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RANDOM CELL COMPLEXES AND GENERALISED SETS

By M. ZAHLE
Friedrich-Schiller-Universitdt

The concepts of random cell complexes, generalised sets and their mean
sets in R? are introduced. Under stationarity conditions various relations
between associated geometrical quantities are derived.

Introduction. Cell complexes have been studied in topology as well as in
differential geometry and algebraic geometry. In the literature on stochastic
geometry one can find them until now only in the special form of random convex
tessellations of the plane and the space or of random mosaics generated by
stationary (Poissonian) hyperplane processes in R?. Thereby, methods of classi-
cal convex and integral geometry in the sense of Hadwiger (1957) and Santalo
(1976) are combined with stochastic invariance properties of the random sets.
Because of the failing geometrical background, similar results for arbitrary
stationary random tessellations of R¢ have not been known even in the case of
convex cells.

The present paper is based on a new global-analytical approach to related
problems of geometry developed by the author. As a particular result, one gets
an answer to a question of Blaschke formulated at the end of the last edition of
his Integral Geometry in 1955. Blaschke found relations between certain
euclidean invariants (the additive extensions of Minkowski’s quermassintegrals)
of two- and three-dimensional euclidean polyhedra and those of the underlying
cells. (Euler’s polyhedron theorem may be considered to be a special case.) In this
connection, he asked whether it is possible to obtain similar results for topologi-
cal polyhedra with smooth cells. This problem was solved in Zahle (1987b) in the
more general context of topological cell complexes in R? whose cells are piece-
wise C!-smooth and satisfy a certain second order rectifiability condition. It will
be shown in a later paper that the whole theory and the stochastic applications
may be extended to arbitrary cells of bounded curvatures in the sense of Zahle
(1987¢).

There are at least three reasons for considering nonconvex (random) cells or,
more generally, cells with singularities:

1. It is mathematically interesting and tractable; the tools are universal and
clear. Many formulas known from the convex case remain valid for general
polyhedra or tessellations and may be completed by new relationships.

2. There exist practical examples, where nonconvex models seem to be more
adapted. For instance, amorphous structures in physical chemistry may be
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described by means of random cell complexes, where the atoms are the
vertices and the atomic bonds arising from certain potential principles de-
termine the edges. Since, in general, the atoms of a ring do not lie in a plane,
the faces of the cell complex cannot be assumed to be linear. Furthermore, the
example of cracks or breaches in materials shows that singularities may
appear.

3. (Random) complexes of “piecewise smooth” cells may be used for approximat-
ing certain (random) fractal sets via current metrics.

The basic idea in the general approach consists in replacing the sets X under
consideration, i.e., the i-cells and the j-skeletons, by their so-called unit normal
cycle Cy. This is a continuous linear functional on the space of differential
(d — 1)-forms on R? x 8?1 associated with integration over the corresponding
generalised unit normal bundle

NorX = {(x,n) € R*x 8% !: x € X, n normal to X at x}.

In this way geometrical quantities as volume, direction and curvature (measures)
and topological characteristics as connectivity numbers may be obtained by the
values of Cy at special differential forms. Simultaneously, from the standpoint of
stochastics, the treatment of random linear functionals (and random measures) is
more convenient than that of random geometric sets. For example, this approach
leads to a new concept of the mean set of a random set or of a Gaussian random
set.

The paper is divided into the following parts:

Section 1: Random cell complexes of the kind mentioned are introduced.
Section 2: Contains a summary of the geometrical background, namely, the
definition of unit normal bundle, associated current and curvature measures, and
the formulation of the basic polyhedron relation (6). The concept of a generalised
set as an arbitrary unit normal cycle is introduced in Section 2.4.

Section 3: Here the main results of the paper are presented: The random sets
determined by a random cell complex are identified with the associated random
currents (unit normal cycles) and their mean sets are defined as generalised sets.
Under the assumption of stationarity, the corresponding random curvature
measures (including m-volume and direction measures as margins) have a simple
structure and the polyhedron formula (6) gets a nice stochastic version (Theorem
3.3.6). This allows computation of the mean geometrical quantities of the
random i-skeletons by those of the typical j-cells and the mean numbers of
J-cells per unit volume, j < i, and vice versa (Corollary 3.3.7).

The special case of stationary random tessellations of R is treated separately
and illustrated by a complete system of mean value relations for the practically
interesting three-dimensional case. [Known formulas for the convex model may
be derived and the results of Weiss and Zihle (1987) are extended.] Finally, the
general relationships are applied to random tessellations generated by stationary
weakly flat hypersurface processes. In particular, the resulting statements com-
plete the corresponding knowledge about Poissonian hyperplane processes and
extend it to the weakly flat case.
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1. Random cell complexes.

DEFINITIONS. For i = ,d let A, be the space of connected compact
i-dimensional submamfolds m; of R¢ w1th boundary and positive reach [cf.
Federer (1959)]. Here by deﬁnition m;=m;U dm,.

A p-dimensional PR-cell complex in R® isa (p + 1)-tuple M = (M,,..., M,),
where the M; are locally finite families from .#; (the i-cells) satlsfymg the
following mmdence relations:

1. The intersection of two i-cells from M, is empty or a j-cell from M s
Jj=0,...,i—1.

2. Any (z — 1)-cell from M;_, is contained in the boundary of some i-cell from
M.

3. The boundary of any i-cell from M; is the (finite) urion of some (i — 1)-cells
from M,_,.

As usual, the corresponding union sets UM; are denoted by |M,|, i =0,..., p,
and said to be the i-skeletons of the cell complex M. The set M, is called a
p-dimensional (topological) PR-polyhedron in R.

We now omit the smoothness condition on the i-cells and let #; be the space
of i-dimensional compact submanifolds with or without boundary which are
representable as PR-polyhedra. Any (p + 1)-tuple U = (U,,..., U,) of locally
finite families U, from %, satisfying the corresponding relations 1’-3’ is said to
be a p-dimensional Upg-cell complex in R |U)|, i =0,..., p — 1, denotes the
i-skeleton and |U,| the Upg-polyhedron associated with U. [Notice that the
i-cells of U, i.e., the elements of U, need not be (simply) connected.]

