HITTING DISTRIBUTIONS OF SMALL GEODESIC SPHERES ### By Ming Liao # Nankai University Let M be an n-dimensional Riemannian manifold, $m \in M$ and T be the hitting time of an r-sphere around m by Brownian motion X_t . We have, for any smooth function g on the unit sphere S, under normal coordinates, $E^m[g(X_T/r)] = Ig + r^2I(v_2g) + r^3I(v_3g) + O(r^4)$ and $E^m[Tg(X_T/r)] = E^m[T]E^m[g(X_T/r)] + r^5c\sum_i \partial_i sI(z_ig) + O(r^6)$, where I is the uniform probability distribution on S, v_2 and v_3 are smooth functions on S whose expressions involve scalar curvature, Ricci curvature and their derivatives at m, c is a constant and s is the scalar curvature. $v_2 = 0$ if and only if either n = 2 or M is an Einstein manifold. 1. Introduction and main results. Let M be an n-dimensional Riemannian manifold and $m \in M$. Consider Brownian motion X_t on M, whose infinitesimal generator is the usual Laplace-Beltrami operator Δ . Let S_r be the geodesic sphere of radius r around m and T_r be the first hitting time of S_r by X_t starting from m. The hitting distribution of S_r , which is just the harmonic measure of S_r (with respect to the center m), is given by $E^m[f(X(T_r))]$ for any smooth function f on S_r . This induces a probability measure H_r on the unit sphere S in M_m which is identified with R^n by the exponential map \exp_m . To be precise, put $g(x) = f(\exp_m(rx))$, then $H_r g = E^m[f(X(T_r))]$. To simplify the notation, we fix a normal coordinate system $(x_1, x_2, ..., x_n)$ around m throughout. Identify S with $\{x: \sum_{i=1}^n x_i^2 = 1\}$ and m with 0. Then for any smooth function g on S, (1) $$H_r g = E^m [g(X(T_r)/r)].$$ If $M = \mathbb{R}^n$, then $H_r = I$, the uniform probability distribution on S. For any two-dimensional Riemannian manifold M, Pinsky [7] obtained the expansion $$H_r g = Ig + r^3 I(v_3 g) + O(r^4),$$ where v_3 is a smooth function on S whose explicit expression involves the derivatives of Gauss curvature. $v_3 = 0$ if and only if M is a surface of constant curvature. In the present paper, we extend the above result to higher dimension. We will see that, in general, an r^2 -term appears in the expansion and this term vanishes if and only if either n=2 or M is an Einstein manifold. To state our results, let R_{ijkl} , R_{jk} , s and $\partial_h R_{ijkl}$, $\partial_h R_{jk}$, $\partial_h s$ be curvature tensor, Ricci curvature tensor, scalar curvature and their derivatives, all evaluated at m. We will adopt the convention to omit the summation sign over repeated indices, e.g., $R_{jk} = R_{jhkh}$ and $s = R_{hh}$. Received September 1986. AMS 1980 subject classification. Primary 58G32. Key words and phrases. Riemannian manifolds, Brownian motion, geodesic spheres, hitting distributions, hitting times, scalar curvature, Ricci curvature. For any nonnegative integer k, let $C^k(S)$ be the class of functions on S having continuous k-order derivatives. By choosing local coordinate systems on S, we can define $|g|_k$ for any $g \in C^k(S)$ by $$|g|_k = \sum_{j=0}^k \sum_{i_1, i_2, \dots, i_j} \sup_{z \in S} |\partial_{i_1} \partial_{i_2} \cdots \partial_{i_j} g(z)|.$$ For any open subset G of \mathbb{R}^n , we can similarly define $\mathbb{C}^k(G)$ and $|f|_k$ for $f \in \mathbb{C}^k(G)$. THEOREM 1. For $g \in C^2(S)$, we have (2) $$E^{m}[g(X(T_{r})/r)] = I + r^{2}I(v_{2}g) + r^{3}I(v_{3}g) + O(r^{4}),$$ where v_2 and v_3 are functions on S defined by, for $z \in S$, (3) $$v_2(z) = (1/12n)[s - nR_{jk}z_jz_k],$$ (4) $$v_3(z) = (1/24(n+2)) \left[\partial_i s z_i - (n+2) \partial_i R_{jk} z_i z_j z_k \right].