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ON LOG-CONCAVE AND LOG-CONVEX INFINITELY
DIVISIBLE SEQUENCES AND DENSITIES

By BJORN G. HANSEN
Eindhoven University of Technology

We consider nonnegative infinitely divisible random variables whose Lévy
measures are either absolutely continuous or supported by the integers.
Necessary conditions are found ensuring that such distributions are log-con-
cave or log-convex.

1. Introduction. Log-concavity and log-convexity of functions and se-
quences in probability have been of interest to several authors, e.g.,, Karlin
(1968). Ibragimov (1956) calls a distribution strongly unimodal if its convolution
with any unimodal distribution is unimodal. He proves that the set of strongly
unimodal probability densities is equal to the set of log-concave densities. An
equivalent result for log-concave discrete probability distributions has been
proved by Keilson and Gerber (1971). Much work has been done on the uni-
modality of infinitely divisible distributions [cf. Yamazato (1978) and Sato and
Yamazato (1978)], but little on strong unimodality. The study of log-concave
functions and sequences is thus a relatively unknown field in probability, with
important applications in the fields of statistics and optimization. Log-convexity
is of interest in the study of reliability and of infinitely divisible random
variables. Steutel (1970) proves that all log-convex discrete probability distribu-
tions are infinitely divisible. The absolutely continuous analogue is also proved
in Steutel (1970).

In this note we consider distributions of nonnegative infinitely divisible
random variables whose Lévy measures are either absolutely continuous or
supported by the integers. We prove that for such distributions to be log-concave
(log-convex), it is necessary that their Lévy measures be log-concave (log-convex).
Our results in the discrete case contain an analogue of Yamazato’s (1982)
concavity result (it also provides an alternative proof of this result), and an
analogue to the convexity result for renewal sequences in de Bruijn and Erdos
(1953).

2. Discrete distributions. In this section we consider infinitely divisible
discrete probability distributions (p,)>_, on N, = {0,1,2,...}. All sequences
considered here will be real-valued and indexed by N: they are denoted by (a,),
(p,) etc. A sequence (a,,) is log-concave if (a,) is nonnegative and (log(a,)) is
concave, or equivalently if a, > 0 and

2 =
(1) at>a,,,0, ,, n=123,....
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If the sequence satisfies (1) with strict inequality, then the sequence is said to be
strictly log-concave. Similarly, (a,) is log-convex if a, > 0 and the sequence
satisfies

2 =
(2) a’<a,.q0,,, n=123,....

(a,) is said to be strictly log-convex if (2) is satisfied with strict inequality.
A probability distribution (p,) on N, with p, > 0 is infinitely divisible if and
only if it satisfies

n
(3) (n + 1)pn+l = Z rkpn—k’ n= 0’1:2:"',
k=0

with nonnegative r, and, necessarily, ¥¥_,7./(k + 1) < oo [cf. Steutel (1970)].
All log-convex distributions are infinitely divisible. This is easily proved by
induction since

n—1

I2PpDo = PpPp+1 + Z rk(pn+lpn-k-1 - pn—kpn)
k=0

is positive if ( p,) is strictly log-convex and noting that any log-convex sequence
can be written as a limit of strictly log-convex sequences. Not all log-concave
distributions are infinitely divisible since

r, = Py Y(2pypo — P?)

is not necessarily nonnegative when ( p,) is log-concave.

The proofs of the main theorems in this section rely on two equations derived
from (3). Though easily verified using (3), the equations were rather hard to find.
Because of their importance we state them in a lemma.

LEMMA 1. Let (p,) and (r,,) be related by (3) and let p_, = 0. Then

m(m + 2)(1’3;“ _pmpm+2)

(4) =Pm+1(roPm—Pm+1)

m l
+ Y Y (Pro1Pmt-1 = Pm—tPm-i1-1)(Tasa?t = T1s1T2),
1=0 k=0
"m+1(m + 2)(pm+1pm+3 _P;%¢+2)

(5) =pm+1(rm+2pm+2 - rm+1pm+3)

m
+ Z (pm—kpm+2 - pm+1pm—k+1)(rm+2rk - rk+lrm+l)'
k=0

Relation (4) is a discrete analogue of equation (10) in Yamazato (1982),
whereas (5) is an analogue of formula (7) used by Bruijn and Erdés (1953). We
shall need the following lemma.
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LEMMA 2. Let (p,) and (r,,) be related by (3) with p, > 0. Then

() if (p,) is strictly log-concave for n = 1,2,..., m, then ryp,, — Pp+1 > 0;
(i) i (r,) is strictly log-convex and ri —r, <0, then I, oPmi2 —
rm+1pm+3 > O’

Proor. If (p,) is strictly log-concave, then (p,,,/p,) is decreasing, so

To = P1/Po > Pm+1/Pm-
If (r,) is strictly log-convex, then (r,,_,/r,) is increasing. Hence,

T
(m+3)ppig <Pmialo+ (m+2)p,,, max { }

l<ksm+2\Tp_,
T, T,
m+2 m+2
<PuiaT— +(m+2)py,, —. o
Tm+1 Tm+1

THEOREM 1. Let (p,) and (r,) be related by

n
(n+1)pn+1= Zrkpn—k’ n=0’1’2:---,
k=0
with r, > 0, p, > 0 and let (r,) be log-concave. Then

(p,) is log-concave if and only if r§ — r; > 0.

