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AN EXAMPLE ON HIGHLY SINGULAR
PARABOLIC MEASURE!

BY ROBERT KAUFMAN AND JANG-MEI WU

University of Illinois

For each 8 > 0 there is a parabolic operator in the half-plane R, X R}
whose parabolic measure is supported by a boundary set of dimension < 8.

0. Introduction. We consider solutions of parabolic equations Lu =
a(x, t)u,, — u, = 0 in the region {¢ > 0}, where

(0.1) 0<A; <a(x,t) <Ay<+o0

and a is of class C? in the region; so all solutions are classical. Because
a(x, t) < A, the Dirichlet problem (with bounded, continuous data on the line
t = 0) has solutions and these satisfy the maximum principle. These remarks are
substantiated in Appendix 1. The value of a solution at (x, £) can be treated as a
linear functional of the boundary values; the value is therefore represented by a
probability measure & on the boundary—the parabolic measure.

THEOREM. For each 8 > 0 there is some coefficient a(x, t), C* in {t > 0},
satisfying (0.1), for which all parabolic measures are concentrated on a single
boundary set of Hausdorff dimension < 8.

All sets on ¢ = 0 of A,/A, dimensional measure 0 have parabolic measure 0;
see Appendix 2. Because of certain technicalities in our method, the number 8 in
our example satisfies § < ¢/log(A,/A,), but perhaps an improvement would give
log(1/5) = log(Ay/A,).

For the region {¢ > 0} and operators L with a coefficient continuous up to the
boundary ¢ = 0, Fabes and Kenig [3] proved that parabolic measures can be
singular with respect to Lebesgue measure. Their construction is based on Riesz
products in which the factors are ¢,(y) = (1 + 1/ V2 cos h,y). To determine the
smallness of a support of the parabolic measure, it would be necessary to control
the growth of the numbers A, or the size of the gaps h,,,h,'. For such
equations the parabolic measures vanish on all sets of dimension < 1; see
Appendix 2.

The singularity shown by [3] and by the present example cannot occur for
parabolic operators in divergence form [1].

As is well known, there is a close connection between certain diffusion
processes and the operator L. The following elementary inequalities on parabolic
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1822 R. KAUFMAN AND J.-M. WU

measures can be stated in probabilistic terms and were found by experimenting
with It6’s formula; but each is stated analytically.

We conclude this Introduction with a description of one difference between
parabolic and elliptic equations; this will be done with the aid of a stochastic
process. (This description is not part of the formal proof) Let W(%),
— o0 < t < o0, be a Wiener process with decreasing time, i.e., with the basic
o-algebras decreasing in time. Let X(¢) be a solution of the stochastic differential
equation dX = (2a(X(t), t))'/2 dW, observing the usual measurability and the
time-reversal. Let Y = u(X(t), t), where u is a function of class C2. It6’s formula
yields

dY = u,(X(¢),t)dt — u,(X(t),t)a(X(t),¢)dt
+u (X(t), t)(2a(X(2), t))* dW

[2], which explains the connection with the equation Lu = 0. Suppose that
a(x,t)issmallonaregion0 <t <1, —1 <x <0. Beginningat x=0,¢t=1,a
solution (visualized as a particle moving according to a certain law) has only a
small chance of attaining the position x = — 3, say, before ¢ = 0. The same is
true for the position x = + }, no matter what value a(x, ¢) takeson 0 < x < 1.
Beginning at x = +1, ¢ = 1, the particle may nevertheless attain x = 0 before
t = 0 with substantial probability. These observations have no apparent ana-
logues for elliptic equations. See the remarks after Lemma 3.

The situation for the region {x > 0} is unclear; a possible example begins in
nearly the same way as for the region {¢£> 0}, but the conclusion is more
problematical.

The obvious fact that a line separates a plane is very useful in the example;
therefore we do not know about parabolic equations in R X R*, R® X R*, etc.