$$ Moreover, $O(r^4)$ in (2) is actually dominated by $Kr^4|g|_2$ for some constant K independent of g. A necessary and sufficient condition for v_2 to vanish is $R_{jk} = c\delta_{jk}$ for some constant c which may depend on m. If n = 2, this condition is automatically satisfied. For n > 2, this condition satisfied at all $m \in M$ implies that c is constant on M, so M is an Einstein manifold. COROLLARY. $v_2 = 0$ if and only if either n = 2 or M is an Einstein manifold. Theorem 1 is related to the theory of harmonic manifolds. M is said to be harmonic if $H_r = I$ for all $m \in M$ and all sufficiently small r > 0, see [8]. Kozaki and Ogura proved in [4] that on a harmonic manifold, T_r and $X(T_r)$ are independent. See also [5] for a different proof. So it is an interesting problem to characterize those manifolds on which T_r and $X(T_r)$ are independent. It was also proved in [4] that if M has this independence property, then it must have constant scalar curvature. In this paper, we will compute the first term in the expansion of $$E^{m}[T_{r}g(X(T_{r})/r)] - E^{m}[T_{r}]E^{m}[g(X(T_{r})/r)], \text{ for } g \in C^{2}(S).$$ We can obtain the above result by letting this term be zero. THEOREM 2. For $g \in C^2(S)$, we have, with $c = (1/24(n+2)^2(n+4))$, $E^m[T_r g(X(T_r)/r)] = E^m[T_r]E^m[g(X(T_r)/r)] + r^5 c \, \partial_i s \, I(z_i g) + O(r^6)$ and for any b > 0, (6) $$E^{m}[\exp(-bT_{r})g(X(T_{r})/r)] = E^{m}[\exp(-bT_{r})]E^{m}[g(X(T_{r})/r)] - br^{5}c \,\partial_{i}s \,I(z_{i}g) + O(r^{6}).$$ Moreover, $O(r^6)$ in (5) and (6) is actually dominated by $Kr^6|g|_2$ for some constant K independent of g. COROLLARY. If T_r and $X(T_r)$ are independent for all $m \in M$ and all sufficiently small r > 0, then s is constant on M. **2. Perturbation method.** By [2], for any smooth function f defined in a neighborhood of m, we have (7) $$\Delta f = \Delta_{-2} f + \sum_{j=0}^{\infty} \Delta_j f,$$ where each Δ_j is a second-order linear differential operator which maps a polynomial of degree k into one of degree k + j. The first few Δ_j are (8) $$\Delta_{-2}f = \partial_h \partial_h f,$$ (9) $$\Delta_0 f = \frac{1}{3} R_{iakb} x_a x_b \partial_i \partial_k f - \frac{2}{3} R_{ia} x_a \partial_i f,$$ (10) $$\Delta_1 f = \frac{1}{6} \partial_a R_{ibkc} x_a x_b x_c \partial_i \partial_k f + \frac{1}{12} \left[\partial_i R_{ab} - 6 \partial_a R_{ib} \right] x_a x_b \partial_i f.$$ Let (11) $$\Delta'_k = \sum_{j=k}^{\infty} \Delta_j.$$ This is a differential operator of the form $a_{jk}(x)\partial_j\partial_k + b_i(x)\partial_i$ with $a_{jk} = O(r^{k+2})$, $b_i = O(r^{k+1})$. Let $D = \{x: \sum x_i^2 < 1\}$. As in [7], for fixed $g \in C^2(S)$, let u, u_0 and u_1 be defined by (12) $$\Delta_{-2}u = 0, \text{ in } D \text{ and } u = g \text{ on } S,$$ (13) $$\Delta_{-2}u_0 + \Delta_0 u = 0$$, in *D* and $u_0 = 0$ on *S*, (14) $$\Delta_{-2}u_1 + \Delta_1 u = 0$$, in *D* and $u_1 = 0$ on *S*. For simplicity, we will write T for T_r . LEMMA 1. We have (15) $$E^{m}[g(X_{T}/r)] = u(0) + r^{2}u_{0}(0) + r^{3}u_{1}(0) + O(r^{4}).$$ Moreover, $O(r^4)$ above is dominated by $Kr^4|g|_2$ for some constant K independent of g. **PROOF.