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HITTING DISTRIBUTIONS OF SMALL GEODESIC SPHERES

By MiInG Liao

Nankai University

Let M be an n-dimensional Riemannian manifold, m € M and T be the
hitting time of an r-sphere around m by Brownian motion X,. We have, for
any smooth function g on the unit sphere S, under normal coordinates,
E™[g(Xr/r)] = Ig + r’I(v,8) + r’I(vsg) + O(r*) and E™[Tg(Xp/r)] =
E™[T1E™[g(Xy/r)] + r°cX; 3,81(z;8) + O(r®), where I is the uniform
probability distribution on S, v, and v; are smooth functions on S whose
expressions involve scalar curvature, Ricci curvature and their derivatives at
m, c is a constant and s is the scalar curvature. v, = 0 if and only if either
n = 2 or M is an Einstein manifold.

1. Introduction and main results. Let M be an n-dimensional Riemann-
ian manifold and m € M. Consider Brownian motion X, on M, whose infinitesi-
mal generator is the usual Laplace-Beltrami operator A. Let S, be the geodesic
sphere of radius r around m and 7, be the first hitting time of S, by X, starting
from m. The hitting distribution of S, which is just the harmonic measure of S,
(with respect to the center m), is given by E™[ f(X(7,))] for any smooth
function f on S,. This induces a probability measure H, on the unit sphere S in
M, which is identified with R” by the exponential map exp,,. To be precise, put
8(%) = f(exp,(rx)), then H,g = E™[ f(X(T.)].

To simplify the notation, we fix a normal coordinate system (x,, x,,...,%,)
around m throughout. Identify S with {x:X” ,x? = 1} and m with 0. Then for
any smooth function g on S,

(1) Hg=E™[g(X(T,)/r)].

If M = R", then H, = I, the uniform probability distribution on S. For any

two-dimensional Riemannian manifold M, Pinsky [7] obtained the expansion
H.g = Ig + r’I(vyg) + O(r*),

where v; is a smooth function on S whose explicit expression involves the

derivatives of Gauss curvature. v; = 0 if and only if M is a surface of constant

curvature.

In the present paper, we extend the above result to higher dimension. We will
see that, in general, an r2-term appears in the expansion and this term vanishes
if and only if either n = 2 or M is an Einstein manifold.

To state our results, let ¥,;;, R, s and 9,R;;;, 3,R;, 0,8 be curvature
tensor, Ricci curvature tensor, scalar curvature and their derivatives, all evaluated
at m. We will adopt the convention to omit the summation sign over repeated
indices, e.g., R, = R, and s = R,,.
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1040 M. LIAO

For any nonnegative integer %, let C*(S) be the class of functions on S having
continuous k-order derivatives. By choosing local coordinate systems on S, we
can define |g|, for any g € C*(S) by

k
lgl= 2 X sup|d; d;, --- 3ijg(z)|-

J=0iy,ig,..., i; 2€S

For any open subset G of R", we can similarly define C*(G) and |f|, for
f € CHG).

THEOREM 1. For g € C%S), we have

(@) E™[g(X(T,)/r)] = I+ r'l(v,g) + ri(v,g) + O(r*),
where v, and v, are functions on S defined by, for z € S,

3) vy(2) = (1/12n)[s — nR 32,2, ],

(4) vy(2) = (1/24(n + 2))[8iszi —(n+2)0;R, zizjzk].

Moreover, O(r*) in (2) is actually dominated by Kr*|g|, for some constant K
independent of g.

A necessary and sufficient condition for v, to vanish is R, = c§;, for some
constant ¢ which may depend on m. If n = 2, this condition is automatically
satisfied. For n > 2, this condition satisfied at all m € M implies that c is
constant on M, so M is an Einstein manifold.

COROLLARY. v, = 0 if and only if either n = 2 or M is an Einstein manifold.