1. Elementary estimates on parabolic measures. In any region § consid-
ered in the following discussion, we assume that a(x, ¢) is C2in , 0 < A, <
a(x,t) < Ay, < + o0 and let Lu = a(x, t)u,, — u, and wg be the parabolic mea-
sure on d{ with respect to 2.

LEMMA 1. Letc,>¢,>0,Q={—-cy,<x<¢, t>0}andS=90nN {x=
¢,}. Then

0 O(S) < cyef’?, fort>0.

Proor. The function x is a solution of L = 0. Hence the value of x at (0, t),
which is 0, is equal to [;ox dw®9(y, s). Therefore

f xdw®9(y,s) = —f xdo®9(y,s) < c,.
39N (x20) 99N (x<0}

Hence ¢,09(S) < ¢,. O
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LEMMA 2. Let x, > 0 and Q be the region {x > —x, and t > 0}. Suppose
that a(x,t) < Ain QN {—xy, < x < 0}. Then
W@ D(3Q N {x = —x,)) < e~ x0/04424)

for 0 < t < x2/(12A).

PROOF. Letv > 0and p = A(6vx0 + 9»2x8). The function u on &, defined by
u=et forx >0, and u = e " *H for —x, < x < 0, satisfies Lu<01nQand
u>e™ on QN {x = —x,}. Hence it follows from the maximum principle
that, for 0 < ¢ < x2/(124),

S) t)(aﬂ N {x — _xO}) < eMt— vxd _ eA(6vx0+9v 2xd)t—val

< exg(QAxotu2 - 1/2v)

For each fixed ¢, the exponent takes its minimum —xO/(144tA) when v =
(36Atx,)" 1. O

LEMMA 3. Given 0 <e<107* k>0 and B real, let @ = {x < &8, ¢t > 0}
and assume that a(x, t) < * on {—¢ < x < 0}. Then for any vy > max{1, B},.

(1.1) W3 N {x=¢f}) < F + e " /(144¢),

whenever x < 0 and 0 < t < ¢277%/12.

ProoOF. From the maximum principle, it is enough to prove (1.1) when x = 0.
Let D = {—¢" < x < ¢f}. Then

w02 N (x =¢f}) < 0§D N {x =¢f}) + 0B P(ID N {x = —&'})

— _2v—k
< g7 B 4 o~/ 144t

and last inequality follows from Lemmas 1 and 2 and the maximum principle. O

COROLLARY. In Q= {t> 0, |x| <e&/2}, let a(x,t) <e* for 0 <x <e/2.
Then

€ €
(1.2) wS"‘)(|x| = 5) <7 for 0 < t < /2,

This follows from the Lemma 3 by letting 8 = 1, y = 2.1 and a simple change
of variables.

In view of Lemma 3 and its corollary, it is justified to call a rectangle where
a(x, t) is very small an obstacle for the process. The previous estimates give the
probability of a particle crossing an obstacle within a given time; and they
estimate, starting at a point inside an obstacle, the chance that the particle will
get out in a given time period. Our construction is based on these estimations.
We note that the values of A; and A, have not been used in these estimates.
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LEMMA 4. Let a(x,t) be C? in D= {x >0, t> 0} satisfying 0 < A; <
a(x,t) < Ay, < + 0. Given g, 7 > 0, then

oy ({x=0})>1-c¢,
whenever r < s < 21 and 0 < y < n = e(wrA,)/%([le "/ dr)~ L.

PROOF. This is based on the special function v(p) = 7~ /2(ge~""/* dr, which
satisfies v(0) = 0 and v(+ o) =1. On the region D, a function u(x,t) =
o(Axt~ /%), A > 0, is a subsolution (Lu > 0) if A,A* <1, and a supersolution
(Lu < 0) if A;A2 > 1. We choose A = A;1/2 so that u(x, t) = v(Axt™/2) is a
supersolution. Let D, be the subregion of D defined by the inequalities x > 0,
Axt™ 172 <1 or Nx% < t, and B, the part of the boundary defined by ¢ = A%x2.
Then v is a supersolution on Dy, u =v(1) >0 on B, so that w3 *(B,) <
u(y, s)/v(1). But u(y, s) < A;/2ys~1/2, so the parabolic measure of B,, under
the stated conditions on (y,s), is < A;'/%r71/2q/v(1). Subtraction gives a
lower bound for the parabolic measure of {x = 0}.[The upper bound a(x, t) < A,
is not used in this lemma.] O