** Set U(x) = u(x/r), $U_0(x) = u_0(x/r)$ and $U_1(x) = u_1(x/r)$. By Dynkin's formula and (12), $$E^{m}[g(X_{T}/r)] = E^{m}[U(X_{T})] = U(0) + E^{m}\left[\int_{0}^{T} \Delta U(X_{t}) dt\right]$$ $$= u(0) + E^{m}\left[\int_{0}^{T} (\Delta_{0}u)(X_{t}/r) dt\right]$$ $$+ rE^{m}\left[\int_{0}^{T} (\Delta_{1}u)(X_{t}/r) dt\right] + R_{1},$$ where $R_1 = E^m [\int_0^T \Delta_2' U(X_t) dt]$. By (13) and (14), $$\begin{split} E^{m}[g(X_{T}/r)] &= u(0) - r^{2}E^{m} \left[\int_{0}^{T} \Delta_{-2}U_{0}(X_{t}) dt \right] \\ &- r^{3}E^{m} \left[\int_{0}^{T} \Delta_{-2}U_{1}(X_{t}) dt \right] + R_{1} \\ &= u(0) - r^{2}E^{m} \left[\int_{0}^{T} \Delta U_{0}(X_{t}) dt \right] - r^{3}E^{m} \left[\int_{0}^{T} \Delta U_{1}(X_{t}) dt \right] \\ &+ R_{1} + R_{2} + R_{3} \\ &= u(0) + r^{2}u_{0}(0) + r^{3}u_{1}(0) + R_{1} + R_{2} + R_{3}, \end{split}$$ where $R_2 = r^2 E^m [\int_0^T \Delta_0' U_0(X_t) dt]$ and $R_3 = r^3 E^m [\int_0^T \Delta_0' U_1(X_t) dt]$. Now $\Delta_2' U(x) = r^2 (\Delta' u)(x/r)$, where Δ' is a second-order linear differential operator with bounded coefficients. By Schauder's estimate [1], $$|\Delta_2' U|_0 \le r^2 |\Delta' u|_0 \le K_1 r^2 |g|_2$$, for some constant K_1 . By [2], we have (16) $$E^{m}[T] = r^{2}(1/2n) + r^{4}(1/12n^{2}(n+2))s + O(r^{6}).$$ It follows from above that $|R_1| \leq Kr^4|g|_2$ for some constant K. Similarly, we can show that R_2 and R_3 are also dominated by $Kr^4|g|_2$ when K is sufficiently large. □ By (12), $$u(0) = Ig$$, so in order to prove Theorem 1 it remains to show (17) $u_0(0) = I(v_2g)$ and $u_1(0) = I(v_3g)$. 3. Poisson equation. Let $C_r = \{x: \sum_{i=1}^n x_i^2 = r^2\}$, and $D_r = \{x: \sum_{i=1}^n x_i^2 < r^2\}$ r^2 and I_r be the uniform probability distribution on C_r . Let a be the surface area of $S = C_1$ and dv be the volume element of \mathbb{R}^n . LEMMA 2. Suppose f is a smooth function and satisfies $\Delta_{-2}^{k+1}f = 0$ in D_r for some nonnegative integer k. Then (18) $$I_r f = f(0) + \sum_{h=1}^k (1/2^h h! n(n+2) \cdots (n+2h-2)) \Delta_{-2}^h f(0) r^{2h}.$$ Here, by convention, $\sum_{h=1}^{0} a_h = 0$. The assertion is clearly true for k = 0. Suppose it is proved for some k and assume $\Delta_{-2}^{k+2}f = 0$. Replace f by $\Delta_{-2}f$ in (18) and then multiply both sides by $ar^{n-1} dr$ and integrate to obtain $$\int_{D_r} \Delta_{-2} f \, dv = ar^n (1/n) \Delta_{-2} f(0)$$ $$+ \sum_{h=1}^k ar^{2h+n} (1/2^h h! \, n(n+2) \, \cdots \, (n+2h)) \, \Delta_{-2}^{h+1} f(0).$$ By the divergence theorem, $$\int_{D} \Delta_{-2} f dv = ar^{n-1} \int_{C} \partial_{r} f dI_{r} = ar^{n-1} \partial_{r} \int_{C} f dI_{r},$$ SO $$I_r f = f(0) + r^2(1/2n) \Delta_{-2} f(0)$$ $+ \sum_{h=1}^k r^{2h+2} (1/2^{h+1}(h+1)! n(n+2) \cdots (n+2h)) \Delta_{-2}^{h+1} f(0).$ COROLLARY. Suppose p satisfies $\Delta_{-2}^k p = 0$ in $D = D_1$ for some integer k > 0. If f is the solution of the Poisson equation (19) $$\Delta_{-2} f + p = 0$$, in D and $f = 0$ on S , then (20) $$f(0) = \sum_{h=1}^{k} (1/2^{h}h! \, n(n+2) \, \cdots \, (n+2h-2)) \, \Delta_{-2}^{h-1} p(0).$$ By convention, $\Delta_{-2}^0 p = p$. 