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LYAPUNOV EXPONENTS FOR MATRICES
WITH INVARIANT SUBSPACES

By Eric S. KEY

University of Wisconsin-Milwaukee

If M is a fixed d X d complex-valued matrix, then the eigenvalues of M’,
the conjugate transpose of M, are the complex conjugates of the eigenvalues
of M, with the same multiplicities, and if M is upper block triangular, the
eigenvalues of M are the eigenvalues of the diagonal blocks, and the multi-
plicities add. We shall show that if {M(/)} is a stationary, ergodic, time-
reversible sequence taking values in the d X d complex matrices, then similar
properties hold for the Lyapunov exponents of {M(j)}.

1. Introduction. Suppose that {M(j)} is a stationary, ergodic sequence
taking values in the d X d complex matrices. According to Oseledec’s multiplica-
tive ergodic theorem, if E(log*|M]]) < oo, then there are r constants, r < d,

—0<I(1) <l(2) < -+ <Ur),

called the Lyapunov exponents of {M( )}, such that with probability 1, for each
v in C¢/{0},

) Jim n~log| M(n) -+ M()V]| = 1)
and
(2) v={v: lim n"log|M(n) --- M(1)v | < {/)}

is a random subspace of C¢ with nonrandom dimension. If V, is defined to be
{0}, then m(j) = dimV; — dimV;_, is a nonrandom constant called the multi-
plicity of the Lyapunov exponent I(j). The information about the Lyapunov
exponents and their multiplicities can'be summarized as a function

M(M, *): [_00700] - {O,l,...,d},
where

® moty)- |
From (1), (2) and the definition of multiplicity, it is clear that for any x in
[_ 00, 00]7

(4) dim{v: lim n~log| M(n) - - M(1)v] < x} = ¥ m(M, y).

y=x

0, if y is not a Lyapunov exponent of {M( )},
m(j), if yisthe Lyapunov exponent I( j).

Let W be a nontrivial proper subspace of C? with dimension d’. If
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PM(1)W c W) = 1, then W is almost surely invariant for {M(j)}, and without
loss of generality we may assume that each M(j) is of the form

[A(j) B(j)]
0 c())
where A(j) is d’ X d’, B(j) is d’ X d”, 0 is the d’ X d” zero matrix, C(j) is
d” X d” and d” = d — d’. In this case we shall say that {M( )} is upper block
triangular.

If (M(/)} is a constant sequence, then the Lyapunov exponents are the

logarithms of the absolute values of the eigenvalues of M(1), and the following
facts are well known:

(5)

6) If M’ denotes the conjugate transpose of M, then m(M’, y) =
m(M, y).

) If M(1) has the form (5), then m(M, y) = m(A, y) + m(C, y).

(8) If M(1) is invertible, then m(M ™, y)) = m(M, —y).

(8) has been established in general for Lyapunov exponents [see Walters (1982),
pages 230-235]. Furstenberg and Kifer (1983) remark that if {M(/)} is an iid
sequence, then the largest Lyapunov exponent of {M(j)} equals the largest
Lyapunov exponent of {M'(j)}. Hennion (1984) has shown that if P(M(1) is
invertible) = 1 and E(log*|[M~!(1)|)) < o0, then m(M, y) > 0 iff m(A, y) +
m(C, y) > 0.

This paper will establish (6) and (7) assuming that {M(j)} is stationary,
ergodic and time-reversible (Theorems 1 and 5, respectively). This differs from
the work of Hennion and Furstenberg and Kifer who assume that {M( )} takes
values in GL( R, d), and either assume that the sequence is iid (Furstenberg and
Kifer) or stationary and ergodic (Hennion).

The results will be used in subsequent papers to compute limit laws for
random walk in a random environment, generalizing the results of Kesten,
Kozlov and Spitzer (1975) and Key (1983), and to examine the connection
between the largest Lyapunov exponent and relative entropy in a simple dy-
namical system.

This investigation was motivated by Pincus (1985), where the largest Lyapunov
exponent was computed in the case where the matrices were almost surely upper
triangular, and Key (1984), where all the Lyapunov exponents were calculated in
the case where there were (d — 1)-dimensional invariant subspaces.