LEmMMA 5. Let a(x, t) be C? in H = {t > 0} satisfying 0 < a(x,t) <e *<
+ 0 and Lu = au,, — u,. Then there exists d > 0, depending only on ¢ so that

o D({|]x| < me?, t =0}) > 1 — &,

form=1,23,....

Proor. The parabolic measure is decreased if the region H is decreased to
the region H,, = {|x| < me?, ¢ > 0}. We estimate the parabolic measure [at
(0, d)] of the lateral boundaries, using Lemma 2: x, = me%, t = d, A = ¢ *. The
estimate of Lemma 2 can be applied if d < m?¢®/12, so we require d < ¢ /12. To
obtain the stated lower bound, we need 2 exp(—m2e®/144d) < ¢ 5" or
d 'm?%8(12)"2 > 5m(log e~ !) + log2. A solution d for m =1 solves all the
inequalities. O

2. Preliminary construction. Given 0 < ¢ < 1074, let

-1
n= 84‘/77(2/1‘2_,2/4 dr‘)
0

(i.e., 7=€2/4, A, = ¢* in Lemma 4) and choose a(x) to be a C? function on R,
of period 1, which has value ¢ on [ —2¢,2¢], e % on [2¢ + 4,1 — 2¢ — 3], and is
monotonically increasing on [2¢,2¢ + 1] and monotonically decreasing on [1 —
2e — 1,1 — 2¢], with a(x) = a1 — x) for x € [0,1].

On the half-plane H = {¢ > 0}, let Lu = a(x)u,, — u, and w be the parabolic
measure on {¢ = 0} with respect to the region H and the operator L.

PrOPOSITION 1. Let I =[3¢%1 — 3e?] X {t =0}, E = ([3% 4e — 3e2] U
[1 — 4e + 3e%,1 — 3¢%]) X {t =0} and

S = (3¢2,1 — 3¢?) x (0, £2).
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Then for (x,t) € H\ S,
(2.1) WO E) /0 >D(I) =1 — &4

ProoF. To prove Proposition 1, it is enough to show (2.1) for (x, £) € dS \
(t = 0} because of the Markov property

Let Pl = (382: 0)’ P2 = (38 2), I>3 (28, 2), P = (2e + n & 2)’ P =
1-2e—1,¢e%), Po=(1—2¢¢%), P,=(1— 3¢ 82), = (1 — 3¢2,0), P9
(2e, e2/2), P10 (25 + 1, £2/4), P11 A-2e—1m,¢ /4), P, = (4e — 3¢%,0),

= (4¢ — 3¢%, %), Py, = (—¢, &%), P = (¢, €%) and denote by PP, the closed

hne segment Jommg P and P,.

We claim that

with respect to the rectangle D, = P,P, P, P;, the parabolic

(22)  easure W (PP, U P,P,)) > 1 — 4, for (x,t) € P,Py;

(2.3) with respect to the region D, = {x > 2¢, ¢ > 0}, the parabolic
: measure ) Y P,P,) > 1 — ¢, for (x,t) € P,P, U P,Py;

with respect to the region D, = {x < 4¢ — 3¢%, t > 0}, the
(2.4)  parabolic measure wf?(P,P3) <e, for (x t) € PP,V
P,P, U P,P,; consequently, w® D{x > 4e — 3¢%, t = 0}) <g

2.5) with respect to H, w*9(E) > 1, for (x,t) € P,P, U P,P, U
©)  pp,
Let us assume these claims for the moment. Let
T=1I\E = (4¢ — 3¢%,1 — 4e + 3¢%) X {¢t =0}.

