reasons. For d > 3 certain
integrals occurring during the proof of Theorem 3 are obviously convergent,
whereas for d = 2 additional reasoning without further insight would be neces-
sary to show that these integrals are well defined.

REMARK 3. For the proof of Theorem 3 we could use, of course, the
representation of D" through (4.2) and (4.15). This would first require the
translation of (4.15) into a more concrete expression involving integrals over R,
correlation function of H and integral operators in R¢ and the subsequent
evaluation of this new expression. We believe that this way has the conceptual
disadvantage that the path from the concrete homogenization problem to its
solution would follow a detour through a very abstract region, namely, the
proofs of Theorems 1 and 2. This abstract formalism is not so helpful if one is
mainly interested in a concrete representation of the matrices D", For that
reason we use in the proof of Theorem 3 a method which starts from a
perturbation expansion of the solution of the resolvent equation (2.9) and which
yields the desired expressions for D{2"” as limits of certain “ordinary” integrals
over R? as § — 0. In our opinion this way has the advantage that it uses only
well known L2%(R?)-techniques and therefore is rather elementary, although far
from being combinatorically trivial.

3. Homogenization of the process X(*).

3.1. Proof of Theorem 1. To define the random field H(-) in a suitable
precise way, we can and do assume the following setting (cf. [8]): Let (2, d) be a
separable metric space, & the Borel-o-algebra and P a probability measure on
(R, ). Next let £ = £,, x € R¢ a d-dimensional ergodic stochastically continu-
ous flow on the probability space (2, &, P), i.e.,

t. is a measure preserving transformation of @ into @ for any
(3.1) xxe R<

(32) {fy=id and ¢, =£.°f, x yeERT

the only elements A of & with P[AA f;'A] = 0 for some
(3.3) x €R9\ {0}, where A, denotes the symmetric difference of
sets, are those with P[A] =0 or P[A] =1

and

(3.4) ’llin})P[w e d(fw, ., ,0)>8=0 xeR%8§>0.

In this case the maps T, x € R defined by (T.f)(w) = f(f,0), f € L*(Q), on
L*(Q) = L% Q, «,P) constitute a strongly continuous unitary group 7, which
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has a “spectral representation”
(3.5) T.= [ e U(dp),

where U( ) is a “resolution of the identity.” .
Let Dk, k € {1,..., d}, be the infinitesimal generators of T i.e.,

(36) (Dyf )(w) = hmh((Thek )(@) = f(#)), fedom(D),

where e,, is the unit vector in the %th direction of R¢ and dom(D) the set of
those f € L%Q) for which the limit in (3.6) exists in L*(Q) forany & € {1,..., d}.
Note that the adjoint of D, is —D,.

By stationarity we can assume that the random field H, respectively 0, is
obtained from the fixed R? X R% (R%) valued random variable H(w) = H(0, »),
respectively, 0(w) = §(0, w), as

3.7) H(x,) = (T.H)(w),
respectively,
(3.8) 8(x, w) = (T.4)(w),
where (3.7) and (3.8) hold coordinatewise. Note that (1.2) implies
d
(39) §k =X D;Hj,.
j=1

By (2.2) and (2.3) the process X(:, w) = X(¢, w), 0 < t < o0, is for P-almost all
w € Q a well defined time homogenous diffusion process with a transition density
p(t, x, ¥, w), which by (1.4) satisfies

(3.10) fdp(t, x,y,w)dx =1, t>0, y< R? P-as.
R

(cf. [8, Lemma 2.2]).

Moreover (2.3) implies that P-a.s. for any ¢ > 0 the distribution of X(s, w),
0 < s < t, is equivalent to that of Brownian motion (Girsanov—Cameron—Martin
formula). Therefore,

(3.11) fp(t,x, y,w)dy>0 foranyx € R% t> 0, A C R?open, P-as.
A

(3.10) and (3.11) allow us to repeat the proof of [8, Proposition 2.1] word for word
to obtain

'LEMMA 3.12. Let
(3.13) Z(w,s) =ty 0w,  Z(w,0) = 0.

For this Q-valued process the probability measure P is invariant and ergodic.



HOMOGENIZATION OF A DIFFUSION PROCESS 1095

A

The maps V = V,, 0 < t < oo, defined by
(3.14) (V.[)(@) = E'[[(Z(w,5))],  feL=(Q),

where E'[ - - - ]in (3.14) means expectation with respect to the Brownian motion
occurring in X(-, w), constitute a positive contraction semigroup in L>*(Q),
which by the definitions of X(-,-), H(-) and D, has the infinitesimal generator

d d d
L= Y D,D,+ Y D,H,(-)D,=D*+ Y 6,(-)D,,
k=1 k=1 k=1

defined on some suitable domain. Since the adjoint L* of L equals L* = D? —
Zz, 11D, H,,(-)D,, we obtain for any positive g§ € C§°(Q),

(V1) = (&) + [(LV8 1)) ds
= (@) + [((Va, L)y ds = ((8,1).

We can conclude that ‘7',, t > 0, is a contraction semigroup both on L*(Q) and
on LY(Q) and hence by interpolation on any L?(2), 1 < p < oo. Consequently,
the resolvent Rg, B > 0,

A 0 A
Ry= fo e BV, dt
is a well defined positive operator on any L”() with

1
ﬁlllélllp, g€ L?(Z).
Note that by (2.4), the domain of L considered as the generator of V in L%Q)
contains C{°(2).

Next the second summand of L, namely,

(3.15) R8N, <

d d
(3-16) B = 0() D= Z ok(')Dk = Z Dkal(')Dl’
k=1 k=1

satisfies, by (1.3),

(3-17) <<Bf, f>> = _<< Z sz( )(Dkf) (sz )>> =0, fAEC()w(Q)-

k,l1=1

Since L is the infinitesimal generator of the semigroup V, the function fB R 28
is, the unique solution of

(3.18) (—-L+B)f;=8, ie,Ry=(-L+B)7";

cf. [3], where the meaning of (3.18) is made precise.
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(3.18) can be written in the weak form

d
((Dig, Dhyy + X ((HyDyfy, DihYY + B fy, By = ({8, h)),
(3.19) k=1

he Cce(Q).
(3.17) implies
(=L +B), )y = (=D + B)f, )

=IDf IZ + BIfZ,  fecp(Q).

(3.20)

It is not hard to show
(3.21) IDR&II, < 0, &€ L%Q), 8> 0.

(3.21) is obvious [by (1.3), (3.15) and (3.19)] for bounded ﬁ(-) and then can be
extended to the present situation by (2.1) and (2.3). Hence we can insert
f = fs = Rpg into (3.20) to obtain, with (3.18),

(&, Rpéyy = IDRL2NIZ + BIIRGENZ, &< LX(R).
This yields for any g € H2 (Q), with g = D - & = £¢_,D,m,,
(3.22) IDR,&I13 + BIIR&11Z = — (i, DRg&YY < L@l + LI DR2II12

and therefore,

(3.23) DR8I, < Il
and

(3.24) 12211 < (28) ™" lll,-
In particular we have

(3.25) lim BIl R4l = .

(3.23) shows that for any g € H? (Q), the set {b}‘eﬂg: B > 0} is bounded in
L*(Q;R?) and therefore suggests that DRBg is well defined even for g = 0.
Moreover by (3.19) and (3.25), one expects that F, = DR g = (Fo,15+++> Ko, q)
satisfies

d
(Fy, DYy + ¥ (B, Hy, DhYy = (8, hY) = — (@, Dh)),
(3.26) k,i=1
he ce(9),

where i solves D - i = 2.
Indeed we have the following analogue of [9, Theorem 2], respectively [8,
Proposition 3.1].
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LEMMA 3.27. For any 8 € H? (Q), there exists a unique function
Fy=(F ..., F, 4) € LA RY),

such that
(3.28) (Fy 1)y =0, ke(l,..,d},
and

(3.29) ((Fy ., Dihy) = ((By ;, DyhYy, he HXRQ),k, je{1,...,d},

which solves (3.26). Moreover we have

(3.30) 1Bl < N2l
(3.31) lim | DRy2 ~ Fyfl, = 0
and

(3.32) lim Bl R42113 = 0.