Theorem 1 is related to the theory of harmonic manifolds. M is said to be
harmonic if H, = I for all m € M and all sufficiently small r > 0, see [8]. Kozaki
and Ogura proved in [4] that on a harmonic manifold, 7, and X(7,) are
independent. See also [5] for a different proof. So it is an interesting problem to
characterize those manifolds on which 7, and X(7,.) are independent. It was also
proved in [4] that if M has this independence property, then it must have
constant scalar curvature. In this paper, we will compute the first term in the
expansion of

E™[Tg(X(T,)/r)] - E™[T,JE™[g(X(T,)/r)], forge C*(S).

We can obtain the above result by letting this term be zero.

THEOREM 2. For g € C*(S), we have, with ¢ = (1/24(n + 2)%(n + 4)),
) E"[T.g(X(T)/r)] = E"[T,1E"[¢(X(T,)/7)]
: +rod;sI(z,8) + O(r®)
and for any b > 0,
o Elew(-pn)s(X(T)/r)] = Enlex(~bT) B [a(X(T,) /)]

—brcd;sI(z,g) + O(r®).



HITTING DISTRIBUTIONS 1041

Moreover, O(r®) in (5) and (6) is actually dominated by Kr®|g|, for some
constant K independent of g.

CorOLLARY. If T, and X(T,) are independent for all m € M and all suffi-
ciently small r > 0, then s is constant on M.

2. Perturbation method. By [2], for any smooth function f defined in a
neighborhood of m, we have

(7) Af=A_,f+ E Ajf,
j=0

where each A; is a second-order linear differential operator which maps a
polynomial of degree k into one of degree & + j. The first few A are

(8) A—2f= ahahf7
(9) Aof = %Rjakbxaxbaj d,f - %Riaxa a;f,
(10) A f= %aaijkcxaxbxcaj Opf + ﬁ[aiRab - 6d,R;]x,x,0,f.

Let
(11) A,= YA,

J=k

This is a differential operator of the form a;(x)d;d, + b(x)d; with a;, =
O(rk”), bi = O(rk“).

Let D = {x: Lx? < 1}. As in [7], for fixed g € C*S), let u, u, and u, be
defined by

(12) A_,u=0, mDandu=gonS,
(13) A_uy+Apu=0, inDand u,=00nS,
(14) A_ou, +Au=0, inDand u, =0on S.

For simplicity, we will write T for T,.

LEMMA 1. We have
(15) E™[g(Xy/r)] = u(0) + r2uy(0) + r3u,(0) + O(r?).
Moreover, O(r*) above is dominated by Kr'|g|, for some constant K indepen-
dent of g.

Proor. Set U(x) = u(x/r), Uyfx) = uy(x/r) and Uyx) = ux/r). By
Dynkin’s formula and (12),

E"[g(Xe/)] = E"[U(X;)] = UO) + B*| ["a0(X,) o
— u(0) + E'"[ [@g)(X/7) dt]

+rEm[fT(A1u)(X/r) dt] + R,
0
where R, = E™[ (I AU(X,) dt].
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By (13) and (14),
E™[g(Xg/r)] = w(0) - B ['8_ (%) at]

—raE"‘[ [ "A_U(X,) dt] +R,
0

= u(0) — rE™ fo "AUL(X,) dt] - r3E’"[ jo "AU(X,) d;]

+R, + R, + R,
= u(0) + r2uy(0) + r®u,(0) + R, + R, + Ry,

where R, = r2E™[ [T MUy X,) dt] and Ry = r’E™[ [ &U(X,) dt].
Now A,U(x) = r’(A'u)(x/r), where A’ is a second-order linear differential
operator with bounded coefficients. By Schauder’s estimate [1],

|A%U|, < r?|A’uly < K, r?g|,, for some constant K.
By [2], we have
(16) E™[T] = r2(1/2n) + r*(1/12n*(n + 2))s + O(r®).
It follows from above that |R,| < Kr*|g|, for some constant K. Similarly, we

can show that R, and R, are also dominated by Kr*|g|, when K is sufficiently
large. O

By (12), u(0) = Ig, so in order to prove Theorem 1 it remains to show
(17) u(0) = I(v,g) and  uy(0) = I(v;8).

3. Poisson equation. Let C. = {x: £ x?=r2%)}, and D, = {x: I, 2] <
r?} and I, be the uniform probability distribution on C,. Let a be the surface
. area of S = C, and dv be the volume element of R".