PROOF. Suppose that (r,) is strictly log-concave and rZ — r, > 0, then (r,,) is
positive and hence ( p,) is positive. Observe that

(6) 2(p} - pop2) = P§(r3 — 1)
By using (6), Lemma 2(i) and applying induction to (4), we see that (p,) is

strictly log-concave. The proof is completed by noting that any log-concave
sequence can be written as a limit of strictly log-concave sequences. O

THEOREM 2. Let (p,) and (r,) be related by

n
(R+ )P, = X I'Du_ps n=0,1,2,...,
k=0
with nonnegative r;, p, > 0 and let (r,) be log-convex. Then

(p,) is log-convex if and only if r§ — r; < 0.
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PROOF. As in Theorem 1, except that Lemma 2(ii) is used and induction is
applied to (5). O

It is curious to note the difference in (4) and (5). We were not able to find an
equation of the form (4) to prove Theorem 2 or one of the form (5) to prove
Theorem 1.

REMARK 1. The assumption that (p,) is a probability distribution is not
used in the proofs of Theorems 1 and 2. These theorems are thus true for
arbitrary nonnegative sequences related by (3).

3. Absolutely continuous distributions. In this section infinitely divisible
probability distributions F on R, with absolutely continuous Lévy measures are
considered. We obtain two results on the log-concavity and log-convexity of the
densities of F, which are analogues to those obtained in Section 2. The result on
log-concave densities is proved in Yamazato (1982). We here propose a proof
based on applying a limiting argument to Theorem 1. This proof can easily be
adapted to log-convex densities, thus giving the absolutely continuous analogue
of Theorem 2.

A function f on R is log-concave (log-convex) on an interval I if f is positive
on I and log( f) is concave (convex) on I. f is said to be log-concave (log-convex)
if I = {x|f > 0} is an interval and f is log-concave (log-convex) on I. As in the
discrete case, f is strictly log-concave (strictly log-convex) if log(f) is strictly
concave (strictly convex).

A probability distribution F on (0, 00) is infinitely divisible if and only if there
exists a nondecreasing measure H such that

(7) f()"udF(u) - /O‘F(x - u) dH(u),
®) / “utdH(u) < oo,

where H and F determine each other uniquely [cf. Steutel (1970)]. If F and H
have densities f and A, then

©) *f(x) = fo"h(x — ) f(u) du.

Without loss of generality we assume that inf{x|f(x) > 0} = 0. It is shown in
Steutel (1970) that all absolutely continuous distributions with log-convex densi-
ties are infinitely divisible. As in the discrete case, not all distributions having
log-concave densities are infinitely divisible, e.g., f(x) = cexp(—x?) for x €
(0, 0).

We begin with a lemma.

LEMMA 3. Let f and h be continuous and related by (9). Suppose h is
monotone on (0, ) for some ¢ > 0 and 0 < f(0 +) < oo. Then h(0 + ) = 1.
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PROOF. Suppose h is nonincreasing on (0, ¢) and 0 < f(0 + ) < o0. Then
h(0 + ) > 0. From (9) it follows that for 0 < x < g,

A0 +) zxf(x)//:f(u)du,
h(x) < xf(x)/fo(u) du.

Letting x — 0 the right-hand sides tend to one, so A(0 + ) = 1. Similarly, if A is
nondecreasing. O

THEOREM 3 (Yamazato). Let F be an infinitely divisible distribution fur.ction
on (0, 0) with an absolutely continuous Lévy measure H. Let f and h be the
densities of F and H, respectively, and assume that h is log-concave. Then

f is log-concave if and only if (0 +) > 1.
PROOF. Suppose 4 is log-concave and A(0 + ) > 1; then A must be continu-

ous on I. Define (r,(%)) by

n+1
rn(k)=h( % ), n=0,1,2,...,

and any k € N,. Then (r, (%)) is log-concave, and since A(0 + ) > 1 we have
(ry(R))? > ry(k), for large k. By (8) and the continuity of A we see that
Yr(k)/(n + 1) < oo. For fixed % define ( p,(k)) by

(n + l)pn+1(k) = an—l(k)rl(k)’ n = 07172)°°° ’
=0

(10) 3
po(h) =kexp(— 5 r(k)/(n+1)] >0,

n=0

with X p, (k) = k. By Theorem 1 and Remark 1 the sequence ( p, (%)) is log-con-
cave. Let

p(x) = X k7'p(k),
n>0
n<kx

H(x) = ¥ K k).
=)

From (10) it follows that

f[o,x+k—n]“d”k(“) = /[O,x]Pk(x — u) dHy(u),
(11)

n+1 n+1
Lpea®) = [ W - u] anw.