The proof of this lemma can be found in the next subsection.
(2.1), (2.4) and (3.9) imply

(3.33) b, H2(Q), ke{1,...,d}.

Therefore estimate (3.23) is valid for § = ék, respectively, @ = (ﬁlk, vy I-fdk),
and we obtain for M¢ = R §,, « > 0, k€ {1,...,d},

d 1/2
(834)  supllI DM}, < ( ) |||H,~k|||§) <o, ke{l,...,d}.
a> j=1
By Lemma 3.27,
(3.35) lim o2 M, = 0-

Furthermore there exist unique functions G* = (G%,...,G}) € L% Q;R?), k €
{1,..., d}, satisfying

(3.36) (Gl 1Y =0, k,1e{1,...,d},
(3.37) ((G}, Dihyy = ((GE, Dhyy, he HXQ), j, k1€ (1,...,d},

and

d
((G*, Dhyy + ¥ ((GH,,, D,h))

I,m=1
. .
= by, By) = = X (Hu, DRY),

hecr(Q), ke {1,...,d}.

(3.38)

(3.31) implies
(3.39) m%uu‘)M;: - GHl,=0, ke(l,...,d)}.
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Next we define for any « > 0 and &,/ € {1,..., d} the functions

M (x,0) = (T.M)(0) and G}(x,w) = (T.GF)(w), weQ,xeR%
By (2.5) the rescaled process Xj(¢) = 8 X(8~2t) satisfies

Xy(t, 0) = 8X(87%,0) = 8 [* (X (s, @), w) ds + SW(87%),
0
i.e., if we use (3.8) and (3.13),
(3.40) X,(t,0) = 8 G Z(s, w)) ds + SW(52¢).
0

The following computations which lead to (3.42) may seem to be a little bit
formal. We shall show in Section 3.3 how they can be justified. Let L(w) =
0(-,w)- v +A= 2‘,;’,,=1ka,¢,(~, w)V; + A. Then Ité’s formula applied to the

process t — SMy(X(87%, w), w) yields for any k € (1,...,d)}, 8,a >0 and
P-almost all w € 9,

L OM(X(87%, 0), 0) = 8M(Z(87%, »))

= 8MX(0, w) + 8[08’2‘(L(w)M,g(., ©))(X(s, ©)) ds
+sf0‘*"2‘vM,g(X(s, ©), ©) dW(s)

= 8M7(0) + 8 [* (L (@) ~ @) ME(-, 0))(X(s, 0)) ds
+sj08'2‘vM;;(X(s, ©), @) dW(s)
+aj0‘*“2‘aMg(X(s, ©), w) ds

(.41 = M2(w) — sfo‘*"z‘ak(x(s, ©), w) ds
+sf0‘*"2‘vM,g(X(s, ©), ©) dW(s)
+saj08’2‘Mg(X(s, ©), w) ds

[by the definition of Mg(-, -), which implies
(—L(w) + a)M(-,w) = 0,(-,w) for P-almost all w € 2]
- -2 )
= M() = 8 [*0,(2(s, ) ds

+af Hpaa(2(s, ) dW(s)

+8a jo " e Z(s, )) ds [by (3.8) and (3.13)].
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Now we choose a = a(8) = §2. Then we obtain by inserting (3.41) into (3.40) for
any k € {1,...,d},

(3.42) Xs,k(t’ ') = Es,k(t’ ') + Rs,k(t’ '), P'a.s.,
where

Ey (£, 0) = 8W,(67%) + 8 [* DM (2(s, ) dW(s)
0

and

R, (1, 0) = —8MI(2(87%,0)) + oM (w) + 8° [* MY (2(s, w)) ds.
0

From now on we consider all the processes t — X(t, :),t - Z(t,-), t =
R; i(t,+),... as & adapted processes, i.e, in the sense of Remark 2.6. In
particular Ey(t, ) = (E; ((¢,),... E; 4(t,)) is an o/ martingale. For any v =
(vy,...,0;) € RY the o martingale t > v - Ex(t, ) = L{_,0,E; ,(¢, -) has the
quadratic variation

d

d o N s 2
Q(8,0,t,-) = 282;’ fo‘* ‘(0,2+ ( Y okD,Mg(Z(s,-)))

k=1

d
+20, ) DkblM;:Z(Z(S, ))) ds.

k=1
By Lemma 3.12 the distribution of the process Z(¢, -), t > 0, £(Z(0, -)) = P, on
its path space M([0, »0); 2), i.e., the space of measurable functions from [0, c0)

into (R, &), is invariant and ergodic with respect to the time shift. Therefore an
application of Birkhoff’s ergodic theorem (cf. [2]) and (3.36) and (3.39) yield

LeMMA 3.43. Foranyt >0,

d
;im Q(8,v,t,-)=2t Y, v,0,(8;, + Dpr)s v E R (in P-probability),
-0 k,m=1

with
(3.44) D,, = ({(G*,G™), k,me(1,...,d}.

An exact proof of this lemma follows in Section 3.4.
Lemma 3.43 and [6] imply

LEMMA 3.45. For any T > 0 the distribution of the process t — Ey(t), t €
[0, T], converges as 8§ — 0 weakly in P#(C(0,T];R?)) to the distribution of
t > X(t), t€[0,T], where X,(-) is the Gaussian diffusion with diffusion
matrix 8,, + D,,, k, 1€ {1,...,d}, ie., infinitesimal generator A +
I L) v v
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Next we can conclude by Lemma 3.12,
E[I(Z(t )] = M50, < M, ke (1,...,d), 62 0,8 >0,
where E[ -] is the expectation operator in (£, &/, P). Hence by (3.35),

(3.46) gm% sup E[|R8 Wt =0, ke{1,..d).
—Pte(o,

The fact that we can prove only this convergence of ¢t - R s, x(%, +) to the trivial
process ¢ — Y(¢) = 0 and not the weak convergence of the distributions is the
reason for introducing the norm p¥(-, -). By Skorokhod’s theorem (cf. [7, page
9]) weak convergence in 2(C([0, T];R¢)) implies convergence in (SE, p¥).
Hence Lemma 3.45 and (3.42) and (3.46) yield Theorem 1. O

3.2. Proof of Lemma 3.27. (a) Existence of a solution of (3.26). By (3.23)
there exists for any sequence {B8,: n € N} with lim,_, B, = 0, a subsequence
{B,: n € N} such that the sequence {DRQ, & n € N} is weakly convergent in
L2(Q R<). Let us denote the limit by F Obviously (3.28)-(3.30) hold for any
DR 8, and so these properties hold for F too. Next (3.19) and (3.25) imply that
F solves (3.26).

(b) Uniqueness of the solution of (3.26). We have to show that the only
solution G = ( Gl, Gd) e L2( Q; R) of the homogeneous equation,

(347)  ((G,Dhyy + k;_ ((GpHy, Dihyy =0,  hecy(Q),

which satisfies

(3.48) Gy, 1)) =0, Eke(l,...,d)},

and

(349) ((G,, Dh)yY = ((G,, DykYy, R, 1€ {1,...,d}, h € HX(Q),

is the trivial one G = 0. Let us fix any such solution. Since G € L%(; Rd), the
linear form DA — ( (G Dh)) h € C(R), and therefore the linear form DA —
A(Dh) = ). K(G,H,, DhYY, h e C(R), too, can be extended continuously
to the Hilbert space H”, which is defined as the closure of the set {DhA:
h e C2(2)) in L¥Q; RY).
We shall show now

(3.50) G € HP.