LEMMA 2. Suppose f is a smooth function and satisfies A*%'f = 0 in D, for
some nonnegative integer k. Then

k
(18) Lf=f(0)+ Y (1/2"n'n(n+2) -+ (n+ 2k — 2))A", f(0)r*".
h=1
Here, by convention, Y% _, a; = 0.

PRrOOF. The assertion is clearly true for £ = 0. Suppose it is proved for some
k and assume A*%2f = 0. Replace f by A_, f in (18) and then multiply both sides
by ar™~!dr and integrate to obtain

/D A_yfdo = ar(1/n)A_, (0)

k
+ Y ar?*n(1/2"h!'n(n + 2) --- (n + 2h)) A*5'f(0).
h=1
By the divergence theorem,

fDrA_zfdv = ar*! fqa,fdl, - ar"“&,jqde,,
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SO
Lf=1(0) +r*1/2n)A_,£(0)

A ,
+ ¥ r2h2(1 20 (b4 D)in(n+2) - (n+ 2h)) A"Yf(0). O
k=1

COROLLARY. Suppose p satisfies A* ,p =0 in D =D, for some integer
k > 0. If f is the solution of the Poisson equation

(19) A ,f+p=0, inDandf=00nS,
then
k
(20) f0)= Y (1/2*r!'n(n+2) -+ (n+ 2k — 2)) A*,'p(0).
h=1

By convention, A’ ,p = p.

4. Some elementary computations. In this section, we establish the fol-
lowing formulas. Let f be a smooth function. Then
Q1) A_ Ay f=—3R;9;0,f+A0A_5f,
(22) A ,Acf=—4R;0;0, A of + Ay A%, f,
(23) Ay A f=—350;Rpx,0;04f + 50:R ary Xo%40,0; 94 f
—30;80;f+ A, A, f,
+ 20,R s X,%50;0;0, A _of — 3089, A of + A, A%, f.
If A2 ,f =0, then
(25) A3_2 Alf = _GBLRJIZ a,ajak A_2f.
Observe that A_,(fg) =gA_,f +fA_,g+29;f3,8 By (9),
Ay Agf=2R;0;04f + 2(Rjipa + Rjapi)%a9:9; 95 f — §R;30; 0, f + Ao A _of.

(24)

PrROOF. By Bianchi’s first identity, ¥;, R;;, = 0, where ¥, denotes the
sum of cyclic permutations of (ijk), i.e.,

’
> Rijre=Rijpo+ Ryijo + R

Jkia>
yk

and X}, Ropi =L Ry = —X Ry, = 0. So
(Rjika + Rjaki)aiaj d,f=0.
This proves (21).
A, A0f =A_,[~2R;0;0,f + AgA_,f |
= —2R;,0,0,A_of + A_,AqA_,f
= —4R;,0;0,A_of + 4, A%, f.

This is (22).
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A, A f= %(aathkn + 4R jpp + ahthka)xaaj a,f
+ %(aiRjakb + 0,R iy + aaijki)xaxbaiaj 0, f
+ %(2 d;R,,—60,R;, — 63aRjk)xa3j i
+5(0 Ry, —60,R;,) 0:f + AL A_,f.
By Bianchi’s first identity,
Y 0,R;i,=0 and Y 9,R=0.
ik ik
By Bianchi’s second identity,
pRjarn = =0k Rjpan — 0uRjppp = — 4R + 3,R,
ahthka= athjak = _aathjk d Rhahk d Rjk 3'Rak»
08 = 0;Ropan= —0.Roinn — 0pRogin = 0,Roi + 4Ry, = 2 0, Ry,.
We obtain (23).
A2—2 A f= A—z(A—z A1f)
= —30;R;0,0;05f + 30,R 3440,0, 9, f
+2(3.thka + a.R,ak,,)x 8,0,0,0,f
(?Rakx A_,f+2 BRJakbx %,0;0;0,A_,f
~29.50,A 2f+A A, .