For a stochastic model it is appropriate to describe the families of i-cells by
point processes: Let .4 be the space of locally finite simple counting measures
on [%; U,]. Here U, is the Borel o-algebra with respect to a suitable topology on
%; which will be introduced in the Remark of Section 2 for geometrical reasons.
The set A(g,) of atoms (counts) of ¢, € A4 will correspond to the family U, of
i-cells. For abbreviation we identify ¢, with A(p;) and write |g;| == |A((p,)|,
u; € ¢, iff u, € A(g;). On A, the usual c-algebra N, is given. Then the basic
space of a p- d1mens1onal random Upg-cell complex may be introduced as

NP = {n=(ng,...,m,): ; €N},

A(n) = (A(np), ..., A(n,)) is a Upg-cell complex}.

(It can be shown that /P e RN, ® --- N p» 1€, this subspace is product
measurable.) Let R = (N, ® - ®§R ») A ) be the corresponding
o-algebra.

In this notation a p-dimensional random Upg-cell complex is a measurable
mapping £ from a basic probability space into [A#(P), R(P)]. We also write
§=(§o---,§,) as a random vector. || is the associated random i-skeleton (the
random p-polyhedron if i = p).



RANDOM CELL COMPLEXES 1745
2. Normal bundles and currents.

2.1. Generalised unit normal bundles and measurabilities. The concept of
generalised unit normal bundles introduced in Zihle (1987a) is appropriate for
describing geometrical properties of cell complexes and more general sets. Let
Upg be the class of locally finite unions of sets with positive reach whose finite
intersections also possess positive reach. The aforementioned i-dimensional topo-
logical polyhedra are all contained in Upp. The unit normal bundle of X € Upy
is determined by a certain index function which is due to Schneider (1978) in the
special case of finite unions of compact convex sets. Let x € R%, n € 89 ! and b
be the closed unit ball. The index of X at x with respect to the direction n is
given by
(1) ix(x,n)=1- hlg)Jr hm x(X n ([x + (r+ s)n] + rb)).

(Here x denotes the Euler charactenstlc)

The existence of the limit is proved in Zihle (1987c). This 1ndex function
agrees with the variant introduced in Zihle (1987a) under more restrictive
assumptions. (All related results remain valid in the general case.)

In this notation the generalised unit normal bundle is given by

Nor X := {(x,n) € R X 84 % iy(x,n) # 0}.
The normal cone of X at x is then defined by
= {cn: (x,n) € Nor X, ¢ > 0}.

[More details can be found in Zahle (1987a). In particular, for classical sets as
convex bodies and smooth submanifolds or, more generally, for sets of positive
reach, the definition of N X coincides with the classical variant of the convex
cone dual to T, X. Notice that Nor X is a (d — 1)-dimensional locally rectifiable
subset of R? X §¢~1, The closure Nor X differs from Nor X by a set of Haus-
dorff measure zero.]

This concept was used in Ziahle (1987a) for defining currents associated with
Nor X instead of X. It enables us to study curvature properties by current
methods. At the same time this is the key for introducing generalised sets in the
sense of distribution theory.

From the standpoint of stochastics, the current approach via unit normal
bundles is also useful. In particular, open measurability problems become clear
by introducing an appropriate topology in Upg. Namely, let 7 be the hit
topology on the space # of closed subsets of R?x S%! in the sense of
Matheron (1975) and f: Upgp = % be the mapping with f(X) = Nor X. Then,
by definition, 7(Upg) is the weakest topology in Upg, with respect to which f is
7-continuous. (Notice that it contains the trace on Upj, of the hit topology on the
space of closed subsets of R%)

REMARK 2.1.1. We now are able to complete the definition of a random cell
complex (cf. Section 1): The topology generating the o-algebra 11, is the trace
of 7(Upg) on %,. Further, let 2, be the space of i-dimensional topological
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Upg-polyhedra as introduced in Section 1 and B; the Borel o¢-algebra with
respect to the trace of 7(Upgp) on £,.

DEFINITION. A random i-dimensional Upg-polyhedron is a random element
in[2;, B,;].

Then the following measurability property holds.

ProrosITION 2.1.2. For any p-dimensional random cell complex § =
(§0,-- -5 &p), the i-skeletons |§,| are random i-polyhedra.

The proof is analogous to that given in Zihle [(1986), Section 1.3.1].

2.2. Currents and curvatures associated with unit normal bundles. Currents
are continuous linear functionals on the space of differential forms of fixed order
provided with the Schwartz topology, i.e., special Schwartz distributions. For
details cf. Federer (1969, 1978). (We will use adopted notation.) For our poly-
hedral model we will investigate locally rectifiable currents associated with the
unit normal bundles of the cells and the skeletons. Thereby the sets are
represented by integrals of differential (d — 1)-forms over the corresponding
normal bundles. (This enables us to study geometrical i-volume i-direction and
curvature properties of sets with singularities by means of advanced calculus.)

NOTATION. A,_, is the space of (d — 1)-vectors on R% X R% A9"! is the
space of (d — 1)-covectors on R% X R% &%~ ! is the space of differential (d — 1)-
forms (of class ) on R X R%. 297! [= 9(R? X R?, A?"1)]is the subspace of
(d — 1)-forms with compact support. J#° is the i-dimensional Hausdorff mea-
sure in euclidean space.

More details about the following concepts and statements can be found in
Zahle (1987a).

For X € Upp, Nor X is a locally Hausdorff (d — 1)-rectifiable subset of
R? X R? In order to define a current associated with Nor X we introduce an
appropriate simple (d — 1)-vector field orienting Nor X: Let e,,...,e; be an

orthonormal basis in R? with dual basis e{,..., e, and let 7; R% X R? —> RY,
i = 0,1, be the coordinate mappings
_[=x, 1=0,
7%, n) = {n, i=1.

At 5% l-almost all (x, n) € Nor X the tangent cone T, ,Nor X is a (d — 1)-
dimensional vector space. For these (x, n), let

aX(x’ n) = al(x7 n) AN Aad—l(x,n)

be the simple (d — 1)-vector in R X R? associated with Tt myNor X such that
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lex(x, n)] =1 and
sign{(m, + tm)a,(x,n) A -+ A(my+ tm)ay_(x,n) An,elA -+ Aey) = 1.