If (x, t) € P,P, U P,P,, it follows from (2.4), (2.5) and the maximum principle
that ™ 9(E) > 1 and & *)(T) < & Thus (2.1) holds. By symmetry, it holds for
(x,t) € PP, U P,P,.

If (x,t) € P,P,U P,P,, from (2.3), (2.4), the Markov property and the
maximum principle, it follows that

W=O(T) = [ oo(T) dufy;(y, 5)
aD,

(2.6)
< e+ supw?(T) < 2¢;
PRyRy

and from (2.3) and (2.5), it follows that
W E) = [ o9(E) deff;(, 5)
oD,

(2.7)
> (1 — ¢) inf 0@ 9(E) > L
( e);,:lpsw (E)>3

Similarly (2.6) and (2.7) hold for (x, t) € PP, U P,P,,. Therefore (2.1) holds for
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If (x, t) € P,P,, from (2.2), (2.6) and the Markov property, it follows that
W(T) = [ @(T) duff (3, s)
aD,

<4e+ sup &(T)
P PyURP,

< 6¢;
and from (2.2) and (2.7), it follows that

W= O(E) = [ o(T) dufs:"(3, 5)
aD,

> (1 — 4e¢) lnf W N(E) > L.
4 10
Hence (2.1) holds for (x, t) € P,P,.

Therefore (2.1) holds on 4S \ {¢t = 0} and hence on H \ S.

It remains to prove the claims (2.2)-(2.5).

We recall that a = e7*on 2e + 7 < x < 1 — 2¢ — u; (2.1) will follow from the
maximum prlnc1ple after we prove that corr%pondlng to the equation Lu =
¢ *u,, — u, = 0, with respect to the region D = {lx| < 3, t > 0}, the parabolic
measure

W§E/9(ID N {t=0}) < 4e, for |x| < 3

In fact, we let v(x t) = e/ 10e%(t + g4) /2 ¢ "2/“(”“) for ¢t > —¢* Clearly,
Lv=0 for t> —¢* and v(x,0) > 1 for |x| < 3. Hence by the maximum princi-
ple, o* /93D N {t =0}) < v(x, e2/4) < 4¢ for |x| < 1. This estimate is by no
means the best possible; with some effort one can show that 4¢ can be replaced
by e—c/e

Claim (2.3) follows from the choice of 1, Lemma 4 and the maximum
principle.

Claim (2.4) follows from (1.2) after a translation and a scale change of the
region.

Fix (x,t) € PP, U P,P, U P,P, and let D4—{x> —2¢ + 66, t > 0}, Dy =
{—2¢ + 6% < x < 2¢, ¢t > 0}. From (2.4), the maximum principle and the Markov
property,-it follows that

0®9({t=0} \E) < wfs (P Prg) + “’g’t)(aD«i N {x < 352})

<&+  sup W N(ID, N {x < 3e?))
(3¢*,5)EPP,

<e/24 (1 - inf ({8 <x < 26, £ = 0}))-
(352,3)51’1&

Because a(x, t) = ¢* in D;, the infimum in the previous inequality is bounded
below by 1inf,_,_20(0, s), where v is the parabolic measure of {—¢ < x < ¢,
¢t = 0} with respect to the region {—¢ < x <, ¢t > 0} and the equation ¢*,,
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v, = 0. After change of scales, we obtain easily that
inf ©(0,s) = inf u(0,7)> %,
O<s<e? o<r<e
where u is the parabolic measure of { —1 < x <1, ¢ > 0} and the ordinary heat
equation u,, — u, = 0. This proves that *9({t = 0} \ E) < e/2 + 3, and the
estimate (2.5) follows.
This completes the proof of Proposition 1. O

3. The construction of a(x,t). Given 0 < & < 10™%, we retain a(x) from
Section 2 and choose d as in Lemma 5.

Let 7,> 8> 7 > 8 > 1T >8 >7> -+ >0 be defined as 7, =

©_ ¢2k(e2 + d) and s,=1,—¢""? and let T, be the nth major strip

(s, < t<rt,), S, be the nth minor strip {7,,, <t<s,}. Let a(x,?) be a C?
function on H = {t> 0}, which satisfies ¢* < a(x,?) < ¢ 4, is defined by
a(x,t) = a(x) on {t > sy} and a(x, t) = a(e”"x) on T,; has period 1 in x, with
a(x, t) = a(l — x, t) on S,, moreover, for (x,+ 7,,,) € S,, a(x,t+ 7,,1) =
a(e~"x, e 2"t + 7). Let Lu = a(x, t)u,, — u, in H= {t > 0}. .