By Bianchi’s second identity, the coefficients of 3,3;3, d,f vanish, and we
obtain (24).
Finally, assume A% , f = 0.

A3_2A1f=A o(A2, A1)
23Rjkaa 2f—163le3 2f
+30;Rjppp 0,00, 0 5f
+3(0:Rjapn + R jpa)x40,0,0,0, A ,f.
By Bianchi’s first identity, the coefficients of d;3;3,9, A_,f vanish. We obtain
(25). 0

5. Proof of Theorem 1. A smooth function f is said to be harmonic if
A_,f=0. It is clear that the derivatives of a harmonic function are also

harmonic. )
Since u is harmonic in D, by the formulas in Section 4, we see that A_, A u
and A% , A u are harmonic in D. We also have

Aou(0) =0,  A_,Aqu(0) = — 2R, 8,u(0),
Au@) =0, A_,Au(0)=-10;50,u(0),
A%, A,u(0) = -2 0,R, 9,3, 0,u(0).
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It follows from (13), (14) and (20) that
(26) uo(0) = — (1/12n(n + 2))R 4,9, 3,u(0),
u,(0) = —(1/24n(n + 2)) 3,5 9,u(0)
—(1/24n(n + 2)(n + 4)) ;R 3,9, 3,u(0).

By (12) and the classical Poisson formula, we have, for |x| < 1,

(28) u(x) = '/;K(x, 2)g(z) dI(z), where K(x,z)=(1—- |x2)/|x — 2|

@7

Fix z € S, let K(x) = K(x, z). Direct computation shows

(29) 3,K(0) =
(30) d;3,K(0) —n(n+2)z 2, — (n+2)d,,
(31) 9,0;9,K(0) = n(n + 2)(n + 42,2z, — n(n + 4)Y 2,8,

gk
Recall L}, denotes the sum of cyclic permutations of (ijk).
By (3), (4), (26), (27) and (28), we obtain (17). In view of Lemma 1, this proves
(2), hence Theorem 1. O

6. Perturbation method (continued). Now we begin the preparation for
the proof of Theorem 2.
Define w,, w,, v, v, and v, by

(32) A_,wy+uy=0, inDand wy,=0o0n S,
(33) A_,w, +u, =0, inDand w, =00n S,
(34) A_o+u=0, inDand v=00n S,

(35) A_yvy+ A =0, in Dand v,=0on S,
(36) A_yv, +Av=0, inDand v; =0o0n S.

LeMMA 3. We have
E™[Tg(Xp/r)] = r*(1/2n)u(0) + r*(0(0) + w,(0))
r5(vl(0) + w,(0)) + O(r*®).

Moreover, O(r®) above is dominated by Kr®|g|, for some constant K indepen-
dent of g.

(37)

ProOF. Define W, W,, V, V;, and V as we defined U, U0 and U, in the proof
of Lemma 1. By It6’s formula,

E™[Tg(Xr/r)] = E™([TU(X7)]
- Em[/;TU(Xt)dt] + E"‘[_/;TtAU(Xt)dt].

In the following computation, O(r®) is actually controlled by Kr®|g|, for some
constant K. This can be proved as in the proof of Lemma 1 by keeping track of
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each term added into O(r®) and using Schauder’s estimate, (16) and the fact that
E™[T?] = O(r*) [see (42)].

Em[fOTU(X,)dt] ) :LTA_zv(Xt) dt]

_ _ogm :fOTAV(X‘) dt] + r2EmMTAOV(X¢) dt]

+r2Em| [ A V(X)) dt] + 0(r®)
LY0

r2(0) — r“E"‘[ fo TA_Vi(X)) dt]

-r5Em[fOTA_2VI(Xt) dt] + 0(r®)

r2(0) — r“E’"[ f TAV,(X,) dt]

—r5E"‘[ fo "Av,(X,) dt] + 0(r®)
= r?(0) + r*vy(0) + r°,(0) + O(r°),
E'n[fOTtAU(Xt) dt] - Em[fOTt(AOU +AU)(X,) dt] + 0(r®)

- —rzEm-'/;TtA_ZUO(X,) dt]
—r3E™ U(;TtA_zUl(Xt) dt] + 0(r®)

- —rZE”'(thAUO(Xt) dt]
LY0

~rgn| [Teavy(x,) dt] + 0(r%)
| Y0

- r2Em[ U X,) dt] + r3E’"[ fo u(x,) dt] + 0(r®)

S~

- —r“E"‘-fTA_ZW},(X,) dt]
[ YO0
—r°Em™ (fTA_le(X,) dt] + O(r®)
|70 .