The symbol ( -, -) denotes the natural bilinear pairing of m-vectors and m-
covectors. (The last expression has been shown to be independent of ¢ for
sufficiently small ¢ > 0. It corresponds to the sign of the volume element of
infinitesimal parallel sets of X for a suitable parametrization.)

Now define differential forms ¢, € £4°1, k=0,...,d — 1, which do not
depend on the first argument by means of

(U’ tpk(n)> =

(d—k)a(d - k)
2) X Yy (T A -+- AT, vy An,el A Aep),
Ee,':i-;g,ll—k
if o=0v, A -+ Avy_; € A4_,, where a(k) denotes the volume of the k-dimen-

sional unit ball The restriction of ¢, to S? ! is said to be kth symmetric
curvature form over R?.
For X € Upy, with Nor X oriented as before, let
Cy=(#4"NorX) Aiyay

be the locally rectifiable (d — 1)-dimensional current on R% X R? (or on R% X
S§9-1) defined by

Cx(¥) = [ (ix(x, n)ax(z,n), ¥(x, n))#* X(d(z, n)),

¥ € 2971, Here and in the following let B be an arbitrary bounded Borel subset
of R% x S¢~1. By definition, CxL B is the current

(CxLB)(¥) = fN _ a5 n)(ix(x, n)ax(x, n), (=, n))

X# 4 Yd(x, n)).

Recall that general (d — 1)-dimensional currents are defined for ¢ € 2971, but
(CxLB)(¢) also makes sense for ¢ € &9~ 1. [There is no difference, since

(CxLB)(¥) = (CxLB)(fy)

for any C_-function f: R?Xx R? > R' with compact support such that
f(x, n) = 1if (x, n) € B.] In particular, the values

(4) C,(X, B) = (CxLB)(9,), k=0,...,d -1,

for the symmetric curvature forms ¢, regarded as functions in B are Radon
measures, the signed curvature measures of X. Their relationship to classical
versions of convex and differential geometry is established in Zzhle (1987a). This
paper also contains an interpretation as integrals of generalised mean curvatures
which does not use current concepts. Note that in the special case when X is a
convex polyhedron, Cy(¢,) equals, up to a constant, the sum of the exterior

3)
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angles at the k-faces weighted by the corresponding k-face areas. For X, Y,
X NY, X UY € Up, one obtains the additivity property

(5) CXUYLB = CxLB + CyLB - CXﬁYLB‘

2.3. Curvature measures for cell complexes. Now return to the special case
when the sets X as before are selected from a cell complex. In this section we will
only consider the curvature measures C,(X, B*) for directional symmetric
bounded Borel sets B* ¢ R? x 87, j.e., when

(x,n) € B* iff (x,—n) € B*.
(Note that the basic set X itself need not be symmetric.) In this case the
following fundamental relations hold [for a proof, see Zihle (1987b)]:
Let U= (Uy,...,U,) be a p-dimensional Upg-cell complex. Then for i =
0’ ceey Py

(6) UL BY) = ¥ (1" £ Cy(u,, BY).

j=k u;el;

According to this formula the curvature measures of a Upg-polyhedron may be
computed by those of the underlying cells. This enables us to establish relations
between the cell curvature measures provided that some of the polyhedron
curvature measures are known, e.g., in the case of tessellations of R¢ or S¢~1.

In particular, any i-cell u; of U may be considered as a special polyhedron.
Therefore,

(1= (D)6 B = T (-0 T Gu, B,

By applying (6) to the boundary polyhedron du;, we find C,(du,, B*) for the
right-hand side. Hence,

(7) (1 - (_l)i_k)ck(ui’ B*) = Cy(du;, B*).
As a special case, one gets
(8) Ci—l(ui’ RYx 8%71) = Lo# Y (du,).

Further, let N(u;) be the number of i-cells of the cell complex which are
adjacent to the j-cell u;. Then for i = 0,...,p — 1,

©® T (-1°* ¥ N,(u,)C(u;, B*) = (1 - (-1)"*) ¥ Cy(u,, B).
Jj=k u;eU; u, el

In particular, if the cell complex is finite and all cells are simply connected, one
obtains

(10 () T Nw) = (- (1),

where a; is the number of i-cells of U.



RANDOM CELL COMPLEXES 1749

2.4. Generalised sets. Recall that to any X € Upp there corresponds the
locally rectifiable (d — 1)-dimensional current Cy (or the current family CyLB
for bounded Borel sets B in R? X §%~!). It can be shown that for any differen-
tial form ¢ € 2972,

ICx () = Cx(dp) =0

i.e., the boundary current dCy vanishes. Therefore, C, may also be called the
unit normal cycle of X. This leads us to the following definition: A generalised
set in R? is a generalised normal cycle, i.e., an arbitrary (d — 1)-dimensional
current G on R? X §%~! which is a cycle (4G = 0). According to this definition,
curvature properties of a generalised set G may be treated in the form of the
values

G(fo), k=0,...,d—1,
for arbitrary C_-functions f: R? X S%~! - R! with compact support.

3. Currents and mean values for random cell complexes.

3.1. Random currents associated with random cell complexes. A random
i-dimensional current in R" is a random Schwartz distribution in R" of type A°®.

THEOREM 3.1.1. Let ¢ = (§,...,£,) be a random Upgrcell complex in R4
Then for any bounded Borel set B C R x - ', Cy LB is a random (d — 1)-
dimensional current in R? X R? (associated wzth the z-skeleton), i=0,...,p.
Hence, for arbitrary ¢ € £971, (C¢,LB)¥) as a function in B is a random
signed Radon measure.

PrOOF. In view of Proposition 2.1.2, it suffices to show that for any y € 29!
the mapping

h(P) = (CpLB)(¥)
from the space of i-dimensional polyhedra into R! is measurable. Recall that

(CotB)(¥) = [ 15(x, n)i(x, n)ap(x, n), ¥(x, 1))~ N(d(z, n)
and that Nor P in this formula may be replaced by its closure Nor P. Nor P is a
locally »# <~ -rectifiable subset of R? X R and ap(x, n) is the simple (d — 1)-
vector field associated with 7/, , Nor P in the way mentioned already. Using the
theorem and the remark in the Appendix and continuity of the mapping, one
obtains that (ap(x, n), ¥(x, n)), regarded as a function of (P, x, n) on the set

= {(P,x,n): Pe 2, (x,n) € NorP} Cc #, X R x R,

is measurable with respect to the corresponding product o-algebra on 2, X R? x
R? restricted to E.