4. Some elementary computations. In this section, we establish the following formulas. Let f be a smooth function. Then (21) $$\Delta_{-2} \Delta_{0} f = -\frac{2}{3} R_{ik} \partial_{i} \partial_{k} f + \Delta_{0} \Delta_{-2} f$$, (22) $$\Delta_{-2}^2 \Delta_0 f = -\frac{4}{3} R_{ik} \partial_i \partial_k \Delta_{-2} f + \Delta_0 \Delta_{-2}^2 f,$$ (23) $$\Delta_{-2} \Delta_{1} f = -\frac{4}{3} \partial_{j} R_{ak} x_{a} \partial_{j} \partial_{k} f + \frac{1}{3} \partial_{i} R_{jakb} x_{a} x_{b} \partial_{i} \partial_{j} \partial_{k} f - \frac{1}{3} \partial_{i} s \partial_{i} f + \Delta_{1} \Delta_{-2} f,$$ $$(24) \quad \begin{array}{ll} \Delta_{-2}^{2} \, \Delta_{1} f = \, -2 \, \partial_{i} R_{jk} \partial_{i} \partial_{j} \, \partial_{k} \, f - \frac{8}{3} \, \partial_{j} R_{ak} \, x_{a} \partial_{j} \partial_{k} \, \Delta_{-2} \, f \\ & + \frac{2}{3} \, \partial_{i} R_{jakb} \, x_{a} x_{b} \partial_{i} \partial_{j} \partial_{k} \, \Delta_{-2} \, f - \frac{2}{3} \, \partial_{i} s \, \partial_{i} \, \Delta_{-2} \, f + \Delta_{1} \, \Delta_{-2}^{2} \, f. \end{array}$$ If $\Delta_{-2}^2 f = 0$, then (25) $$\Delta_{-2}^3 \Delta_1 f = -6 \partial_i R_{ik} \partial_i \partial_i \partial_k \Delta_{-2} f.$$ Observe that $$\Delta_{-2}(fg) = g \Delta_{-2} f + f \Delta_{-2} g + 2 \partial_i f \partial_i g$$. By (9), $$\Delta_{-2} \Delta_0 f = \frac{2}{3} R_{jk} \partial_j \partial_k f + \frac{2}{3} (R_{jika} + R_{jaki}) x_a \partial_i \partial_j \partial_k f - \frac{4}{3} R_{jk} \partial_j \partial_k f + \Delta_0 \Delta_{-2} f$$. **PROOF.** By Bianchi's first identity, $\sum_{ijk}' R_{ijka} = 0$, where \sum_{ijk}' denotes the sum of cyclic permutations of (ijk), i.e., $$\sum_{ijk}' R_{ijka} = R_{ijka} + R_{kija} + R_{jkia},$$ and $$\sum_{ijk}' R_{jaki} = \sum' R_{ajik} = -\sum' R_{kjia} = 0$$. So $$(R_{iika} + R_{iaki}) \partial_i \partial_j \partial_k f = 0.$$ This proves (21). $$\begin{split} \Delta_{-2}^2 \, \Delta_0 f &= \Delta_{-2} \Big[-\tfrac{2}{3} R_{jk} \partial_j \, \partial_k f + \Delta_0 \, \Delta_{-2} f \, \Big] \\ &= -\tfrac{2}{3} R_{jk} \partial_j \partial_k \, \Delta_{-2} f + \Delta_{-2} \Delta_0 \, \Delta_{-2} f \\ &= -\tfrac{4}{3} R_{jk} \partial_j \partial_k \, \Delta_{-2} f + \Delta_0 \, \Delta_{-2}^2 f. \end{split}$$ This is (22). By (10), $$\begin{split} \Delta_{-2}\,\Delta_1f &= \tfrac{1}{3}\big(\,\partial_aR_{jhkn} + \,\partial_hR_{jakh} + \,\partial_hR_{jhka}\big)x_a\partial_j\,\partial_kf \\ &\quad + \tfrac{1}{3}\big(\,\partial_iR_{jakb} + \,\partial_aR_{jikb} + \,\partial_aR_{jbki}\big)x_ax_b\partial_i\partial_j\,\partial_kf \\ &\quad + \tfrac{1}{6}\big(2\,\partial_jR_{ka} - 6\,\partial_kR_{ja} - 6\,\partial_aR_{jk}\big)x_a\partial_j\,\partial_kf \\ &\quad + \tfrac{1}{6}\big(\,\partial_iR_{hh} - 6\,\partial_hR_{ih}\big)\,\partial_if + \Delta_1\,\Delta_{-2}f. \end{split}$$ By Bianchi's first identity, $$\sum_{ijk}' \partial_{a} R_{jikb} = 0 \quad \text{and} \quad \sum_{ijk}' \partial_{a} R_{jbki} = 0.$$ By Bianchi's second identity, $$\begin{split} \partial_{h}R_{jakh} &= -\partial_{k}R_{jhah} - \partial_{a}R_{jkhh} = -\partial_{k}R_{ja} + \partial_{a}R_{jk}, \\ \partial_{h}R_{jhka} &= \partial_{h}R_{hjak} = -\partial_{a}R_{hhjk} - \partial_{j}R_{hahk} = \partial_{a}R_{jk} - \partial_{j}R_{ak}, \\ \partial_{i}s &= \partial_{i}R_{ahah} = -\partial_{a}R_{ajhh} - \partial_{h}R_{aajh} = \partial_{a}R_{ai} + \partial_{h}R_{ih} = 2 \partial_{h}R_{jh}. \end{split}$$ We obtain (23). $$\begin{split} \Delta_{-2}^2 \, \Delta_1 f &= \Delta_{-2} \big(\Delta_{-2} \, \Delta_1 f \, \big) \\ &= -\frac{8}{3} \, \partial_i R_{jk} \partial_i \partial_j \, \partial_k f \, + \frac{2}{3} \partial_i R_{jhkh} \partial_i \partial_j \, \partial_k