For that we define for any 8 > 0, G = (63 %), Gk /(M»S}U(du)ék and
%= ZJ g = 8((— l[Lj)/|[J.| )U(dp)@ Since the flow £ is ergodic, 0 is a simple
eigenvalue of the operators D,,e Hence we obtain from (3.48)

(3.51) lim |G — G?]l, = 0.
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Moreover we have for any k € {1,...,d} and he C (),

(DR by = << [ o), ;;> >

j=1 \ \ /(lu1=8) |ul

il o]
- (|u|>8} |u|?
a (=)

- f{oal... ]
- (|m>a} (]

_ f<<c§k, 1 (_i‘:") U(du)ﬁ)>> [by (3.49)]
- {|u|>8} I

¢ |1 Ddn)

B g <<ék’fum>s> w2 (d“)h>>

<<ék’ f{lnlzs}U(d“)ﬁ>> = (G-

Hence,
(8.52) Gl =D,g°

(3.51) and (3.52) prove (3.50). Therefore Al(é) is well defined. Formally we
obtain from (1.3),

d
(3-53) Al(é) = Z <<ékﬁzk»ét>> = <<k

(3.47) and (3.53) would imply
(3.54) Gl = 0,

and the desired uniqueness would have been obtained. (3. 54) is indeed true.
However since H is not bounded, the second and third expressmns in (3.53) are
not well defined, and therefore (3.54) has to be proven in a different way. This
can be done in just the same way as the subsequent derivation of (3.68), which is
part of the proof of (3.31) and (3.32).

(c) Proofs of (3.31) and (3.32). We introduce the notation

g(x,)) = (1.8)(-), &< L*Q)orL*(%RY).
Then we obtain from (3.26) and the invariance of P with respect to 7T,
-
<<'F:)(x7 ')! Dh‘()>> + Z <<F0,k(x’ ')Hlk(x! )7ﬁl};‘()>>
(3.55) k=1
= —(w(x,-), DA()y), heCF(R), xR
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(3.55) implies (cf. [9, proof of Theorem 2])
jnf Fy(x, ) - VA(x, ) dx P(dw)

(3.56) ke lff Fy (%, 0)Hy(x, ©)V,h(x, ©) dx P(dw) -
B —fnfndw(x,w) : Vh(x,w)de(vdw)’
h € HY(RY X Q).

Let us define now .
d
x,:) = etrr — 1
x(x, ) ( L fder =

One can show (cf. [9, Theorem 2])

O(dm)Fy, ;| (-)-

(_il‘j)
|l

(3°57) VX(x, ) = E)(x, ')
and
. x ‘
(3.58) lim sup ‘8)((—, ) =0, K c R?compact.
8_’0 x€K 8 2

We insert now into (3.56) the function k, g(x, w) = f(x(x, ©))g,(*)Jjr(w), where
for anya >0, f,(-) € CR) and g(-) € CX(R?) such that f,(x) = x if |x| < a,
f(x) 0, if |x| > 3a, |f/(x)] <1 and |f(x)| <2a for all x ER, g, (x)=

~dg(x/a) for some probability density g on R? and jg(w) =1 mr(w) for
M(R) = {0 € Q: sup, cpal /(1 + |x])XE ;o |Hp(x, @)| < R}. Then we obtain by
(3.56) and (3.57),

L[ File, )" 12(x(x, 0))ul) ol ) ds P(dw)
| +ff Fo(x, ©) + VEa(%) fu x(%, 0)) jr( @) dx P(dw)

+ X f [ Fo.u(x 0) Hu(z, @) By, (x, 0)

X1l 0)() ) e Plde)
+ X f [ Fou(x, 0) Hu(x, @) V184, )

a(X(x, "-’))]_R(w) dx P(dw)
- ‘/‘;de(x, @) - Fy(x, @) f/(x(x, @))g,(x) jg(w) dx P(dw)

(3.59)

= [ [ (5, 0) - V) (. 0)) () ds P(da).
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Next we determine the asymptotic behaviour of the different terms in (3.59) as

R, a — . .
First we have by (1.3), (2.3) and since Fy(-) € L% Q; R?) for fixed R, a < oo,

5[ ol 0 s, 0)Fs (2, 0)

(3.60) k=1 :
X 1 (x(%, ©))8u(%) ja(w) dx P(dw) = 0.
Next
L Fols @) 1 (x(x, @))8u(x) (@) dx P(dw)
= [ [ Fo(ay, 0)*1(x(ay, @))&()ja(w) dy P(dw)
(3.61) a'R

= LLdE)(ay,w)zg(y)jR(w)dy P(dw)

+ fnLdE’(ay’ ©)*(£/(x(ay, ©)) = 1)8(¥) ja(w) dy P(dw).

Since g(-) is a probability density and since x — Fy(x, -) € L(Q;R?) is sta-
tionary, we obtain by (2.3) and Lebesgue’s bounded convergence theorem for any
a >0,

lim [ [ Fi(ay, ) a(y)jnlw) dy P(dw)

R—-

(3.62) = LLdFo(ay,w)zg(y) dy P(dw)

= I F5lll3-
Moreover for any R > 0,

—[n.[aﬂ)(ay, @)(f/(x(ay, ©)) = 1)g(¥) ja(«) dy P(dw)

<2 [ Flar, o) cx(@, o)1 A 1)g(») dyP(do)
<2 [ 1Rfay, oK ix(a, o)a(5) dy B(de)

3.63
(36 +2 ( / %(ay,w)zP(dw))g(y)dy
R\ “{w: |F(ay, w)| 2K}

<C

Kml%mz(fn . "%x(ay, )

2 1/2
&(y) dy)
2

+E[Fy(-)% 1F(-)l = K]

The second term in (3.63) is less than any given ¢ > 0 if K is sufficiently large.
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Next by (3.58) for any fixed K, the first term tends to 0 as a — co. Hence
(3.61)—(3.63) imply

(364)  lim lim [ [ Fi(x, 0 f{(X(¥ 0)8o(x)r(w) d P(dw) = IFlI3.

a—->o R—> o
In quite the same way as (3.64), we obtain
lim lim [ [ w(x,0) - Fyx 0)f/(x(x ©)gx)j o) dx P(dw)
Q'RY

a—->o00 R—oo

= (b, Fy)).
Next for any k2,1 € {1,...,d},

Lo Fo.r(, ) Hu(2, 0) Vi) o, ) () s P(do)

(3.65)

1
= [ [ Forlar, ) Hulay, 0)v.g(3) 5 fulx(ay, @))jalw) dy P(dw).
The absolute value of this expression is less than
) \
2[ [ IFy (ay, o) |H,k(ay,w)|(—|x(ay,w)| A 1)1vig( )l dy P(dw).
2'rR a
By estimates similar to those that lead to (3.63), we may show now
lim li F, ,w)Hy(x,
(3.66) o e ‘/‘;fnd o, 1(%, ©) Hy(x, @)
XV 8a(%) fu X (x, ©)) Jr(w) dx P(dw) = 0.

Similarly, we get

lim lim
a—o R—>w

./‘;./';dw(x’ w) ) Vga(x)fa(X(x’ “’))jR(w) dx P(dw)

L[ Folw @) - v8.(2) fulx(x, ©)) (@) dx P(de)

d -

(3.67)
+

(3.59), (3.60) and (3.64)~(3.67) imply

(3.68) EGIIZ = — (i, By)).
We know from (3.22) that
(3.69) IDR&NIZ + BlIRREINE = — (@, DRyg)).