According to the definition of the index function, the mentioned theorem and
continuity of the Euler characteristic, ip(x, n) possesses the same property.
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Therefore, it suffices to prove that for any bounded Borel set D ¢ R? x S¢~1!
and any W € g,

fmlww)lpu,n)w-l(d(x,n))

is measurable in P. (The general case follows from approximating the positive
and negative parts of the expression under the integral by linear combinations of
such product functions.) Finally, the measurability of #¢~(Nor P N D) in P
results from Zahle (1982). The second assertion follows immediately from the
definition of random signed Radon measures [cf. Zihle (1986)]. O

REMARK. The measurability property of the associated currents may be
obviously extended to arbitrary random Upg-sets being not necessarily poly-
hedra, i.e., to random elements in [Upg, U pr]. Here Uy is the Borel o-algebra
with respect to the topology 7(Upg) defined in Section 2.1.

3.2. Mean sets of random (generalised) sets. Since we identify the sets with
their associated normal cycles the mean set E¥ of a random generalised set ¥,
i.e., of a random (d — 1)-dimensional current in R¢ X 8§91, is defined in a
natural way: E¥ is determined if the expectation of the random variables %(y)
for y € 297! exist and if E9(Y) = E(¥9(y)) regarded as a function of ¢ is
continuous. Then E¥ is a generalised set. A random Upg-set T is said to be
locally integrable if for any bounded Borel set B ¢ R x S¢~1,

E%TIB(x, n)|ic(x, n)|#?Y(d(x, n)) < .

ProposITION 3.2.1. Any locally integrable random Upg-set T possesses a
mean set EI' = EC; which is representable by integration, i.e., there ex_i@ a
Radon measure ||ET|| and a locally ||[ET||-integrable (d — 1)-vector field ET on
R? x S9! with |ET(x, n)| = 1 such that for ¢ € 99,

ET(¢) = [(ET{x, n), (x, ))[ET|(d(x, n)).
Hence, for arbitrary ¢ € £971,

E(TLB)(v) = [(ET).B](¥)
is a signed Radon measure in B, the intensity measure of (TLB)(¢).

PROOF. Let y € 2971, Then the function ||y(x, n)|| has compact support
and so is bounded. Therefore,

EITW)| < E[__1¥(x, n)llir(x, n)bpX(ds) < oo

by the integrability condition. Thus, E(T'(y)) exists. Further, for any compact
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K c R? x S%~! and any natural [,
IBI(9)] < k(9B [ 1z, m)lin(x, m) 4= d(x, )
NorT

for the seminorms »% used for the concept of Schwartz distribution, i.e, ET is a
current.

In order to establish the integral representation of ET, consider an arbitrary
C>=-function f: R? x 8¢~! - [0, + 00) with compact support. Then

IET|I(f) = sup{ET(y): ¢ € 27, Y|l < f }
<E ,n)|ip(x, n)|o#4Y(d(x, <
(e mliz(x, ) bet-(d(x, m)) < o0
and the assertion follows from Federer [(1969), Section 4.1.5]. O

DEFINITION. A random Upg-cell complex ¢ = (,..., §,) is said to be inte-
grable if the random i-skeletons |£,|, i = 0,..., p, are locally integrable. Then
the curvature intensity measures

[(BC,.))B](4) = BCW(IE, B)

will be denoted by Ci(B) in the sequel. They provide special information about
the mean sets E|{,| = EC. .

3.3. Stationary random cell complexes. For arbitrary random Upg-cell com-
plexes £ = (£, ..., £,), the polyhedron theorems of Section 2.3 yield relations for
the curvature measures of the random sets. The statements for the correspond-
ing mean sets become very simple if the random cell complex is stationary, i.e., if
its probability distribution is invariant under the translations of R Here the
Palm theory for stationary random point processes and measures may be used.

We first introduce total currents associated with the point processes £,
i=0,..., p, by means of

C(¥v) = X C¥)

u,—éﬁi
in particular, total curvature measures by

Ck(gi’ B) = Z Ck(ui’ B)

u;€§;

The corresponding measurability property may be proved similarly as before.

DEFINITION. ¢ is said to be totally integrable if for any bounded Borel set
Bc R*x 8% 'andi=0,..., p,

E ) %13(36, n)|i,(x,n) ¢4 (d(x, n)) < co.

u,€¢;
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For such processes the mean sets EC;, and the total curvature intensity measures
5;;, {(B) = EC(§;, B)
make sense. (The proof is analogous to that of Proposition 3.2.1.)

PROPOSITION 3.3.1. Any totally integrable Upg-cell complex is integrable.

Proor. By the definition of the index function and additivity of the Euler
characteristic, we have

i
|i|,]i|(x, n)| <Y |iuj(x, n)l.
J=1lu;el;

Hence, for any i,

E%IB(JC, n)|i|£‘|(x, n)|9fd—1(d(x’ n))

A

iE Z fwlB(x,n)|iuj(x,n)|.}fd_1(d(vx, n))
j=1 ujefj Nor|;

glE Y fmlB(x, n)|iuj(x, n)|.9fd'1(d(x, n)) < o

ujeéj

IA

by assumption, i.e., the integrability condition is fulfilled. O

By stationarity we have the following factorization property of the curvature
intensity measures with respect to the Lebesgue measure #¢ [cf. Zahle (1986)].
ProposITION 3.3.2. (i) If ¢ is integrable and stationary, then
Ci(B) = (£ x D})(B)

for uniquely determined signed Radon measures D} on S~
(i) If ¢ is totally integrable and stationary, then

Eli,t(B) = (‘gd X DI;,:)(B)
for uniquely determined signed Radon measures Dj , on 8%,

The constants
c; = Di(871), Ch,e = Dy (S97)

are said to be the corresponding curvature (total curvature) intensities. More
particularly, c! coincides with the i-volume intensity of the random i-skeleton.
(It is called ith curvature intensity only for completeness.)