By Helly’s first theorem [cf. Feller (1971)] there is a subsequence ( P,,,) converg-
ing weakly to some distribution function, P say, as s — c. Hence, since
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H, — H, by Helly’s second theorem

'/IZO

Since H uniquely determines F in (7) we must have F' = P. Let

udP(u) = -/[‘0 x]P(x — u) dH(u).

!x]

(12)  ful(2) = (BaiB) " T (R(R)TT, e |7

nn+1)

Then f, is a log-concave function of x. Let n > co and & — o in such a way
that 2~ %n + 1) > x. Then it follows from (9), (11) and (12) that

n+1 n+1
e

ap(x) = kli_r}r:O = '/[‘O’x)h(x —u)dF(u) = xf(x) ae.

n— oo
kY (n+1)>x

Since log-concavity is preserved under convergence, F' has a log-concave den-
sity p. Any log-concave function with A(0 + ) > 1 can be written as a limit of
log-concave functions with ,(0 + ) > 1, completing this part of the proof.

Conversely, if f and h are log-concave, then h(0 +) =1 by Lemma 3 if
0 < f(0 +) < o0. If f is log-concave, then f(0 +) cannot be infinite. If f(0 +) =
0, then f is nondecreasing on (0, &) and

xf(x) < f(x)j:h(u) du.
Letting x — 0 yields (0 +) > 1. O

The proof of Theorem 3 can easily be adapted to log-convex densities by using
Theorem 2 instead of Theorem 1. We then obtain

THEOREM 4. Let F be an infinitely divisible distribution function with an
absolutely continuous Lévy measure H. Let f and h be the densities of F and H,
respectively, and assume that h is log-convex. Then

f is log-convex if and only if h(0 +) < 1.

4. Applications and counterexamples. In this section we define a class of
infinitely divisible distributions in terms of their Lévy measures and determine
under what conditions a distribution in this class is log-concave or log-convex.
An application of this result shows that the reverse statements of our main
theorems do not hold. Finally, we characterize the log-convex discrete stable
distributions.

Let I, denote the class of distributions having Lévy measures (7,,) of the form

(13) rn=(n+1){fby"dm(y) +fay”dy}, n=0,1,2,...,
0 c
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with b < 1, ¢ < a <1, m bounded by Lebesgue measure and
[fdm(y) <b-a, ifb>a,
a

fcdm(y)<c, if ¢> 0.
0

The proof of Theorem 2 in Yamazato (1982) can be adapted to prove the
following theorem if Theorem 3 in Hansen and Steutel (1987) is used in the same
fashion as Lemma 4.1 in Yamazato (1982).

THEOREM 5. Let (p,) and (r,) be related by

n
(n+1)pn+l= Zrkpn—k’ n=0’1:2’”°’
k=0

with nonnegative r,, and p, > 0. Let (p,) € 1,. Then

(i) if c=0 and a = b, then (p,) is log-concave;
if c=0 and a < b, then (p,) is not log-concave;
(ii)) if c=0 anda = c > b, then (p,) is log-convex;
if c>20anda = b > c, then (p,) is not log-convex;
if c=0 and b > a > c, then (p,) is not log-convex;
ifc=0andb < a = c, then (p,) is log-convex.

REMARK 2. The absolutely continuous analogue of Theorem 5 can be ob-
tained by applying the same type of limiting argument as in the proof of
Theorem 3.

REMARK 3. Let m in (13) be Lebesgue measure on (d, b), and 0 otherwise.
Then r,=b"-d"+a” and r2—r,,,7,_, <O for large n if a > b>d >0,
whereas (p,) is log-concave by Theorem 5(i). Similarly, (r,) is asymptotically
log-concave if 0 = d < b < ¢ < a, whereas (p,) is log-convex by Theorem 5(ii).
Hence, the reverse statements of Theorems 1 and 2 do not hold.

A discrete analogue of an absolutely continuous stable distribution was
proposed in Steutel and van Harn (1979). They proved that a distribution ( p,) is
discrete stable with exponent y if and only if its generating function is of the
form

P(z) =exp(-A1-2)"), ~ye(0,1],A20.

Taking generating functions on both sides of (3) and comparing with the Taylor
series expansion of —A(1 — 2)?, one sees that (r,) is strictly log-convex and that
r¢ — r, < 0if and only if y < 1 — r,. Applying Theorem 2 to these observations

gives
THEOREM 6. Let (p,) be discrete stable with exponent y. Then
(p,) is strictly log-convex if and only if A <y~ ! — 1.
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The Lévy density 2 of an absolutely continuous stable distribution on (0, c0)
is of the form cx~7, hence A is log-convex and (0 +) = co. Applying Theorem 4
we have, rather unexpectedly, that there are no log-convex stable densities on
(0, 00).
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