The introduction of minor strips allows a(x, ) to be smooth, thus L has
classical solutions. Minor strips can be omitted if we consider weak solutions.

In T,, a = ¢* on each rectangle: {e"(k — 2¢) < x < "(k + 2¢), 5, <1 < 7.},
with integer k. In view of Lemma 3 we call these rectangles obstacles.

PROPOSITION 2. Let P be the fixed point (0,100). Given any integers n > 1
and k, denote by J the interval [ke",(k + 1)e"] X {t = 0} and by F the interval
([ke™, (k + 4e)e”] U [(k + 1 — 4e))e”, (k + 1)e"]) X {t = 0}. Then

(3.1) WP(F)/wP(J) > 1 — /2
Proof. Fix n and k, and let .
E={(x,s,): (k+3%)e" <x < (k+4e — 3e2)e" o
(E+1—-4e+3%)e"<x<(k+1- 3e2)en}
and
I={(x,8,): (E+3)e"<x<(k+1- 3e2)em}.

After a change of scales x = ¢~ "x and ¢ — e~ 2"t, we may apply Proposition 1 to
T, and obtain

Wy (E) /o (I) > 1 - /4,

for all x. The Markov property implies that

(3.2) ‘*’(I:>s,,}(E)/‘*’(I:>s,,)(I) >1— ¥4
To continue the proof, we make the following claims:
(3.3) wiF)(F)>1—¢ for(x,s,) €E,
(3.4) W (F) /o (I /F) > (26) 7,

for (x,s,) ER X {t=s5,} \ L
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From (3.3), (3.4) and the Markov property, it follows that

WA(F) = [ off *(F) dofy , (%, 8,)
EU(INE)UR X {s,}\I) "

> (1 - e)oh,, (E) + (2¢) 7 /R . )\Iwg.m(J \F)dof., (x,8,)

and that

W(INF) = [ wff*(J \ F)deF., (,8,)
EU(INE)UR X (s,)\I) "

< ewﬁ,sn)(E) + w{;>sn)(I \E)

+ W (I N\ F) def;», (%, 8,).
RX{s,}\1
Combining these estimations with (3.2), we conclude (3.1).

Because of the periodicity of a(x, t), we may assume that n = k£ = 0 in the
proofs of (3.3) and (3.4). Thus I = [3¢%,1 — 2¢2] X {s,}, E = ([32,4¢e — 3¢%] U
[1 — 4e + 3e%,1 — 3e%]) X {80}, J =[0,1] X {0} and F = ([0, 4¢] U
[1 — 4¢,1]) X {0).

We recall that the heights of strips 7, and S, are ¢2"*2 and &*"d, respectively,
a(x, t) has period €* in x on T, U S, and each obstacle in 7, has width 4e"*?,
Denote by E(z) the set [3¢? — 2z,4e — 3e> + 2] U [1 — 4e + 3¢ — 2,1 — 3¢® + 2]
formed by widening E by a width 2; denote by E, and E, sets on {t = 7,} and
{t = s,)}, respectively, defined by

3¢?
E;=E, E | = E(¢?), {ZE?,

3e? 5¢?
E,=E —2—+283, E;=FE T+2£3’