On the other hand, the construction of FL, in (a) as the weak limit of Dfesng in
L*(Q; R?) as n > oo and its unique existence [cf. (b)] imply

liglizlﬂanBgH@ > || FllI3

and
lim ((, DRy2)) = (<@, Fy)).
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Hence,

I1Boll3 = — lim (@, DRy#)) = lim (I1DRAZINE + Bl R,2113)
= liminf|IDRA4II3 = 15311
-0

This yields, first,
. Fal 2 ,
111110:3|||RBQ|||2 =0

which proves (3.32) and, second,
lim || DR 52115 = 11 FlI3,

which together with the weak convergence of ﬁRBg to FA}) proves (3.31). This
completes the proof of Lemma 3.27. O

3.3. Justification of (3.42). Let us show that for any « > 0, k € {1,...,d},
(3.70) My(-,) € C}(R?) P-as.
To prove (3.70), we fix some w € Q such that (2.2), (2.3) and

(3.71) f(lM,‘;(x, w)? + |vMg(x,w)|?) dx < o for any bounded A ¢ R?
A

hold for this fixed w [cf. (3.34) and (3.35)]. Then we consider in any ball
Bg = {x € R% |x| < R} the Dirichlet problem

(3.72) ' (mL(w) + @)f =0,(-,w) in By,

(3.73) fIaBR=M;zx("w)|aBR'

(1.2), (2.2), (2.3), (3.71) and [4, Theorem 8.3], imply that (3.72) and (3.73) have a
unique solution f € HZ(Bpg). It follows from [4, Theorem 8.24] that f is locally
Holder continuous in By. By the definition of M(-, -), we have f = Mg(-, @)|p,
P-a.s. and therefore [4, Theorem 6.13] implies M§(-, )|, € C?%(Bg) P-a.s. This
proves (3.70).

(3.70) justifies the application of It6’s formula to the process ¢ —
M(x(8™%, w), w). But first of all (3.40) and (3.41) are true only locally, i.e., we
have to replace 8 %t by the stopping time sp = s(§,w, R, t) = inf{v > 0:
| X(8 %0, w)| = R} A 82, where R > 0 is fixed. Then we obtain, instead of
(3.42),

(374) Xs, k(8p, @) = Ej 4(sg, ©) + Rs 4(sg, @).

To show that (3.40) and (3.41), and therefore (3.42) too, are true not only locally,
i.e., that we can let R — o0 in (3.74), we need for any §, ¢t > O and % € {(1,...,d}
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the following estimates which follow from (2.4), (3.34), (3.35) and Lemma 3.12:

‘r_:[s L1820, -))|ds] — 57 4((If1, 1)) < oo,

]<8E[8 j: Y M ))| dv]

A A 2
= 8¢l DM I3 < oo

[si;: sﬁ DM (Z(v, -)) dW(0v)

and

E[saf" Y M2 ))|ds]=8t(<|M,fz|,1)><oo. O

3.4. Proof of Lemma 3.43. Birkhoff’'s ergodic theorem and Lemma 3.12
imply

d [ d 2
o [ £ otz >>)

k=1

U

d

(3.75) =ty ¥ ow.((GFGm))

=1k, m=1

=t f 0,0,((G*,G™)) (in P-probability).

k,m=1

By Lemma 3.12 and (3.39) we have
2
lim E| 8? 2 f ds
=1
(3.76) = lim 82 2 f ‘*'2’<< 1>> ds
8§—-0 =1 0
d

. fal 2 £ 2
<lime Y (ofIDM - GHIIDM + G, = 0.

=Y LE,m=1

2 d
1| £ oubaittzce, 3| - | £ wictiats )|

2 d 2
( E ”kszfz) - ( Z Dkélk) ’
k=1

k=1

Again by Birkhoff’s ergodic theorem and (3.36),

lim 52 2 f “,0,GH(Z(s, -)) ds

-0 4 p—1
(3.77)

d
=t Y 0,0,(GF 1)) =0 (inP-probability).
lLk=1
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Finally, by (3.39),

d L -
ImE|8? X [* o lod IDMF(2(s, ) - GH(Z(s, )l ds
-0 Lk=1"0

(3.78)
d A A a2 A
= lim¢ Y, |ogl loJ{{|DME — G|, 1)) = 0.
8=0 g 1=1
(8.75)—(3.78) imply for any finite set R* C R¢ which spans R¢ and for any ¢ > 0,

d
lim Q(8’ v, t, ') =t Z vkol(skl + <<ék’ él>>)’
5-0 k,1=1

v € R* (in P-probability).
This suffices to finish the proof of Lemma 3.43. O

3.5. Proof of Corollaries 2.8 and 2.12. For g € C°(R?) N LYR?) and fixed
® €  the unique solution of (2.9) is provided by

(3.79) wnlx, ) = B'[ [ exp (~Be)e( X, ot ) | = (Ro,s(0)8)(x)
(cf. [3]), where X, 4(-, w) solves
X, 5(t,0) =x+ jo‘s—lo(a-lxxys(s, ©),w)ds + W(¢),
and E'[---] denotes the expectation with respect to W(-). In a similar way to
(3.15) we obtain

1
(3.80) IRs, g(w)&ll, < Ellgllp, pe[1l,0].

We note that for fixed x,w the random variable X, (¢, @) has the same
distribution as 6X, /8(8‘2t, ), where X (-, w) is defined as the solution of

X(t,0)=y+ jo‘o(xy(s, ©),©) ds + W(t).

Hence we have the same situation as studied in Theorem 1 [cf. (2.5)] and we
obtain for any T > 0

(3.81) lim pf (X, 5(-), X.(+)) =0,

where X,(-) is the Gaussian diffusion with generator A + Xf ,_,Dv,v, and
Xx(SOi)nEI:I: to (3.79) we have the representation

(3.82) uy(x) = El-[ fo " exp (—Bt)g(X, (1)) dt|.

g;(l); follows from (3.79)-(3.82), and then (2.10) is obtained from (2.11) and

Corollary 2.12 is an obvious consequence of (3.34), (3.39) and (3.44). O
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4. Asymptotic expansion of the effective diffusion matrix: The general
case.

4.1. Proof of Theorem 2. Theorem 1 and (3.68) imply that the matrix D“ is
defined by

d
(4.1) Dy = ((G*,G*%) = —a ¥ ((Hpp, G,
m=1
where G** = (Gi*,..., G3*) € L¥Q; R?) is the unique solution of (3.36)~(3.38)
with aH(-) replacing H(-).
Now for n,l € {1,..., d} we define the operators

A A p— ~ _i n A ~
- D(-D*)"'f= —";U(dp)f, respectively,
(4.2) CENOMTT
) A 1a Bl . R R
- D,D(-D*)'f= U(dp)f =T, f,
(=D = [ o 0@ =T

where U(-) is the resolution of the identity introduced in (3.5). It is easy to show
that —f)n( —D?)~1 is well defined on a sufficiently large class of functions being
dense in any L?(R), p € [1, ). Moreover, T, is bounded not only in L%*(Q),
which is obvious from (4.2), but we even have

LEmMMA 4.3. Ty, k, 1€ {1,...,d} can be extended to U , ¢ (; o,,L?(R) so as to
have

(4.4) T fll, < CollFll,, ki€ {1,...,d)}, p € (1,00),
where the constant C, only depends on p.
We defer the proof of this lemma to the next subsection.

Now for fixed n € {1,..., d} we insert the function A = — D (—D?)"'f into
(3.38) to obtain for any a > 0,

d
= L Grt DD,(=D*)7'))
d

(4.5) ~a ¥ ({6, D,D(-D*)'f))

m,l=1
d o o 1s
= alZ ((Hy, DD,(=D?)"'f)).
=1
By (3.37) the first term on the left side can be written as
d
- L (G4 DD(-D?) 1))
=1

d
= = LG H DD(=D7) 1)) = Gt ),
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i.e., by (4.5) after “integration by parts,”

(4'6) <<é:’k +a i anﬁmlGAla’k’ f>> << Z lHlk’ >>'
m,l=1

Using an obvious matrix notation and omitting multiplication with a test
function and integration with respect to P(dw), one can write (4.6) as
(4.7) (1 + oaTH)G** = —aT'H ,,

Where I%-k = (ﬁlk"" , ‘Hdk)'
We define for any m € N,

(4.8) Gomk =Y (-a)(TH)"'TH,,
=1
with (TH)! = THTH --- TH (I times).
By (4.7) we obtain
(1 + aTH)(G** — Gom*)

m+1

—alH , - G*™*+ ¥ (-a)(TH)"'TH,
=2

(4.9)

(-a)™"(TH)"TH ,.
(3.36), (3.37) and (4.2) imply for [, r € {1,...,d},

(4.10) (Gt = Grmkr1y)y = 0,
(4.11) D(G* ~ Grm*) = DGk~ Gpomt).