f \\ &\quad + \frac{2}{3} \big(\, \partial_i R_{jhka} + \, \partial_i R_{jakh} \big) x_a \partial_i \partial_j \partial_k \, \partial_h f \\ &\quad - \frac{8}{3} \, \partial_j R_{ak} x_a \partial_j \partial_k \, \Delta_{-2} f \, + \frac{2}{3} \, \partial_i R_{jakb} \, x_a x_b \partial_i \partial_j \partial_k \, \Delta_{-2} f \\ &\quad - \frac{2}{3} \partial_i s \, \partial_i \, \Delta_{-2} f \, + \, \Delta_1 \, \Delta_{-2}^2 f \, . \end{split}$$ By Bianchi's second identity, the coefficients of $\partial_i \partial_j \partial_k \partial_h f$ vanish, and we obtain (24). Finally, assume $\Delta_{-2}^2 f = 0$. $$\begin{split} \Delta^3_{-2} \, \Delta_1 f &= \Delta_{-2} \! \left(\Delta^2_{-2} \, \Delta_1 f \, \right) \\ &= -2 \, \partial_i R_{jk} \, \partial_i \partial_j \partial_k \, \Delta_{-2} \, f - \tfrac{16}{3} \, \partial_j R_{ik} \, \partial_i \partial_j \partial_k \, \Delta_{-2} \, f \\ &+ \tfrac{4}{3} \, \partial_i R_{jhkh} \, \partial_i \partial_j \partial_k \, \Delta_{-2} \, f \\ &+ \tfrac{4}{3} \! \left(\partial_i R_{jakh} + \partial_i R_{jhka} \right) \! x_a \partial_i \partial_j \partial_k \partial_h \, \Delta_{-2} \, f. \end{split}$$ By Bianchi's first identity, the coefficients of $\partial_i \partial_j \partial_k \partial_h \Delta_{-2} f$ vanish. We obtain (25). \Box **5. Proof of Theorem 1.** A smooth function f is said to be harmonic if $\Delta_{-2} f = 0$. It is clear that the derivatives of a harmonic function are also harmonic. Since u is harmonic in D, by the formulas in Section 4, we see that $\Delta_{-2} \Delta_0 u$ and $\Delta_{-2}^2 \Delta_1 u$ are harmonic in D. We also have $$\begin{split} & \Delta_{0}u(0) = 0, \qquad \Delta_{-2} \, \Delta_{0}u(0) = -\frac{2}{3} R_{jk} \, \partial_{j} \, \partial_{k}u(0), \\ & \Delta_{1}u(0) = 0, \qquad \Delta_{-2} \, \Delta_{1}u(0) = -\frac{1}{3} \, \partial_{i}s \, \partial_{i}u(0), \\ & \Delta_{-2}^{2} \, \Delta_{1}u(0) = -2 \, \partial_{i}R_{jk} \, \partial_{i}\partial_{j} \, \partial_{k}u(0). \end{split}$$ It follows from (13), (14) and (20) that (26) $$u_0(0) = -(1/12n(n+2))R_{jk}\partial_j\partial_k u(0),$$ (27) $$u_1(0) = -(1/24n(n+2)) \partial_i s \partial_i u(0) -(1/24n(n+2)(n+4)) \partial_i R_{ik} \partial_i \partial_i \partial_k u(0).$$ By (12) and the classical Poisson formula, we have, for |x| < 1, (28) $$u(x) = \int_{S} K(x, z)g(z) dI(z)$$, where $K(x, z) = (1 - |x|^{2})/|x - z|^{n}$. Fix $z \in S$, let K(x) = K(x, z). Direct computation shows (29) $$\partial_i K(0) = nz_i,$$ (30) $$\partial_i \partial_k K(0) = n(n+2)z_i z_k - (n+2)\delta_{ik},$$ (31) $$\partial_i \partial_j \partial_k K(0) = n(n+2)(n+4)z_i z_j z_k - n(n+4) \sum_{ijk} z_i \delta_{jk}.$$ Recall \sum_{ijk} denotes the sum of cyclic permutations of (ijk). By (3), (4), (26), (27) and (28), we obtain (17). In view of Lemma 1, this proves (2), hence Theorem 1. \square # **6. Perturbation method (continued).** Now we begin the preparation for the proof of Theorem 2. Define w_0 , w_1 , v, v_0 and v_1 by (32) $$\Delta_{-2}w_0 + u_0 = 0$$, in D and $w_0 = 0$ on S , (33) $$\Delta_{-2}w_1 + u_1 = 0$$, in D and $w_1 = 0$ on S , (34) $$\Delta_{-2}v + u = 0$$, in *D* and $v = 0$ on *S*, (35) $$\Delta_{-2}v_0 + \Delta_0 v = 0$$, in *D* and $v_0 = 0$ on *S*, (36) $$\Delta_{-2}v_1 + \Delta_1v = 0$$, in *D* and $v_1 = 0$ on *S*. LEMMA 3. We have (37) $$E^{m}[Tg(X_{T}/r)] = r^{2}(1/2n)u(0) + r^{4}(v_{0}(0) + w_{0}(0)) + r^{5}(v_{1}(0) + w_{1}(0)) + O(r^{6}).