5¢?
E3-=_E -'-2—+283+3€4 ,

2 n-1
s =E|l=+2Y (j-1e + (n—1)er],
2 j=2

E =E

n

e nl ‘ ,
5 +2 Y (j=1e& + (n—=1)e" + ne”*'|,
J=2

E =E

e? i :
—+2Y (j-1)¢ + nent|,
2 jm2

where by = we mean that the sets on both sides have the same x-projections,
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and we identify these sets whenever it is more convenient. Clearly, Ef C E, C
E{CE,c --- CE,CE/c --- .Since /2 + 255 4(J — 1)e/ < 3¢2, the pro-
jections of these sets are all contained in F.
For a fixed point @, € E = E{, we obtain from the Markov property and the
maximum principle that
0

o0
(35) on(F) = 1—[ ig,fw8>7,,+,)(En+1) ].—[1 igfw8>s,,)(Er:)'
n n= n

n=0

Because for any @ = (x,, s,) € E., E,,, contains the interval {|x — x,| <
(n + 1)e"*?%} X {r,,,} and s, — 7,,, = de®", it follows from Lemma 5 and a
change of scale that

(3.6) i;},fw8> roi)( Bns1) > 1 — ehnth),

We note that E, = [2¢2,4e — 2¢2] U [1 — 4e + 2¢%,1 — 2¢%] and
a = ¢ton ([—2¢2,2¢%] U [4e — 2¢%,4¢ + 267
U1~ 4e - 282,1 — 4e + 262] U [1 - 26%,1 + 2¢]) X [s,, 7]

Starting at any point (y, ;) € E, in order for the processtoreachR X {s,} \ E{,
the particle must cross at least an obstacle of width ¢2/2 (in x) within time &*. It
follows from (1.2) and a change of scales that

(3.7) igfw{‘f”l)(El') >1—¢/4.

Starting at any point (y,7,) in E,, n > 2, in order for the process to reach
R X {s,} \ E,, the particule must cross an x-interval of width at least (n — 1)¢",
which is (n — 1) times the period of a(:, t) in T,. Applying (1.2) (n — 1) times,
we obtain

(3.8) i}r;fw{‘;s”)(E,;) >1 - (e/4)"", fornz=2.

From (3.5)-(3.8), we conclude that w®(F) > 1 — &. This proves (3.3).

To show (3.4), we consider again n = k& = 0 and fix a point (x,, s;) € R X
{so} \ I; we assume, as we may, that x, < 3¢* because of the periodicity and the
symmetry of a. From the Markov property and the maximum principle, it
follows that

wFo)(F) /oo (J N F) > inf of9(F)/wf>D(J \ F).
0<t,s<sy

We recall that w§%®)(F)> 1 — ¢ from (3.3) and note that x = 2¢ bisects an

obstacle of width 4e™*! in T,, for each m > 1. For 0 < ¢ < s,, applying either

(1.2) or Lemma 4 first, depending on whether (2¢, ¢) is in some T, or in S, then

following the argument of (3.3), we may conclude that w®>9(F) > 1 — &. There-

fore

w0 3)(F) foos0(J \ F) > (2¢) .
This shows (3.4) and the proof is completed. O
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4. Conclusion. We assume that ¢ = N™! with N > 10* and denote by .+,
n=0,1,2,3,..., the o-field of subsets of (— 00, c0) whose atoms are the intervals
[ke",(k + 1)e"], k=0, £1,+2,.... Since points in (— 0, 0) have parabolic
measure 0, the end-points have no importance; because ¢ = N1, the relation
&, C o, ., is correct. Each set

F, = [ke",(k + 4e)e] U [(k + 1 — 4¢)e”, (k + 1)e"]

belongs to <7, . ;. We now write « for the parabolic measure at the point (0, 100)
and use this as the basis for probabilistic assertions. Because o, »=[ke",
(k + 1)e"] is an atom of 7, it follows from Proposition 2 that F, = U +F, » has
the property w(F,|#,)>1— ¢/% The series Lx, — E(x F,1%,) has terms
bounded by 1 and orthogonal in the space L%(dw). The partial sums X} are
therefore o(») [even o(»?/3)] almost everywhere for the measure w. The measure
w is therefore concentrated on a set B described as follows.