After multiplying both sides of (4.9) with DA and using (4.11), we obtain
d

(G=* = G+ Dhyy + ¥ (Gt = Gpm*)H,, DY)

(412) l,n=1
= (=a)""(((TH)"TH.,, Dh)).

(2.13) and Lemma 4.3 imply (TH)"TH , € L%Q;R%), and therefore we can
apply Lemma 3.27 to conclude from (4.12),
(4.13)  IG** = G*™ ¥y < a™||(TH)"TH 4, < a™*C(m),

where the constant C(m) depends only on m and H(-). Now we have for any
me N,

Dy = —a((H.,,G*%)  [by (4.1)]
= _a<<ﬁ.k’éa,m,l>> _ a((ﬁ,k,(j“’l _ da,m,l))

(4.14) ¢ |
Y (—a)™" (R, (TH)'THL)) + O(a™?)  [by (4.13)].

For any even r we have
((H.,(TH)""'TH ;) = (-1)”*""(TH)”*"'TH.,, H(TH)"*"'TH ,))
= Afl-

Since Hy,(-) is skew symmetric, the matrix A¥ is skew symmetric too. On the
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other hand, in an asymptotic expansion of the symmetric matrix D* only
symmetric terms can occur, i.e., A, =0, k,l € {1,...,d}. For r odd we obtain

H,,(TH) "'TH )y = (-1)""Y*(Ar)"""?A.,,T(AT)" "*A

((H g ) K« ® )
Hence (2.14) is valid with
(4.15) D = (-1)"(((HT)"'H.,, T(HT)"'H.)).
If we use I'2 = T, we obtain in analogy to (1.9), more formally,
» r— A\T AN r— N\r\T AN
D@ = (=1)"""((TA)",(TA)")) = (-1)"'E[(TA)")"(TH)'].

The positive semidefiniteness of the matrices (—1)"*'D®" is obvious by (4.2) and
(4.15). )
Finally, we have for bounded H(-), instead of (4.13),

A A m 1
NG=* = G=mHy < e (d sup{J|Hy(lee: &, L€ {1,...,d}})"™"

since the norm of I' as operator in L% Q;R?) is 1. This proves uniform
convergence of the expansion (2.14) for a sufficiently small. O

4.2. Proof of Lemma 4.3. First we fix p € (1,2] and some suitable R 4. valued
function f= ( fl, fd) on {2, where we can assume without restricting

generality ((f,1)) = 0. Let f(x,) = (T,f)(:) = [pee™U(du)f.
Then we define the functions

d
W= E f s U(dp)fe, respectively,

Relu?
W(x, ) = (BW)(-) = >: o ,“I O(dp)
which solve
(4.16) _DW=D-f= ¥ D,f,, respectively,
(4.17) - AW(-,w)k:(V ), ).

For later computational simplicity we assume that

f, D-f, Wand DW, and therefore f(-, ), v - f(-, -),
W(-,-) and vW(-, -) too, are uniformly bounded.

It is easy to prove that functions f satisfying (4.18) are dense in any space
{& € LYY R): ((4,1)) =0}, g € (1, 0).
Next we choose a sequence ry(-) € C¥(R?), N € N, satisfying
ro(x) = {1, if x| < N,
N 0, if|x|] >N+ 10

(4.18)

and

sup  sup  max{||rylle IVaralle} < 1.
NeN me(1,...,d}
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For w € Q, B8 € (0,1), let Wy 4(+, w) be the solution of the resolvent equation
(4.19) (=4 + B)Wy 4, 0) = v - (f(-, @)rn(+))-

The Caldéron-Zygmund theorem [10, Chapter 2], applied to the kernels
Kp (%) = v (—A + B)~!(x) implies

IIVWN,B(" "")”g < Cl(p)” f(’ w)rN(‘)llﬁ,

where the constant C,(p) only depends on p and d, in particular, not on .
Since the random field x — f(x, -) is stationary, we obtain after integration with
respect to P(dw),

/ﬂP(dw)lleN,p(‘ ;@)lIb

(4.20) < Ci(p) [P(de) [ del f(x, @)ru(x)f

= C(PINFIEITNIE < CUPIIFIIEIBy- 1ol

< Cy(p)IIfNEN,

where |Bp| is the volume of the sphere Bp={x€ R% |x| < R}.(4.17) and (4.19)
imply for P-almost all w € &,

- A(W("“’)rN(‘) - WN,B('?""))
= —AW(-, 0)ry(-) — 29 W(-, @) - Vry(+) = W(-, @)Ary(+)

(4'21) -V '(f("w)rN('))+BWN,B("“°)
= =9 - (W(-,0)vry()) = (YW(-,0) + (-, 0)) - Vrn(:)
+BWy 4(-, ©).

Multiplying both sides by W(-, w)ry(-) — Wy, g(+5 @) yields
||V(W(’, w)ry(+) = WN,B(" ‘*’))”g
= (V(W(':"-’)"N(’) - WN,B("w))1W("w)er(')>
_<W(’:‘°)"N(') - WN,B("W):(VW(',w) + f(~,w)) : VrN(')>
+B<W("‘*’)"N(') - WN,B("“’)!WN,B('!“’)>
= %”V(W("W)TN(') - WN,B("“’))”g
+C(F)(Iorll3 + (1 + BV eyl + B lIrwlE) = BilWy, o(-> )IIz:
Here we have used (4.18) and the inequalities ’
”WN,B('!“’)”w S%

(4.22)

v - (7(-,@)ry(-))lle, respectively,

1
BIWy, (- )13 < 51, @)rn()I3,
2

which are easily derived from (4.19).
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After integration with respect to P(dw), we obtain from (4.22)
[ P(dIw (W, @)ry(-) = Wy o, @)l

< C( f )((1 + B ) Ivrall: + BI/Z|BN+10|)
< Cy( f )((1 + ,B‘I)Nd—l + Bl/sz)’

and therefore
[ P(da)Iv (W, @)ry(-) = Wy (-, @)I
< G(p) [P(d)(I9(W(-, @)ry(-) = Wiy 5, 0))1, ./}
IV Wi -5 )15, 115)

. p/2
< (1. p)| [ [RNT (W 0Ira() = W oo )IB] s, s

+/ﬂP(dw)/Bo

'N+20

& [ & - (Hn()

+/ dx(/B dylv(—A+B)“(x—y)|) )

c
BN+20

Xv(=A+B8) H(x-y)

< Cy(f, p)|((1 + B~)N?-1 + BI/2Ne)P/* N(d@-p)/2

The relation (—A + B) Y(x) = [°(47mt)~ 4 %exp(—x%/4t — Bt) dt implies for
lx] > 1,

IV(—A + B) "!(x)| < Ceexp(— 5V/Blal),

and so we obtain

./ dx(fB dy|v(-A+B)H(x - y)|) < Cyy( p)N4-18=3472,

c
BN+20

Hence for 8 € (0,1), p € (1,2],
JR(dIT(W(:, @)ry(:) = Wi, @))IIZ
(4.23) < Cy( £, p)(((1'+ B1)Ne=1 + gi/2N<) P2 N da-p)y2

+Nd— 1'3—3d/2)
< Cl2( f,p)((l + B—3d/2)Nd—1/2 + ’31/4Nd).
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Therefore,
IDWIIZ < |1Bul lirdIZIDWIIE

= Byl [P(de)IV W, )l
< Cul P~ [PV (W, )y (DI

+ | P(dw)|[W(-, @)vry(-)II3
(4.24) /" )
= C14(P)|BN|_I(LP(dW)HV(W(‘,"-’)"N(') - WN,B(',W))”;II

- [P Wa ()5 + [PUaNWC )9

1 £ ~
< 7 (Cul £ P)(1 + BN 4 BN + Cu( DT 12N¢)
[by (4.18), (4.20) and (4.23)].