¢}, may be interpreted as the mean Euler number of the i-skeleton (in a limit
sense if the process is ergodic). The measures Dj, D; , may be considered as
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direction measures weighted by curvatures. (They correspond to the well-known
notion of surface area measures of convex bodies.)

There exist the following calculation methods: Let K, and dK; be the
d-dimensional variants of a unit cube and its upper right boundary, respectively.

ProposITION 3.3.3. If ¢ is integrable and stationary, then
Di(Q) = E[Cy(&)l, K, X Q) — C(l£d, 0K X Q)]

for any Borel set @ c S9-1,

The proof is similar to that of Theorem 3.2.4 in Zihle (1986). This formula
provides a method for determining the measures D}, in particular the curvature
intensities ¢}, by observation of the skeleton |¢;| inside the window K.

Further, for totally integrable, stationary ¢ let @° be the shape distribution of
the typical cell of ¢; (in the Palm sense) and N¢ the mean number of i-cells per
unit volume. (Here the shape of a cell is considered as the euclidean equivalence
class determined by this cell; cf. Zahle [(1986), Section 3.2].) Denote

Di(8) = [Cy(u;, R? X )Q(du,);
in particular,
Ci = ka(ui, R?x 84 1)Q¥(du,).

This is the mean value of the total kth curvature of the typical i-cell of £. In
particular, C{ coincides with the mean i-volume of the typical i-cell and 2C}_,
with the mean (i — 1)-volume of its boundary [cf. (8)]. C§ corresponds to the
mean Euler number of the typical i-cell.

PROPOSITION 3.34. If § is totally integrable and stationary, then
Dy, () = N'Di(2);
in particular,
¢i , = NiCi.
The proof is similar to that of Zihle [(1986), Section 3.2.3].

Next, we will introduce total curvature measures of the cell complex with

multiplicities. (For the corresponding currents, analogous concepts may be con-
sidered.)

DEFINITION. The random cell complex ¢ = (&,,..., §p) is said to be multiply
integrable if for any 0 <i <j <p,

E Y Ni(u) fmﬁl,g(x,n)hui(x,n)|.;fd-1(d(x,n)) < .

u,€§;
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Clearly, the condition is fulfilled for all 7, j if it holds for j = i + 1 and all i.
Furthermore, multiple integrability implies total integrability of £. For such
processes we define the multiple total curvature intensity measures as

C_‘,i{t(B) =E ) Ni(u;)Cy(u;, B), 1<J,

“iégi
Eli{t(B) =E E Z Cy(u;, B), i>].
u, €4 uw;Eg;
u;Cdu;
A simple combinatorial argument shows that
(11) C/«(B) = C{(B).

Similarly one obtains the following.

ProrosITION 3.3.5. If ¢ is multiply integrable and stationary, then

(i) Eli{t(B) = (‘gd X Dli{t)(B)’
(ii) D}/ (Q) = N'D{/(%)

for uniquely determined signed Radon measures D}/, and D}/ on S¢~1.

We also write
o/, =D (S%1) and Cy = Dy(5%Y).
Thus,
(12) ¢/, = NCy.

In the case i < j, C¥/ may be interpreted as the mean value of the total %th
curvature of the typical i-cell multiplied by the number of adjacent j-cells. For
i > j, it coincides with the mean value of the sum of the total %Zth curvatures of
all j-cells lying in the boundary of the typical i-cell. In view of (11),

(13) N‘D}(Q) = N'Dj(Q).
In particular, if all i- and j-cells are simply connected, then
N = i
coincides with the mean number of j-cells which are adjacent to the typical i-cell
and
(14) NiN¥ = N/N/,

These formulas together with the polyhedron theorems (6) and (9) yield the
following main results. (Let Q* be an arbitrary centrally symmetric Borel subset
of §9-1)
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THEOREM 3.3.6. For any totally integrable stationary random cell complex
¢ = (%0,-.-,§,), we have

i s . .
Dj(e*) = ¥ (-1)/"*N’Dj(2").
j=k
In particular,

i .
= Y (-1)/*Nicy.
=k

This means that the weighted direction measures of the i-skeleton |£;| may be
computed by those of the typical j-cells and the mean numbers of j-cells,
j=0,...,i,i=0,..., p. In particular, a relation between the curvature intensi-
ties of |£ | and the mean total curvatures of the typical j-cells together with the
mean numbers of ]-cells (j=0,...,1) is established.

The following inversion formulas result.

COROLLARY 3.3.7. Under the conditions of Theorem 3.3.6 fori >k + 1, we
have

Di(2*) = (-1)"*(N%) "(Di(@*) - DI (@)
In particular,
Ci = (-1)"*(N) (- 7).
If all cells are simply connected, then

—( 1)’ (co c5).

THEOREM 3.3.8. For any multiply integrable stationary random cell complex
£=(¢p,..., ¢,), we have

'gk(-l)f-kzvfnf(sz*) — (1 = (1) *)N'Di(@").

In particular,

iil (—l)j_kNjcii — (1 _ (_l)i—k)N,'C;'e.
=k
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REMARK. If & =i — 1, the statement reads
(15) NIDiZH(Q*) = 2N'D_,(9*).

In view of (7), this relation may be directly derived by Palm methods. Here the
structural conditions on the (i — 1)-skeleton may be weakened to rectifiability,
since only (i — 1)-volume measures are involved.

COROLLARY 3.3.9. If £ is as before and all j-cells (j = 0,...,1) are simply
connected, then
i_l > 3 .. > .
Y (-1)’N/NJ% = (1 - (-1)")N-.

j=0
Theorem 3.3.8 immediately leads to the following result.

THEOREM 3.3.10. Suppose ¢ is as in Theorem 3.3.8. If DY(Q*) = N/iDj(Q*),
J=0,...,i— 1, then
i_l y .. . . s . .
X (-1 *NANDY(2*) = (1 - (-1)"*)N'Di(2%).

J=k
In particular, if Cff = N/Cj, j=0,...,i — 1, then
i_l y .o . o ; . .
Y (-1)/7*N/iNIC] = (1 - (-1)" *)N'CL.
J=k

REMARK. The conditions of this theorem are fulfilled if ¢ is totally integra-
ble and the number of i-cells adjacent to the typical j-cell is independent of the
kth weighted direction measure (or the total kth curvature, respectively) of the
typical j-cell, j =0,...,i. The statement presents a pseudorecurrence relation
for the numbers N/Dj(2*) (or N’C{) provided that the N7 are given. “Pseudo”
means that the right-hand sides vanish if i — k is even.