For each x € B, there is an integer »(x) such that for » > »(x), we have
x € F, for all integers n=1,2,...,» with at most 2¢/?» exceptions. [The
maximum principle then shows that w*“B) =1 for every (x, t) in the upper
half-plane.] It remains to obtain an upper bound for dim B.

We fix » > 1 and focus on the points x in (0,1), such that »(x) < ». By
assumption x € F, is true for at least r = [v — 2¢/%y] integers, n = 1,2,3,.. ., »,
and these can be chosen in at most ¥}~ '( :) ways. The latter sum has a logarithm
asymptotic to

— [2¢%10g 262 + (1 — 2¢/2)log(1 — 26/2)],

by Stirling’s formula. For each x in (0,1) we use the expansion of x in the base
N = ¢! and, in particular, the first digit up to the » + 1st. When x € E,, the
n + 1st digit of x is restricted to 8 values. When x € F, for a fixed choice of I
integers n among n = 1,2,3,...,» + 1, and x & F, for the remaining digits, the
first » + 1 digits of x can be chosen in at most 8‘N*~/*! ways. Each choice
determines an interval of length N~*~1, From these calculations we can see that
the dimension d of B satisfies

dlog N < —[2¢/2log2¢/% + (1 — 2¢/2)log(1 — 2¢/2)]
+log8 + 2¢/%log N,

ord < c(log N)™ L.

This completes the proof of the theorem.

It may be observed that the term log8 occurs because of certain technical
points in the construction and could perhaps be removed, thereby improving the
estimate to d = O(¢'/?).

APPENDIX 1

We discuss the maximum principle and barriers for operators L =
a(x, t)u,, — u,, with the bound 0 < a(x, t) < A, in the region {¢ > 0}. A basic
role is played by the function v(p) = 7~ /%(fe~**/* ds, v(+ 00) = 1. Then v” < 0
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on (0, + 00) and v”(p) = — 1pv'(p). The function u(x, t) = v(xt™/?A;'/?) is a
subsolution (Lu > 0) for x > 0, ¢ > 0.

Let g be a subsolution on the region ¢£>0, let g <1 and limsupg <0
everywhere on the line ¢= 0. We claim that g < 0 everywhere. To prove
this, we take a large number R > 0 and observe that the function
h=u(R - x,t) + u(R + x, t) is a subsolution on the region |x| < R, ¢ > 0. The
subsolution g + 2 has limsup < 2 on the closed interval joining (—R,0) to
(R,0), and on vertical linesx = R, ¢t > 0,and x = —R, ¢t > 0. Hence g + h < 2
on its domain by the maximum principle for bounded regions. Now A — 2 as
R — + oo at every point (x, ¢) with ¢ > 0. Hence g < 0.

To construct barriers, let the function v be extended to (— oo, +00) by
v(p) = 0 for p < 0. This leads to the extension of u, u(x, t) =0, for x <0, and
this is plainly a subsolution on {¢ > 0}. With this definition of u, we define

h(x,t) = /Vzu(R +x,¢)dR + u(R — x, t) dR.
0

Then # is a subsolution on {¢ > 0} with limit value one at (0, 0), limit ; at (x,0),
when |x| > 1, and limit 1 — |x| at (x,0), when |x| < . Thus 1 — A is a barrier at
(0,0). Similar constructions give barriers at other points. Thus the Dirichlet
problem is solvable.

APPENDIX 2

Let L = a(x, t)3%/dx% — 3/3t in {x > 0} with a satisfying (0.1) and C? in
the region. Let

K(x,t) =t M/2hee=2"/40st for ¢ > 0,

and

H(x, t) _ (xt—3/2)A1/A2e—-x2/4Azt’ forx > 0’ t> 0,
0, forx >0, t < 0.

It can be verified that LK <0 in ¢ > 0 and LH < 0 in x > 0. Therefore it
follows from the maximum principle that sets of A,/A, dimensional measure 0
on t = 0 (or x = 0) have zero parabolic measure with respect to L (or L).
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