$$ Moreover, $O(r^6)$ above is dominated by $Kr^6|g|_2$ for some constant K independent of g. **PROOF.** Define W_0 , W_1 , V, V_0 and V_1 as we defined U, U_0 and U_1 in the proof of Lemma 1. By Itô's formula, $$E^{m}[Tg(X_{T}/r)] = E^{m}[TU(X_{T})]$$ $$= E^{m}\left[\int_{0}^{T}U(X_{t}) dt\right] + E^{m}\left[\int_{0}^{T}t \Delta U(X_{t}) dt\right].$$ In the following computation, $O(r^6)$ is actually controlled by $Kr^6|g|_2$ for some constant K. This can be proved as in the proof of Lemma 1 by keeping track of each term added into $O(r^6)$ and using Schauder's estimate, (16) and the fact that $E^m[T^2] = O(r^4)$ [see (42)]. $$\begin{split} E^{\,m} \bigg[\int_0^T \! U(X_t) \, dt \bigg] &= -r^2 E^{\,m} \bigg[\int_0^T \! \Delta_{-2} V(X_t) \, dt \bigg] + r^2 E^{\,m} \bigg[\int_0^T \! \Delta_0 V(X_t) \, dt \bigg] \\ &= -r^2 E^{\,m} \bigg[\int_0^T \! \Delta_1 V(X_t) \, dt \bigg] + O(r^6) \\ &= r^2 v(0) - r^4 E^{\,m} \bigg[\int_0^T \! \Delta_{-2} V_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta_{-2} V_1(X_t) \, dt \bigg] + O(r^6) \\ &= r^2 v(0) - r^4 E^{\,m} \bigg[\int_0^T \! \Delta_0 V(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta_1 V_1(X_t) \, dt \bigg] + O(r^6) \\ &= r^2 v(0) + r^4 v_0(0) + r^5 v_1(0) + O(r^6), \\ E^{\,m} \bigg[\int_0^T \! t \, \Delta U(X_t) \, dt \bigg] &= E^{\,m} \bigg[\int_0^T \! t \, \Delta_{-2} U_0(X_t) \, dt \bigg] \\ &- r^3 E^{\,m} \bigg[\int_0^T \! t \, \Delta_{-2} U_1(X_t) \, dt \bigg] + O(r^6) \\ &= -r^2 E^{\,m} \bigg[\int_0^T \! t \, \Delta U_0(X_t) \, dt \bigg] \\ &- r^3 E^{\,m} \bigg[\int_0^T \! t \, \Delta U_1(X_t) \, dt \bigg] + O(r^6) \\ &= r^2 E^{\,m} \bigg[\int_0^T \! U_0(X_t) \, dt \bigg] + r^3 E^{\,m} \bigg[\int_0^T \! U_1(X_t) \, dt \bigg] + O(r^6) \\ &= -r^4 E^{\,m} \bigg[\int_0^T \! \Delta_{-2} W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta_{-2} W_1(X_t) \, dt \bigg] + O(r^6) \\ &= -r^4 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\ &- r^5 E^{\,m} \bigg[\int_0^T \! \Delta W_0(X_t) \, dt \bigg] \\$$ Therefore $$E^m[Tg(X_T/r)] = r^2v(0) + r^4(v_0(0) + w_0(0)) + r^5(v_1(0) + w_1(0)) + O(r^6).$$ By (20) and (34), $v(0) = (1/2n)u(0)$. This proves (37). \square LEMMA 4. For $g \in C^2(S)$, we have (38) $$E^{m}[T^{2}g(X_{T}/r)] = E^{m}[T^{2}]E^{m}[g(X_{T}/r)] + O(r^{6}).$$ Moreover, $O(r^6)$ above is dominated by $Kr^6|g|_2$ for some constant K independent of g. **PROOF.** Define q by (39) $$\Delta_{-2}q + v = 0$$, in *D* and $q = 0$ on *S*. By (20) and (34), we see that (40) $$q(0) = (n + 4/8n^2(n+2))u(0).$$ Let Q(x) = q(x/r) for $x \in D_r$. In the following computation, by using Schauder's estimate as in the proofs of Lemmas 1 and 3, we can show that each $O(r^k)$ term is actually dominated by $Kr^k|g|_2$ for some constant K. $$\begin{split} E^{m} \big[T^{2} g(X_{T}/r) \big] &= E^{m} \big[T^{2} U(X_{T}) \big] \\ &= 2 E^{m} \bigg[\int_{0}^{T} t U(X_{t}) \, dt \bigg] + O(r^{6}) \\ &= -2 r^{2} E^{m} \bigg[\int_{0}^{T} t \Delta_{-2} V(X_{t}) \, dt \bigg] + O(r^{6}) \\ &= 2 r^{4} E^{m} \bigg[\int_{0}^{T} t \, \Delta_{-2}^{2} Q(X_{t}) \, dt \bigg] + O(r^{6}) \\ &= 2 r^{4} E^{m} \bigg[\int_{0}^{T} t \, \Delta^{2} Q(X_{t}) \, dt \bigg] + O(r^{6}). \end{split}$$ On the other hand, by Dynkin's formula and Itô's formula, $$E^{m}[Q(X_{T})] = Q(0) + E^{m} \left[\int_{0}^{T} \Delta Q(X_{t}) dt \right]$$ $$= q(0) + E^{m}[T \Delta Q(X_{T})] - E^{m} \left[\int_{0}^{T} t \Delta^{2} Q(X_{t}) dt \right].