3.4. Intersections. The intersection formulas concerning curvature intensi-
ties of motion invariant Upg-processes proved in Zihle (1986) remain valid for
motion invariant Upg-cell complexes. (The only difference for the proof is to infer
the corresponding measurability conditions as in Section 8.1 of this paper.)

3.5. Random tessellations. We now will examine the special case of sta-
tionary random mosaics of R i.e., of stationary random cell complexes ¢ =
(§0---» §4) such that £, determines a tessellation of R%: |£,| = R In this case,
the formulas of Section 3.3 may be completed by the relations

(16) cd = NCg =1.

(Since this is a statement for volume measures, ¢, might be replaced by any
Borel tessellation of R?) Further, for £ < d, D(Q*) = 0. Therefore, Theorem
3.3.6 yields the following relation between the cell measures provided that £ is
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totally integrable:

(17) f‘, (-1)’"*N/Dj(Q*) =0, Ek<d.

Jj=k

In particular, if the cells are simply connected, then
d o
(18) Y (-1)’N/=0.
j=0

Further, since for any (d — 1)-cell uy_, € ¢,_,, Ny(uy_,) = 2, one gets N¥~1¢ =
2. Moreover,

(19) D{14(Q*) = 2D Y(Q%), k=0,...,d -1,

provided that £ is totally integrable. [For the special case of mosaics with simply
connected cells of positive reach and £* = S9~!, many of these formulas were
proved in Weiss and Zzhle (1987).]

As an example, we consider stationary random tessellations in R?® with simply
connected cells which were examined in the literature for the special case of
convex cells. [Most general related results are formulated in Mecke (1984a). For
further references, cf. Weiss and Zahle (1987).]

Here we introduce the following special notation (under the corresponding
integrability conditions):

S :=c2 surface area intensity
C:=c? curvature intensity
Xg = C2 mean Euler number of the side skeleton
L:=¢ edge length intensity
X1 = Ch mean Euler number of the edge skeleton
Xo=cy=N° mean number of vertices
V:=C} mean volume of the typical (3-) cell
S = 2C3 mean surface area of the typical cell
C:=C} mean total curvature of the typical cell
A:=C? mean surface area of the typical side
B = 2C? mean boundary length of the typical side
L:=C!} mean length of the typical edge
We are also interested in the remaining characteristics:
N; mean number of cells
N, mean number of sides
N, mean number of edges
NV mean number of j-cells adjacent to the typical i-cell
LY:=CY j=2,3 mean multiple length of the typical edge
L3 = C¥ mean total edge length of the typical cell

The parameter tuple (S, C, x,, L, X1, Xo) associated with the i-skeletons, i =
0,1, 2, is in one-to-one correspondence to the j-cell parameters (V,S,C, A, B,L).
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Namely, Theorem 3.3.6, Corollary 3.3.7, (16), (17) and (18) yield

1 28 C
=—’ S=—-—’ =———’
X2 X2 X2
S L-C L
A= , B=2 s L= .
Xe — Xa X2 — Xa Xo — Xa
The inversion formulas read
1S C 1
Teve YT v Xty
L 1 lBS c 1 1 1S
V(Z A ) Xi v( _2A)'

1 18 1BS C
- o181 ¢

The parameters x,, X;, X; may be replaced by N° N', N?> by use of the
relations

Xxo=N?, x2=NO—N1+N2, X2 = X, = N2, Xo— X1 =N
Then one obtains the inversion formulas '
1 (1 B S C) 118

Vi4LA L

Note that N3 = N° — N' + N2 = x, = 1/V. Further, the multiple lengths L/
may be also expressed by the preceding parameters:
In view of (15) and (13),

N2 N2
L13 = L12 = FB and L31 = FB,
ie.,
L-C L-C
LB=12=2 and L3 =2 .
Xo — X1 X2
Finally, Corollary 3.3.9 and (13) imply the dual topological mean value relations
N°1=2X0_XI, N32=2X2_XI,
Xo X2
N°2=T_2XI, N31=T_2XI,
Xo X2
N03 = 2_’ N30 = 1,
Xo X2
N2 = T__zﬁ, N2 = i__ﬁ
Xo ~ Xa X2~ X1
N

Xo — Xa X2_X1'
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Here the new parameter T = N°N® = ¢(3, is introduced. Hence, the tuple
(S,C,x5, L, X1, X0» T) or, equivalently, (V, S,C,N® A B, L) provides all infor-
mation about the intensities and mean cell functionals under consideration.
[Another parameter representation is given in Mecke (1984a) for the special case
of convex tessellations. It may also be derived from the preceding formulas.]

REMARK. According to the general results obtained before these formulas
remain valid if the mean values are replaced by the corresponding weighted
direction measures Di(2*), Di(2*), D¥(2*) and D¥(2*), respectively. For sim-
plicity we have considered here only the case that 2* coincides with the unit
sphere.

3.6. Random tessellations generated by stationary hypersurface processes.
There exist many papers on stationary random hyperplane processes in R and
the associated random tessellation, mainly in the Poissonian case [cf. Miles
(1974), Santal6 (1976), Matheron (1975) and their references on related materials].
Here we will consider random tessellations generated by stationary hypersurface
processes whose section properties are the same as in the hyperplane case. More
precisely, it is assumed that for the stationary totally integrable random tessella-
tion £ = (£,,..., §,) there exists a family n,_, = {H,, H,, ...} of random hyper-
surfaces without boundary such that [§,_,| = U2, H; and the intersection of
d — i of these hypersurfaces is empty or an i-dimensional submanifold without
boundary. n,_, may also be interpreted as a point process on the space of
Upg-hypersurfaces. The intersection process arising from all (d — i)-fold inter-
sections will be denoted by 7,. Then |5, = |§,|, i =0,...,d — 1. Let M;(u,) be
the number of i-dimensional submanifolds from %; which are adjacent to the
J-cell u; from £, j <. In this case

(20) M(u)—(d_]i) and  N(u;) = (Z:fi')zi-f.