Therefore we obtain with 8 = B(N) = N~1/%¢ in the limit as N — oo,
d P
Y L.f || <UWDWIIE < Ci()IFIIF-
k=1 »
Since the arguments leading to this inequality can be repeated for a sufficiently
large class of functions f, we have proved Lemma 4.3 for p € (1,2].

Finally, we have for f,8 € LP(Q), p > 2, by the self-adjointness of I,, in
L*(Q),

(€&, T F )| = [<<T s £)] < CollF MMM
where g € (1,2] is defined by 1/p +1/q = 1. This proves Lemma 4.3 for
p E(2,00).0

5. Asymptotic expansion of the diffusion matrix: The Gaussian case.

5.1. Proof of Theorem 3. To prove Theorem 3, we write down for fixed
© € © a perturbation expansion for the solution f = Rj s(w)g of the resolvent
equation

(5.1) (—Ls(w) + B)f =&,

where

f=(A+08“(-,w)~V)f,

d
s(w)f = (A + Y ViH§ (-, 0)v;
Rl=1 .

‘ . e d 1 (%
Hs,kl(x’ w) = sz(g,w)’ 08“,1(3‘"*’) =X Vng,kl(x’w) = 301 (E,w),
k=1

and then analyze the behaviour of the different terms of this expansion as § — 0.
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Let us define for g € C*(R¢) and M € {0,1,...},

gy =g- (Be(w)(-a+8)") " g
and

M k
fi= L (-a+B)(B(e)(-2+8) g,

where Bg(w) = L ;o V,H§ 1i(+, w)V,. Since g € C*[R?), g and all its partial
derivatives are exponentially decreasing at infinity. Hence by (2.2) and (2.3)
f2 e LAR%) N C3R?) and g§ € L%R%) N CY(R?).
A trivial computation yields
(5.2) (=L§(w) + B) fs; = &3, e, fiy = Ry p(w)ghy.
Corollary 2.8 implies for &, g € C*(R?) and R§ = (—A — X¢ ,_ . Dgv,v, + B) 7,
(h, Rjg) = WmE[(h, B} 4(-)g)]

= WmE[(h, R}, o(-)gin)] + im E[(h, RS 4(-)(& - gi1))]

- tim % B[ (1 (-8 + B (B )-8+ 5))'8)]

8-0 49

+ imE[(R, R} ,(-)(2 - &i1))]-
To estimate the second summand on the right side of (5.3), we use the following
analogue of (3.23) and (3.24).

(5.3)

LEMMA 5.4. Suppose there exists some F € H}R% R?) such thatf = v - F.
Then for any w € Q, , 68,8 > 0,

(5.5) IVRE, g(@)fll, < I1Fll,
and
(5.6) IR, p(@)fll, < (2B) " 1F,.

For the proof of this lemma we can repeat the arguments leading to (3.23) and
(3.24), where D, has to be replaced by v,. Therefore, we have

(R, B3, p(w) (& — &50))|
=[(h, B3 p(0)v - 9(~8) (g - &3))|
< (28) "Ikl v (-8) " (& — gills
= (28) 1Al I(-8) " (Bi(w) (-8 + B) )" gl
(57) = @8) i (B(w)(-8 + B) ) g,
(-8) (Bi(a) (-8 + B) )" g)

(& ((-a+8)"'Bg(w))""

_ _\M+1
x(~8)7(Bi(w) (-8 + 8) )" g)
Here we used the fact that Bf(w) is a skew symmetric operator in L%R?).

1/2

= (28)"?|IAll,

1/2
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Hence both the first M + 1 summands and the upper bound for the last term
in (56.3) have essentially the same structure. The asymptotic behaviour of such
expressions can be computed in a straightforward way since H and 6 are
Gaussian with mean 0, and therefore are completely determined by their covari-
ance functionals.

For the proof of Lemma 5.8, see Section 5.2. Note that in the rest of this
section we use the convention that repeated indices are summed for 1,..., d.
LEMMA 5.8. Assume d > 3 and (2.16) and (2.17). Then:

(i) Forany odd k € N, a, B8 > 0 and h, g € C*(R?),

(5.9) ;%E[<h,(—A+B)_1(Bg(~)(—A+B)'1)kg> ] — 0.

(ii) For any even k > 2, a,8 > 0 and h, g € C*(R?),

|| (5, (-8 + ) (B ()-8 + 8))"s)

k/2

(5.10) DY )y

v=1 {,..., 1,21
L+ Al =ky2

2

><V<h,(—A+B)‘ (L]( DEw v pzq_lvpzq(—A+,B)_l))g> = 0.

(ili) For any even M > 2, a, 8 > 0 and g € C*(R?),

imE|| (g, ((-a+8)"B(1)" " (-8) (Bi()(-a + B) )" g)

-0

M+1

(5.11) —aMr2 Y )y

v=1 Lo, =21

2

X <g,(-A +8)” ( I1 (D,Eif, D p2eVre Vo — A+ B)"))g> =0.
=i

Let us define now for M even,
M/2
(5.12) DleM) =% o2kpCk -y v e {1,...,d}.
k=1
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Obviously any matrix D@ = D@D y, v € {1,...,d} is symmetric. Therefore
the matrix 1 + DI*M] js symmetric too and, at least for a small enough,
positive. Hence for a sufficiently small the resolvent

d _1

RjM = (—A - X DMy, + B)
u,v=1

is for any B8 > 0 a well defined bounded operator on L%(R?). The representation

(5.12) implies that similar to (5.3) for any a, 8 > 0, a sufficiently small, and

h,g € C*RY),

M/2 d ©
(h,RfMgy =} <h,(—A+B)"( )y D,E:i;M]VmVn(—A+B)'1) g>
v=0 m,n=1
+Cy(h,g,a,8, M)
. M/2 k
(5.13) =(h,(-A+B) &)+ Xt} )y
- k=1 w=1 U,..., 1,21
L+ - +l,=k

x<h,(—A+ﬁ)_l(}f[(Dzﬁii)mzq pro- Ve TA+ ) ))>

+02(h’ gy a, B’ M)’
where
(5.14) |Cy(h, g,a, B, M)| < Cy(B, M)||R||ollgll g™ 2.
Next (5.3), (5.7) and (5.9)—(5.11) imply

M/2 k

(h,Rzg)y ~ (h, (-0 +B) gy~ La* ¥ )

k=1 w=1 1I,..., 1,21

(5.15) w
><<h,(-A+B) (1:[( gj)npzq P2g-1 qu( A+B) )) >

<C,(B, M)||All,llgll o™+
(5.13)—(5.15) imply

|¢h, Rgg) — (h, RiMg)|

- f,,ﬁf—)((m > D)

u,v=1

(5.16) _1
—(B+If|2+ )y Du[::'“]m) )g(f)df

u,v=1

< C5(B, M)||hl|,l|gll o™ *2.
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Corollary 2.12 implies
(5.17) |Dgy| < Cga®,  k,l€{1,...,d},a>0.

Hence we obtain from (5.16) for

A(r) = (0,7%) " M pa, n(7)

and

d
&(r) = h(f)(B +irP+ X D;’Jun),
u,v=1
where v, is the volume of the unit sphere in R? and B(a, r) is the sphere with
center a and radius r, the estimate

B+ >+ X2, _\Darm,

(vdrd)_lf uv'u'v
B(a,r)ﬁ + |T|2 + Zz,vﬂl‘DlEg’M]TuTv

a™ M2 < Cy)(B, M),

dr—1

uniformly in |a|, r € (0,1) and « sufficiently small.
Hence,
ﬁ + |a|2 + ZZ,D=ID:vauav

—_ 1
d
B+ la®+ X ., DixMaa,

a—M—Z =< C7(B: M)’

uniformly in |a| < 1 and for a sufficiently small, and therefore by (5.17) for such
a,a,

d
Y. (Dg - Di#M)a,a,| < CyB, M)aM*2,
u,v=1

Since the matrices of D* and DI*™] are symmetric, Theorem 3 follows. I

5.2. Proof of Lemma 58. In this section we use the convention that re-
peated indices are summed for 1,..., d.
For the proof of (5.10) we obviously have to show for any even k > 2,

EmE[(h, (-8 +8) " (BH()(-4+ £))'e)]

k/2
= (Xk Z Z
v=1 [,..., l,>1
(5.18) L+ L=k

b
-1
1 (Dlgtll‘i)lp‘lqvp?q-ypi‘q(‘A + 'B) ))g>

forb=1,2.