$$ Since q = v = 0 on S and $$E^{m}[T\Delta Q(X_{T})] = E^{m}[T\Delta_{-2}Q(X_{T})] + O(r^{2}) = 0 + O(r^{2}),$$ we have (41) $$E^{m}[T^{2}g(X_{T}/r)] = (n + 4/4n^{2}(n+2))r^{4}u(0) + O(r^{6}).$$ Put g = 1. Then u(0) = 1, so (42) $$E^{m}[T^{2}] = (n + 4/4n^{2}(n+2))r^{4} + O(r^{6}).$$ Now (38) follows from (15) and the above two formulas. \Box 7. Poisson equation (continued). In Section 3, we obtained a formula to express f(0) when f is the solution of the Poisson equation (43) $$\Delta_{-2}f + p = 0, \text{ in } D \text{ and } f = 0 \text{ on } S$$ and p satisfies $\Delta_{-2}^k p = 0$ for some positive integer k. In the present section, we look for formulas to express the derivatives of f at 0. LEMMA 5. Suppose p is harmonic, i.e., $\Delta_{-2}p = 0$. Let f be defined by (43). Then (44) $$\partial_i f(0) = (1/2(n+2)) \partial_i p(0),$$ (45) $$\partial_i \partial_k f(0) = (1/2(n+4))\partial_i \partial_k p(0) - \delta_{ik}(1/n)p(0),$$ (46) $$\partial_i \partial_j \partial_k f(0) = (1/2(n+6))\partial_i \partial_j \partial_k p(0) - (1/(n+2)) \sum_{ijk} \delta_{jk} \partial_i p(0).$$ PROOF. Define (47) $$Gp(x) = \left(\Gamma(\frac{1}{2}n-1)/2\pi^{n/2}\right) \int_{D} |x-y|^{2-n} p(y) dv.$$ By classical analysis we have $$\Delta_{-2}Gp + p = 0, \text{ in } D,$$ (49) $$f(x) = Gp(x) - \int_{S} K(x,z)Gp(z) dI(z), \text{ for } x \in D.$$ By (29), the harmonicity of p and Lemma 2, we have $$\left[\partial_i \int_S K(x,z) Gp(z) \, dI(z) \right]_{x=0} = n \int_S z_i Gp(z) \, dI(z)$$ $$= \partial_i Gp(0) - (1/2(n+2)) \, \partial_i p(0).$$ Now (44) follows from the above expression and (49). Direct computation shows $$\begin{split} & \Delta_{-2}(x_{j}x_{k}Gp) = 2\delta_{jk}Gp + 2x_{j} \,\partial_{k}Gp + 2x_{k} \,\partial_{j}Gp - x_{j}x_{k}p, \\ & \Delta_{-2}^{2}(x_{j}x_{k}Gp) = -4\delta_{jk}p + 8\partial_{j} \,\partial_{k}Gp - 4x_{j} \,\partial_{k}p - 4x_{k} \,\partial_{j}p, \\ & \Delta_{-2}^{3}(x_{j}x_{k}Gp) = -24\partial_{j} \,\partial_{k}p. \end{split}$$ By (30) and Lemma 2, we have $$\begin{split} \left[\partial_{j} \partial_{k} \int_{S} K(x, z) Gp(z) \, dI(z) \right]_{x=0} \\ &= n(n+2) I(z_{j} z_{k} Gp) - (n+2) \, \delta_{jk} I(Gp) \\ &= (n+2) \, \delta_{jk} Gp(0) - \frac{1}{2} \, \delta_{jk} p(0) + \partial_{j} \, \partial_{k} Gp(0) \\ &- (1/2(n+4)) \, \partial_{j} \, \partial_{k} p(0) - (n+2) \, \delta_{jk} Gp(0) + (n+2/2n) \, \delta_{jk} p(0) \\ &= \delta_{jk} (1/n) p(0) + \partial_{j} \, \partial_{k} Gp(0) - (1/2(n+4)) \, \partial_{j} \, \partial_{k} p(0). \end{split}$$ By (49), we obtain (45). Direct computation shows $$\begin{split} &\Delta_{-2}(x_ix_jx_kGp) = 2\sum'\delta_{jk}x_i\,Gp + 2\sum'x_jx_k\,\partial_iGp - x_ix_jx_kp, \\ &\Delta_{-2}^2(x_ix_jx_kGp) = 8\sum'\delta_{jk}\,\partial_iGp - 4\sum'\delta_{jk}x_i\,p + 8\sum'x_i\partial_j\,\partial_kGp \\ &-4\sum'x_jx_k\,\partial_ip, \\ &\Delta_{-2}^3(x_ix_jx_kGp) = -24\sum'\delta_{jk}\,\partial_ip + 48\partial_i\partial_j\,\partial_kGp - 24\sum'x_i\partial_j\,\partial_kp, \\ &\Delta_{-2}^4(x_ix_jx_kGp) = -192\,\partial_i\partial_i\,\partial_kp, \end{split}$$ where Σ' denotes the sum of cyclic permutations of (ijk). By (31) and Lemma 2, $$\begin{split} \left[\partial_i \partial_j \partial_k \int_S K(x, z) G p(z) \, dI(z) \right]_{x=0} &: \\ &= n(n+2)(n+4) I(z_i z_j z_k G p) - n(n+4) \sum' I(z_i G p) \delta_{jk} \\ &= \partial_i \partial_i \partial_k G p(0) - (1/2(n+6)) \partial_i \partial_j \partial_k p(0) + (1/n+2) \sum' \delta_{ik} \partial_i p(0). \end{split}$$ By (49), we obtain (46). \square **8. Proof of Theorem 2.