——e| fo "AW,(X,) dt]

—rogm| [ Taw,(X,) dt] + 0(r®)
| Y0

= r*wy(0) + r°w,(0) + O(r*).
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Therefore
E"‘[Tg(XT/r)] = r?v(0) + r*(vy(0) + wy(0)) + r’(v,(0) + w,(0)) + o(r®).
By (20) and (34), v(0) = (1/2n)u(0). This proves (37). O

LEMMA 4. For g € C%(S), we have
(38)  E™[T%(Xy/r)] = E"[T*1E™[8(Xr/r)] + O(°).
Moreover, O(r®) above is dominated by Kr®|g|, for some constant K indepen-
dent of g.

ProoF. Define g by

(39) A_,q+0v=0, inDandq=00nS.
By (20) and (34), we see that
(40) q(0) = (n + 4/8n*(n + 2))u(0).

Let Q(x) = q(x/r) for x € D,. In the following computation, by using
Schauder’s estimate as in the proofs of Lemmas 1 and 3, we can show that each
O(r*) term is actually dominated by Kr*|g|, for some constant K.

E™[T%(Xy/r)| = E™[T?U(Xy)]
- 2E’"[/(;TtU(X,) dt] + 0(r%)

= —2r2E"‘[/;TtA_2V(X,) dt] + 0(r%)
- 2r4E’"[ fo Tt 0% ,Q(X,) dt] + 0(r%)
- 2r4Em[ jo T A%Q(X,) dt] + 0(r%).
On the other hand, by Dynkin’s formula and It&’s formula,
E[Q(Xp)] = QO) + B ["aQ(x,) k)
= ¢(0) + E™[TAQ(X,)] - E’"[ jo Tt 0%Q( X,) dt].

Since ¢ = v =0 on S and
E™[TAQ(X7)] = E™[TA_,Q(Xp)] + O(r?) =0+ o(r?),

we have

(41) E™[T2g(Xy/r)] = (n + 4/4n%(n + 2))r*u(0) + O(r°).
Put g = 1. Then u(0) =1, so

(42) E™[T?] = (n + 4/4n%*(n + 2))r* + O(r®).

Now (38) follows from (15) and the above two formulas. O
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7. Poisson equation (continued). In Section 3, we obtained a formula to
express f(0) when f is the solution of the Poisson equation

(43) A ,f+p=0, inDand f=00n S

and p satisfies A* , p = 0 for some positive integer k. In the present section, we
look for formulas to express the derivatives of f at 0. :

LEMMA 5. Suppose p is harmonic, i.e., A_,p = 0. Let f be defined by (43).
Then

(44) 9:f(0) = (1/2(n + 2)) 3;p(0),
(45)  9,0,1(0) = (1/2(n + 4))39; 3,p(0) = 8;(1/n)p(0),

(46) 9,8,9,f(0) = (1/2(n + 6))3,8,3,p(0) — (1/(n + 2)) %lsjk 3,p(0).

ProoF. Define

(47) Gp(x) = (T(3n = 1)/207) [1x = ¥ ~"p() do.