<

x<h,(—A+B);1(

Q
It
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Let us begin with b = 2. Since the random field x — 64(-, -) = (1/8)8(x/8, *)
is Gaussian, we obtain

A(k,B,8,h,8,a)
- E[<h,(—A +B) (B )(—A + B)‘l)kg> ]
= /d /d(h(xo)(—A + B) Nz — x,)
R R
x(kI:[Iv,,q(—A +B) g - xq+1))
XV,(—A+B) (x, - xé)g(xé))
(5.19) X (h(xé’)(—A + B) N (xg — xp41)
2k—1

x(q=1;[+lv,,q(—A +B) N(x,— xq+1))
Xsz,,( A+B) (x2k - x5”)g(xg” ))

X

Z ( l_-[ Rs Prq,rys Pr, r) ”(1: r) - x”(z» r)))a2k)

"Egpl(zk) r=
X doxg dxf del dog” doey -+ dxgy
=a®* Y A(k,B,5,h,g,7),
nePfEP

where R% 5,k 1(x) = E[0; ,(x)0; ,(0)] is the correlation function of the random
field 6,(- ).

Now we fix some 7 € #J?% and use (1.4) and integration by parts to arrange
A(k, B, 8, h, g, ) in a more easily understandable way. To make this procedure
more transparent we represent 7 by “bridges” connecting #(1, r) and #(2, r),

r=1,...,keg,
[\,/\,m v

Il
0123 - —lk 0 0 k+1 -+ 2k—-12k 0"

(5.20)

The sign “ -é ” represents the gradient operator, which in (5.19) always acts

on the * ngh ‘of each position-g, ie., on (—A + B) " X(x, — x,,,) -+ . In (5.19)
and (5.20) the gradients occur in two situations:

(i) “v is covered by the bridge” _qé ,1.e, g € H(m).
(ii) “v is not covered by the bridge” qu , l.e., ¢ € Hy(m).



HOMOGENIZATION OF A DIFFUSION PROCESS 1119

It is well known, that gradients do not like being covered by bridges, and
therefore we use integration by parts to help the gradients —qé to come to the
sunny side of the bridge, i.e., -g— - %— . By (1.4) the gradients have no
difficulties coming around the bridge. They only have to change their sign, i.e.,

d
L [ G(x)RY,,, (g = %)V, F(x,) dx,
s=1

d
== 2 _[RdvsG(xq)Rg,s,t(xq - xq')F(xq) dxq' ’

s=1

After performing integration by parts for each gradient being covered by the
bridge, we obtain from (5.20),

012 3 .---k—-1Fk (O 0" k+1 --- 2k—12k 0"
or from (5.19),

A(k,B,8,h,g,7)
== [ [Tk (=8 + B) Mo — x)RE: P — 0)e(x5))

X( (g )BED (2 = 2401 )(—A + B) (x4 — 24" )V, 8(x8"))

x| 11 (—A+B)_l(xq—xq+1))
s
(5.21) )

-1
X quB?[l(w)qul(ﬂ(_A + B) (xq - xq+1)
q+k

qE€ By(m)
q*k

X n ququﬂ(_A + :B)_l(xq - xq+l))

A .
]
X l—Ile,p,,u_,,,p,,(,,,, Yo, ry ~ Xue, r))) dxodx(’)dx(’)’dxo’” dxl o dxzk-
yo

Here we have used the notation

R D(x) - (-8 +8) (x), ifkeH(n),
| o Vo(—A+ ) (x), ifkeHyn)
and '
(-A+ B) Y (x), if k+1€Hyn),

) - {v,,<—A +8)(x), ikt 1CH(n).
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The covariance functional R} , ,(-) of 0y(-) satisfies
Rg,k,l(x) = E[oa, (x, ')08,1(0: )] = 8‘2R2,z(x/8)

(5.22) _ 8—2(2,”.)_"’/2j;dexp(—i(u/S)x)oz,z(p')dpﬂ

where of (p) is the spectral density of the covariance functional of 6(-) [cf.
(2.18)]. Therefore we can write

6 —_
R, prsrys Pre o\ 1, 1) Xn@,r))

e s W
=§72(2m) ,LdexP(_l?(x"(l”) ~ X, r)))

]
X opw(l. r)s P2, r)( ”"r) d”"r

r{a@,r)—-1
T -

s=a(l,r)

[ r r
(5.23) X oP"(l_r), P,,(g_,,(l"‘ ) dl-" ’

ifwr(1,r)>korm(2,r) <k,

a2 pr k=l
~(5-*(2n) /Rdexp(—i;( L (5w

+ (x5 = %) + x5 — x5 + (% = %p41)

+ Z (xs - xs+ 1)) ) "g,,“',,,p,(&,,(l’«r) d""ry

ifr(l,r) <k<a(2,r).

We insert (5.23) into (5.21) and then collect for any term x4, Xy — X1,..., X, —
Xpy X — X§y X4y Xy X — Xpip..., Xgp, — x¢” and xg”, all factors of the
integrand of the resulting expression which contain this term. We observe, e.g.,
that for any g € {1,...,2k} \ {&}, the product

Il exp(—(i/&)MS(xq — xq+1)) = exp(-—i/&( -y Ms)(xq - xq+1))

seA(q,m) s€A(g,m)

multiplied by (-4 + B)"'(x, — x,,,) [respectively, some derivative of
(—A + B)"Y(x, — x,.,)] gives a contribution. Next we obtain for x, — x; the
contribution R 7(x;, — x4)exp(—i/8(L, < ck, mi°)(Xs — %5))- The terms xg, x§’
and x{ — x,,, are contained in similar products, such that finally (5.21) can be
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written as
A(k’ B:s’ h7 g: 77')

= — §72K(2m) F? fnd /Rd

X /';d'.'j;‘dvplh(xO)(_A-i-B)_l(xo_xl)

k
] r
ol’w(l. ) Pae2, r)(p' )

r=1

x(l_z%:;xxk—xs)exp(—g( 3 m)(xk-xz,)))

s€A(k, m)

X g(xé)exp(—é( ) us)xé))

s€A(k, )

X h(xé')eXp(g( > us)xé’))

se€A(k,m)

i
x B-%:;iﬂ(x(’)/ - xk+1)exP(_ E( E f"’s)(x(’)/ - xk+1)))
s€A(k, m)

X (=8 + B) (xax = 25" )V, 8(x”

X

IT (=8+8) (xg = %411)

q € By(m)

q*k .
Xexp(—%( )y p,s)(xq—xqﬂ))]

s€A(qg,m)

-1
X (qel;!(ﬂ)qu"")(—A +.B) (xq - xq+l)

q+k

Xexp(— %( Y Ms)(xq - xq+1))]

s€A(q,m)

-1
X qel-B}(w)Vp"qu“(_A +B) (xq xq+1)
q+k .

s€A(q, )

Xexp(— %( Z MS)(xq - xq+1)))

X dxy dicg dufl dd” diy -+ dxgy | dpt -+ dpt.
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We observe that the integrand with respect to dx,dx{dx, --- dx, has the
convolution form fy(xo)f(xg — %) -+ fi(xs — ) frr1(x5). It w111 be convenient

to use Parseval’s theorem ( fndf(x)g(x)dx = [ef(T)E(7) dT) to express
dxodxgdx, --- dx, integration in Fourier space. Similarly we transform
dx” dxo”' dx k+1 *°° dxy, integration, such that we obtain