** Now we are ready to compute $w_0(0)$, $v_0(0)$, $w_1(0)$ and $v_1(0)$. By (13) and (21), $$\Delta_{-2}u_0(0) = -\Delta_0 u(0) = 0,$$ $$\Delta_{-2}^2 u_0 = -\Delta_{-2} \Delta_0 u = \frac{2}{3} R_{jk} \partial_j \partial_k u.$$ Hence, by (20) and (32), we obtain $$w_0(0) = (1/2n)u_0(0) + (1/72n(n+2)(n+4))R_{ik}\partial_i\partial_k u(0).$$ Similarly, by (20), (34), (35) and formulas in Section 4, we obtain $$v_0(0) = -(1/12n(n+2))R_{jk}\partial_j\partial_k v(0) + (1/36n(n+2)(n+4))R_{jk}\partial_j\partial_k u(0).$$ It follows from Lemma 5 and the above two expressions that (50) $$w_0(0) + v_0(0) = (1/12n)u_0(0) + (1/12n^2(n+2))su(0).$$ By (14), (20), (33) and the formulas in Section 4, $$w_1(0) = (1/2n)u_1(0) + (1/144n(n+2)(n+4)) \partial_i s \partial_i u(0) + (1/192n(n+2)(n+4)(n+6)) \partial_i R_{ik} \partial_i \partial_i \partial_k u(0).$$ Similarly, by (20), (34), (36) and the formulas in Section 4, we obtain $$\begin{split} v_1(0) &= - \left(1/24 n(n+2) \right) \, \partial_i s \, \partial_i v(0) \\ &- \left(1/24 n(n+2)(n+4) \right) \, \partial_i R_{jk} \, \partial_i \partial_j \, \partial_k v(0) \\ &+ \left(1/72 n(n+2)(n+4) \right) \, \partial_i s \, \partial_i u(0) \\ &+ \left(1/64 n(n+2)(n+4)(n+6) \right) \, \partial_i R_{jk} \, \partial_i \partial_j \, \partial_k u(0). \end{split}$$ It follows from the above two expressions, Lemma 5 and the fact that $\partial_i s = 2 \partial_h R_{ih}$, which we have seen in Section 4, that (51) $$w_1(0) + v_1(0) = (1/2n)u_1(0) + (1/24n(n+2)^2(n+4)) \partial_i s \partial_i u(0).$$ Now with the help of (15), (16), (50) and (51), we can prove (5) by comparing (37) with $$E^m[T]E^m[g(X_T/r)].$$ Finally, (6) follows from (5) and (38). \square REMARK. M. Pinsky recently proposed an expansion of $$E^{x}(\exp(-bT_{r}/r^{2})g(X_{T_{r}}/r))$$ which can be computed in a way similar to Theorem 1. Our major results can be obtained as consequences of this expansion. **Acknowledgment.** The author wishes to express his gratitude to Professor M. Pinsky for suggesting the extension of his result in [7]. #### REFERENCES - [1] GILBARG, D. and TRUDINGER, N. S. (1977). Elliptic Partial Differential Equations of Second Order. Springer, New York. - [2] Gray, A. and Pinsky, M. (1983). The mean exit time from a small geodesic ball in a Riemannian manifold. Bull. Sci. Math. (2) 107 345-370. - [3] KOBAYASHI, S. and NOMIZU, K. (1963). Foundations of Differential Geometry 1, 2. Wiley, New York. - [4] KOZAKI, M. and OGURA, Y. (1987). On the independence of exit time and exit position from small geodesic balls in Riemannian manifolds. Preprint. - [5] Liao, M. (1987). Hitting distributions of geodesic spheres by Riemannian Brownian motion. Unpublished. - [6] PINSKY, M. (1981). Moyenne stochastique sur une variete riemannienne. C. R. Acad. Sci. Paris Sér. A-B 292 991-994. - [7] PINSKY, M. (1985). On non-Euclidean harmonic measure. Ann. Inst. H. Poincaré Sect. B (N.S.) 21 39-46. - [8] RUSE, H., WALKER, H. G. and WILLMORE, T. J. (1961). *Harmonic Spaces*. Edizioni Cremonese, Roma. (Consiglio nazionale delle Ricerche, Monografie matematiche, 8.) DEPARTMENT OF MATHEMATICS NANKAI UNIVERSITY TIANJIN PEOPLE'S REPUBLIC OF CHINA