For i — k odd it follows from (7) that for any v, € 1,, Cy(v;, B*) = 0. Hence, by
means of (6) one gets

i ._
Y C(v,BY) = ¥ Y (-1 * Z Ck(uj’ B*)
v v;Em; J=Fk u;€§;
u;Co;

= Z (—l)j_k Z Mi(uj)ck(uj’ B*)’
J=k u;€¢;
ie.,

pC o s CYOR SR

u;€§;
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Taking the expectation and using Proposition 3.3.4, one obtains
i — 1 y d 1 . . . .
T (-1 927 wpi(er) - NDi(@).
j“ k d -1
(It is easy to verify that the last equations are equivalent to the relations

L 1 y — 1 . . . . . .
T (-1 Z7Je-npjer) - anpiar),
j- k d -1
which also follow from Theorem 3.3.10.)

We now will assume that the condition also holds for i — % even, i.e.,

E ) Cyv;,B*)=0, k=0,...,i—1,i=0,...,d— 1.
Oiéﬂi
Such hypersurface processes are said to be weakly flat. (In the three-dimensional
case this means that the total Gaussian curvature intensity measure vanishes.)

Then the preceding equations hold for all k£ < i — 1, are recurrent in N'D}(Q*)
for varying i and have the solution

(21) NDi(Q*) = (‘fi:’;)mng(m).
In the special case @* = S9! and & = 0, (21) reads
(22) Ni= (‘Ji )NO.

(Note that all results concerning the case 2* = S~ ! may be derived under the
weaker assumption that the total kth curvature intensities of the process N;s
i — k even, are equal to zero.) Thus, (21), (22), Theorem 3.3.6 and (13) yield that
all related values may be expressed by the proper k-direction measures

9(2) = Dg(Q) = N*D{(®)
or the k-volume intensities
b= b = Di(S™ ),
respectively.

THEOREM 3.6.1. If ¢ is a totally integrable stationary random tessellation
generated by a weakly flat hypersurface process in the above sense, then

i—k e
@ Dj(e) = (@) T (-1(* 7 *);
in particular,

d=n X (-17(47%).

Jj=0

o e (g
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in particular,
. -1
i i d
“ ci= (1))

= (2o (o

@) op@) = (L) (deman((Gw) i<

o[, e nl(f)

This theorem implies the following special formulas:

b

in particular,

(23) ci=N°Y (-1)’ ( (]i) (mean Euler number of the i-skeleton),
j=0

(24) Ci= ( ;)C % (mean total kth curvature of the typical i-cell),

(25) Ni= (?)N % (mean number of i-cells),

(26) N¥= ( ; _l_j)2i =/ (mean number of j-cells of the boundary
of the typical i-cell).

Recall that C¥ means the k-volume and 2C%_, the (k2 — 1)-volume of the
boundary. [For the special case of hyperplane processes, relations (25) and (26)
are the central result of Mecke (1984b).]

Suppose now in addition that the dth factorial moment measure of the
hypersurface process n,_; is a product measure. We will prove that in this case,

= A=k [ fing A Angy
x’ad—l(dnl) v By y(dng_y).

27)

If n,_, is motion invariant, this leads to

il T(d2) \*F T(d/2)
(28) 7 = (a-1) (I‘((d+ 1)/2)) I((k+1)/2)’

where T' is the Euler function. [For the special case of metion invariant
Poissonian hyperplane processes, relation (*) with substitution (28) is proved in
Matheron [(1975), Section 6.3] for i = d and in Miles (1974) a modified expres-
sion for general i is given.]

In order to prove (27) note that the direction measure ¢,_, is related to the
intensity measure A of the hypersurface process 71,_, as follows: By definition of
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¥4_, = D=} for any Borel set A C R? with % A) = 1,

84-,(8) = Eéf (Bt p(2) + 8 g, p(R)) %Y (dk2),

Ing-11NA

where n,(|n,_,|) denotes the a.e. uniquely determined unit normal of |n,_,| at x
lying in a fixed semisphere and §, is the Dirac measure concentrated on n. By
additivity, the last expression equals

B L[ (@) + o (@) (d).
Hence,

Bas(®) =3[ [ (Bnc(®) + 8 (2)) £ (dx)A(aH).

Since the dth factorial moment measure of 7,_, is a product measure, in view of
stationarity and Fubini,

1
= )

— o SR 1, () [l )2y

- [AHANH N OH )NdH,) - MdH, )

 [La(xaop+ 3) LN dxy )M dY)N(AH,) - N(dH,_,)

1
= m/ ce flAnH,(y)lAnyz(xz +9) Lyam, (Xap t+ y)#*(dy)

XA(dH,) - -+ M(dHy_ )£ %(dx,) -+ L4(dxy_y)
= (d—_llmf~~f[f-.-fﬂ"((AnHl)n(AnHz—xz)
N N(ANH, ,—x4_,))
X LU dxy) -+ LUdxy ) |NdH,) -+ N(dH,_,).

The translative kinematic formula for Hausdorff measures implies that the
integral in the brackets equals

f /lAnH,(Zl)"' lAan_,,(zd—k)
X|no (Hy) Ao Ang, (Hy y) |89 H(dzy) -+ #97(dzyy).

Therefore,

1
Ve = W/ /|n1 Ao Ang g|8y_(dny) -+ 8y y(dngy_y).



RANDOM CELL COMPLEXES 1763

3.7. Mean cells and projection bodies. Here we will study further the mean
cells of the random tessellation in the last example. Recall that we only consider
the values of the mean cells (in the sense of Section 3.2) on differential forms of
the kind 1g.(n)@(n), which determine the weighted direction measures Di(Q%).
In our special case these measures may be calculated by means of the surface
area measures of the associated Steiner compact set.

In the case of stationary hyperplane processes, the last concept can be found
in Matheron (1975), Wieacker (1986) introduced it for arbitrary stationary
rectifiable hypersurface processes in form of the projection body I1. The support
function A(II, -) of this centrally symmetric compact convex set is defined by
the direction measure 4,_,,

R(I1,v) = j v n|d,_,(dn).