By classical analysis we have

(48) A_,Gp+p=0, inD,

(49) f(x) = Gp(x) - fK(x, 2)Gp(z) dI(z), forx € D.
S

By (29), the harmonicity of p and Lemma 2, we have
[aifK(x,z)Gp(z) dI(z)] = nfziGp(z) dl(z)
S x=0 S

= 9,Gp(0) - (1/2(n + 2)) 9,p(0).
Now (44) follows from the above expression and (49).
Direct computation shows

A_y(x;x,Gp) = 28,Gp + 2x,0,Gp + 2x, 3,Gp — x,x,p,
A2 ,(x;x,Gp) = —48;,p + 89,0,Gp — 4x, 0, p — 4%, 9,p,
& ,(x,x,Gp) = —249, 9, p.
By (30) and Lemma 2, we have
[ajaka(x, 2)Gp(2) dI(z2)
S x=0
= n(n + 2)I(z;2,Gp) — (n + 2) 8, 1(Gp)
= (n+2)8,Gp(0) - 3 8,p(0) + 3, 3,Gp(0)
—(1/2(n + 4))3,;9,p(0) — (n +2) 8,Gp(0) + (n +2/2n) 8,,0(0)
= 8;(1/n)p(0) + 3,3,Gp(0) — (1/2(n + 4))9, 9, p(0).
By (49), we obtain (45).
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Direct computation shows
A_2(xixjkap) = 22/8jkxi Gp + ZZ/xjxk 9,Gp — xx;x,p,
A2_2(xixjkap) = SZ’Sjk d,Gp — 42’8jkxip + SZ/xic?j 3,Gp
—4Z'xjxk a;p,
A ,(xx%,Gp) = —24).8;, 9,p + 489,0,0,Gp — 24Y 'x,9, 9, p,
A* ,(xx;x,Gp) = —1929,9; 3, p,
where ¥’ denotes the sum of cyclic permutations of (/). By (31) and Lemma 2,
[aiajaksz(x, 2)Gp(z) dI(z2)
=n(n+2)(n+ 4)I(zizjszp) ~n(n+4) Z/I(ziGp)Sjk

= 9,0;9,Gp(0) — (1/2(n + 6))3,9;3,p(0) + (1/n + 2)2/8jk d,p(0).
By (49), we obtain (46). O

x=0

8. Proof of Theorem 2. Now we are ready to compute wy(0), v4(0), w,(0)
and v,(0).
By (13) and (21),

A_5ue(0) = —Aqu(0) =0,
A yup=—A_,A0u=2R;,09;9,u.
Hence, by (20) and (32), we obtain
wy(0) = (1/2n)uy(0) + (1/72n(n + 2)(n + 4))R 3,8, 9,u(0).
Similarly, by (20), (34), (35) and formulas in Section 4, we obtain
v(0) = —(1/12n(n + 2))R,,d; 3,v(0)
+(1/36n(n + 2)(n + 4))R 9, 3,u(0).
1t follows from Lemma 5 and the above two expressions that
(50) we(0) + v5(0) = (1/12n)u(0) + (1/12n%(n + 2))su(0).
By (14), (20), (33) and the formulas in Section 4,
w,(0) = (1/2n)u,(0) + (1/144n(n + 2)(n + 4)) 9,s 9,u(0)
+(1/192n(n + 2)(n + 4)(n + 6)) ;R ;, 3,0, 3,u(0).
Similarly, by (20), (34), (36) and the formulas in Section 4, we obtain
v,(0) = —(1/24n(n + 2)) 9,5 9,0(0)
—(1/24n(n + 2)(n + 4)) 8,R;, 3,9, 0,0(0)
+(1/72n(n + 2)(n + 4)) 3,5 9,u(0)
+(1/64n(n + 2)(n + 4)(n + 6)) ;R ;, 3,8, 9,u(0).
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It follows from the above two expressions, Lemma 5 and the fact that d;s =
2 3, Ry, which we have seen in Section 4, that

(51) w,(0) + v;(0) = (1/2n)u,(0) + (1/24n(n + 2)*(n + 4)) ;5 3,u(0).

Now with the help of (15), (16), (50) and (51), we can prove (5) by comparing
(37) with .

E"[T]E™[g(Xy/T)].
Finally, (6) follows from (5) and (38). O

REMARK. M. Pinsky recently proposed an expansion of
E*(exp(~bT,/r*)g( Xy /7))

which can be computed in a way similar to Theorem 1. Our major results can be
obtained as consequences of this expansion.

Acknowledgment. The author wishes to express his gratitude to Professor
M. Pinsky for suggesting the extension of his result in [7].
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