A(k,B,8,h,g,m)
= —§ 2k(2ﬂ)d kd/2f f ( Pm P r)(‘u'r))

<\ TR B -5 % ¥

s€A(k, m)

1
Xé(’f -3 )y HS)
seA(k,m)
= 1 1
Xh(ﬂ ThL B )R‘%zzﬂ(n Th.E “")
seA(k ) s€ A(k, m)
><('r12 + B) pzkg('rl)

-1

1 2
(629 - x| ] (T(Q)-g z ns)+ﬁ)
qigolgﬂ) s€A(q, )

x| 1 <-i>(7<q>,,,,,(,,-§ T u)

gqEBy(m) seA(q, )
q+k
-1
1 )
X(Irle) -5 X ») +8B
s€A(q, )

x| 11 (—1)(7(q)pq—§ y u,,q)

Q‘igzl(;’) s€eA(qg,m)

B, )
8 s€A(q, ) o

X("’(Q)pqu - )y

1 ? N
X[{(¢) -5 X »)| +8 drdr | dp' --- du,
, : SSEA(q,ﬂ)
with
T, ifq <k,
"(q) = {Tl, ifg>k+1.
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The inequality
2

((a+7)*+8) "< 4(1 + —TE

la~*

shows that the absolute value of the integrand in (5.24) (with respect to the
measure d7dr, dy' - du* on R**2%) is less than

cg(k,ﬁ)a-%(gw%w)l)ﬁ(ﬂli_z'%‘ﬂ(f—g > m)

s€A(k, )

XE(T-% ) n")

s€A(k,m) .

~ 1 .
h|lm - E 19
s€A(k,m)

[ve(n)|| I1 {83 ¥ »
qE€ By(m) seA(g,m)
q+k

—_— 1
(5.25) X B(g, 11)(1_1 _ E E
s€A(k,m)

)

x

se€A(q, )

-1
x| TI (a ) (1 + I + |my2)"
q € By(m)
q+k
=B(k,B’8, h’g’W,T,TI’M19~~',I'Lk)°
We can estimate

—_— 1
&5 % o

s€A(k,m)

1
R(2 w)(,r _ 5 Z ‘us)

seA(k,m)

— ()

< Co(B)E™| X pf| A+ + ),

s€A(k, m)

where #(7) = 2 — j if k € By(7). Then by (1.10) the 8’s in the numerator and
denominator of the resultmg upper bound for B(k, 8,8, h, g, 7, 7, 7, 1, ..., p¥)
cancel, and we obtain

B(k,B98’ h,g977’7’719”'1,~-~,l"‘k)

k -2
scu(k,m(nlo”(w»)( mn| s w )
r=1 g€ By(m) |l seA(q,n)
(5.26) J Y= v = s
Y w| |[vh(7)||va(m)||g|7-5 L
qE By(m) s€A(q, ) s€A(k,m)
- 1 .
* h(ﬂ-— e+ )"
asEA(k,vr)
with

¢ = sup{|7|: 7 € supp(g) U supp(h)}.
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The construction of the sets B(7), a = 0,1,2 (cf. Section 1.1), implies that for
any A = {s,...,s,} € {1,..., k} there exists at most one g € By(w) or two
9., 9 € By(7) with A(q, m) = A [respectively, A(q,, 7) = A(q,, 7) = A]. Hence
the singularities in (5.26) with respect to p,..., u* integration have order less
than 2. Such singularities are integrable in R? d > 3. Using this fact we can
prove by induction on & that the right side of (5.26) is integrable with respect to
dy' --- dp*. Hence we can apply Lebesgue’s bounded convergence theorem to
conclude from (2.16)—(2.18), (5.24) and (5.26),

(5.27) gin})A(k, B,8,h,g,7)=0 if A(k,7)+ @.

Since for k2 odd any 7 € 2J2® satisfies A(k, 7) # &, we obtain for any a > 0,
(5.28) lim A(k, 8,8, b, g,@) = 0 if & is odd,

and (5.9) is proved.

If % is even and if A(k, 7) = &, we have k € Hy(w) and & + 1 € H\(w), and
so we can write in (5.21)

RGp(x) = BE(x) = (=4 + B) '(x).
Therefore we obtain from (5.24),

(5.29) A(k,B,8,h,g,m) = A(k,B,8,h,2,8)A\(k, B,8, h, & n),
where ¢, respectively 7 is the restriction of = to the set {1,..., &}, respectively,
{k+1,...,2k}, and

A(k,B,8, 1, 8,%)
— _ 8-k —kd/4
8-*(2x) jR fR(

| [[FROE8"| T ((7-1 3 n") +B))

k/2
] r
opgu,r), Pg(z,r)(l"‘ ))

r=1

a€Bo(%) 8 seria, )

1 1 ? B
X l_[ T, == E [y ) ('r - = E ,u,s) + 8
qEBl(f)( Pao 8 seA(qg,$) Pr® ) s€A(q,$)

(5.30)

1 1
qu Y Z ”;q) (TPq+1 - E Z p’i’qa—l)

quz(z)( 8 serda, ) s€A(g, )

1 ? N
X((T—E E MS) +B) J
s€A(q,$)
X 4(—i)'rpk(1'2 + ,B)_lg('r) d'r)(—l)k/z_ldp,1 d,u,k/z.

An estimate like (5.26) justifies the application of Lebesgue’s bounded conver-
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génce theorem to (5.30). Therefore, and by (1.10),
gin:)Al(k, B,8,h,8,%)

kd, k72 k/2
= _ —kd/4 .. 0 _ -1
N (277) ./;‘d j';d( re1 opm,r)v Pm,r;(y'r))( 1)

-2 -2
x O I S O S [ ™
g€ B(§) lseA(q, ) q€B($) \seA(q, ) seA(q,$)
-2
a1 *| Il ( )y ML)( )y ui,m) Yoo |dut...dpt?
) a€By)(§) \seA(q,?)

seAq,?) seA(q,$)

Mg, H)# 2

(L o e

Ag,$)=2

><(—i)1:m('r2 + B)_IE(T) dr|.

Obviously any ¢ € 2] can be considered a “product” { = $10o8s o Saeys
where {,..., $y) ave “maximal connected components of {,” ie., M({) =
H{g e {1,....,k—1}: A(g,{) = @}| + 1 and {; is the restriction of ¢ to some
subinterval

Lio={q; 0+t L@~ 1=+ 1~ 1}, L even,
1=q, < " <qQupeic=k+1,§EPpee, j=1,..., M().
By (2.20) and (5.31) we can write
;ij}})Al(k,B,&h,g,{) -

| LT+ 8) 7

1_[ (—l)ququ“(’7'2 + 'B)_l)
q<€ By(§)

(5.32) Py o8

M) _1
X( I lef»f’gf )(—i)'rpk('r2 +B) &(r)|dr
j=1

j,tPaj+1,5-1

N

()

(5.33) <h’(—A + B)“( I1 (DI,;;‘:,-

v
j=1 Pqj ¢Pajrr,s-1 Pajg

xqujﬂ‘g_l(—A + B)“))g>.

Note that (5.32) contains a summation over the indices
{qu_{_x: x=0,1; j= 2,...,M(§)} U {py, Pr}>
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since each of these indices occurs twice in (5.32). Summation of (5.33) over
$ € 2J® (5.27) and (5.29) prove (5.18) for both b =1 and b = 2.

The proof of (5.11) is completely analogous to the proof of (5.10). We
only have to note that M even, ie, M + 1 odd, implies that for any
$ € PJCMD AN(M + 1,¢) # &. Therefore the operator (—A)~! in the first
term on the left side of (5.11) contributes in exactly the same way to the
asymptotics as (—A + B)~! in the same place would do. This finishes the proof
of Lemma 5.8. O
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