According to Matheron [(1975), Section 4.5],
Ck(H) = Ck(H, Rd X Sd_l)

1
) = F/ tre f|n1 A e Angldy_y(dny) - 84_1(dny),
k=1,...,d. [Matheron’s W,_,(+) coincides up to a constant with our Cy(-).]
Therefore, we infer from (27) that
yk=Cd—k(H)’ k=0,...,d_1.
COROLLARY 3.7.1. For any totally integrable stationary random tessellation

generated by a weakly flat hypersurface process whose dth factorial moment
measure is a product measure, we have

ci= (;)Cd_k(n)((je’)cd(n))_l, O<k<i<d.

REMARK. An analogous relation can be proved for the weighted direction
measures D:. (Corollary 3.7.1 for the special case of hyperplane processes and
i = d is proved in Matheron [(1975), Section 6.3] by other methods.)

Planar case. For d = 2 and i = 2 the statement may be sharpened: By the
Palm relation,

D2(Q) = (N?) 7' DYQ) = () '9,(2).

Recall that 2 D2(Q) is the mean length of the boundary points of the typical cell
with exterior unit norimal in Q. Since the measure D? is even and not con-
centrated on a single pair (—n,, n,), there exists an (up to translations) unique
centrally symmetric convex cell P with

(29) 2D() = [ 1o(n(P))#'(d),

where n,(P) denotes the a.e. uniquely determined unit normal to P at x
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(Minkowski problem from the theory of convex bodies). In particular, for @ = S*
one gets

(30) B := 2C} = #'(dP) mean boundary length.
It is easy to see that the support function of P takes the form

(31) R(P,v) = /|u - n|D2(dn).
Therefore, we have in the preceding notation,

(32) P =yl = (£2(1)) .

[In the special case of convex cells, the support function (31) coincides with the
mean support function of the typical cell, i.e., P is the “mean” set of the typical
cell as defined in the theory of random convex sets.] Furthermore, since », =
LYID) = LXv,P) = v2L?(P), we have L*(P) = vy ' = (N?)"' = C, ie,

(33) C:=%%P) meanarea.

Formulas (30) and (33) state that in the general case the mean boundary length
and the mean area of the typical cell of the tessellation agree with those of the
convex cell P given by (32).

APPENDIX

Measurability of tangent bundles. In the proof of Theorem 3.1.1, the
measurability of the tangent bundle of Nor X as a closed subset of R2¢ was used.
A more general version of this assertion may be considered as a basic measurabil-
ity property for translative stochastic geometry in euclidean space: In choosing
appropriate spaces and mappings, many integral-geometric formulas may be
reduced to Federer’s coarea theorem and there the tangent bundles of the sets
under consideration play a fundamental role.

Let [%,,, Z,,] be the measurable space of (locally) s#™-rectifiable closed
subsets of R" as introduced in Zahle (1982), based on concepts of Federer. [Each
element of Z,, possesses a locally finite (Hausdorff) 5™ measure and, except for
a J#™-zero set, it is contained in the countable union of m-dimensional C,-sub-
manifolds.) For general X € &, the classical concept of tangent bundle is not
appropriate for integral geometry. For example, one easily obtains X € &,
which are dense in R". Therefore, Federer [(1969), Section 3.2.16] introduced the
concept of approximate tangent cones tan™[ ™LX, x] to X at x € R". They
are related to the tangent spaces of the underlying C,-submanifolds. The defini-
tion also holds for arbitrary X from the space %, of s#™-measurable closed
subsets of R™ with locally finite measure. &, denotes the Borel o-algebra with
respect to the usual topology on %, generated as for Z,, by the two families of
sets (X €Z,: XNK= g}, K compact,and (X €Z,: XN G + &}, G open.
Note that &, is already generated by either family.
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__ProposiTION. Let K, K, K,,... be a sequence of open cones in R* with
K, c K and U2 K, = K. Then

i=1

(X eZ,:0eX,tan"[ #™"LX,0] N K # 2

0
- U {X €%,:0¢e X, limsupr-"#™(X N K, N rb) > 0}.
i=1 r—0+

Proor. Let X € %, and 0 € X. According to the arguments in Federer
[(1969), Section 3.2.16] v € tan™[s#™LX, 0] iff limsup,_,.r" "#™X N
K(v) N rb) > 0 for any open cone K(v) containing v. Hence, it follows for
v € tan™[#™LX,0] N K; that
limsupr="#™(X N K, N rb) > 0.
r—-0+

Conversely, suppose that
limsupr~"#™(X N K, N rb) > 0.
r-0+

If tan™[s#™LX,0] N K = @, then for any v € K there exists an open cone K(v)
containing o such that limsup, _,, r "#™(X N K(v) N rb) = 0. Since X N
K, N b is compact it can be covered by finitely many of the cones K(v), v € K.
Therefore, the additivity of #™L X leads to

lim r—™#™(XNK;,Nrb) =0,

r-0+
which contradicts the preceding condition. Hence,
tan™[A# ™. X, 0] N K # @. O

Let € be the space of closed cones of R" provided with the Borel o-algebra
generated by the sets {C € ¢: C N K # @} for arbitrary open cones K.

THEOREM. The mapping f: %, X R* —» € with {(X, x) = tan™[s#"LX, x]
is measurable with respect to the product Borel ¢-algebra.

ProoF. Since the mapping (X, x) - X — x is continuous and
tan™[ # ™LX, x] = tan™[# ™ (X — x),0],

it suffices to show that the mapping X — tan™[#™LX,0] from %, into ¥ is
measurable. In view of the definition of the o-algebra on ¢ and the proposition,
this is fulfilled if the sets

(Xe#,:0eX) and {X e % limsupr-"#™(X N K, N rb) > 0},
r-0+
i=1,2,..., are elements of the ¢-algebra &,,. (Note that for any K there exist
suitable K;.) The first measurability follows directly from the definition of ¥,
and the second one from Zahle [(1982), Section 2.1.4]. O
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REMARK. Note that for the purposes of integral geometry [ %, &,.] has to
be replaced by [ %,,, X,,]. Recall that %,, € &,, (cf. Zahle [(1982), Section 2.2.1]).

Because of the structure of the normal bundle in Theorem 3.1.1, Nor X is an

element of £, , in R® such that T, ,Nor X= tan®"'[s#?~'Nor X, (x, n)]
for s# ¢~ L-almost all (x, n) € Nor X.

xl n)
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