2. Notational conventions. Throughout, vectors and matrices will be
boldface.

X’ denotes the conjugate transpose of X.

IX|| refers to any matrix norm that is equivalent to [trace(XX’)]'/2.
Mat(C, d) is the set of d X d complex-valued matrices.

e(j), 7=1,2,..., d, will denote the standard basis of C?.
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If {X(/)} is a stationary, ergodic sequence taking values in Mat(C, d), we shall
refer to its Lyapunov exponents and their multiplicities as being those of X.

3. The Lyapunov exponents of M and M'.

THEOREM 1. Suppose that {M(j)} is a stationary, ergodic, time-reversible
sequence taking values in Mat(C, d). If E(log*|MQ)|) < o0, then m(M, *) =
m(M, *).

PrROOF. Let V(® be the kth exterior power of C% Let M® be the action of
M on V®, Raghunathan (1979) and Ledrappier (1984) have shown that the
Lyapunov exponents of M and their multiplicities are determined by the values

9)  L(k) = lim n'E(log|M(n)® ---M()®]), E=1,....d.

It is straightforward to show that (M")® = (M®Y. Taking |M|| = [tr(MM")]'/?,
we have

Blog](M(n))® --- (M(1))™])

E(log| (M(n)®) -+ (M(1)®)[)
E g () ® - () ) )
E(log|M(1)*® --- M(n)*®|)

= E(log|M(n)® --- M(1)®]).

It follows from (10) that if each M()® is replaced by (M(j))® in (9), the same
values for L(k) are obtained, so m(M, *) = m(M/, *). O

(10)

The following example shows that the hypothesis of reversibility cannot be
dropped.

ExXAMPLE. Let

-5 o] ®=[0 5] ma s-[5 ]
and let {M(j)} be the stationary ergodic Markov chain with state space {Q, R, S}
and transition probabilities
PM(j+1) =RM(j) =Q) =1,
PM(j+1) =SM(j) =R) =1,
P(M(j+1)=QM(j)=8)=1/2,
PM(j+1)=8SM(j)=S)=1/2.

Note that SRQ = 0, SRQ' =S, QS = S, and S2 = S.
Since a visit to R always follows a visit to Q and a visit to S always follows a
visit to R, |[M(n)---M@1)|| =0 for some n almost surely, so both of the
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Lyapunov exponents of M are — oo, but 1 < |[M'(n) - - - M/(1)|| < 2, so one of the
Lyapunov exponents of M’ is 0 and the other is — o0.

4. m(M, *) = m(A, *) + m(C, *) for {M(j)} upper block triangular. Let
d, d’ and d” be positive integers, with d = d’ + d”, and suppose that {M( )} is
a stationary, ergodic, time-reversible sequence taking values in {U € Mat(C, d):
U;;=0if d’ <i<d,1<j<d'}. Each M()) is upper block triangular, and we
write

A(J) B(J')]

0 C())

Lemma 2. If E(log*|M(1)|) < oo, then E(log*||A(1)|) < o0, E(log*|B(1)|) <
00, E(log*||IC(1)|) < o0, and for each x in [ — w0, x0],

(11) L mM,y)< ¥ mA, y)+ X m(C,y).

y=sx y=<x y<x

|

Proor. First, note that
trace(MM') = trace(AA’) + trace(BB’) + trace(CC’).
Since log* is nondecreasing, it follows that if E(log*|M(1)|) < o, then
E(log*|A(D)|) < o, E(log*|BQ)|)) < 0 and E(log*||IC(1)[) < co. Therefore,
m(A, *) and m(C, *) are well defined.

In order to prove (11), we make use of Oseledec’s multiplicative ergodic
theorem in the following way. According to this theorem, certain limits and the
dimensions of certain subspaces exist and are almost surely constant. We have
made use of this in defining m(M, *), m(A, *) and m(C, *). Throughout the
proof it is to be understood, then, that choices of vectors and subspaces, and the
assertions about the convergence of limits can only be made on a set whose
probability is 1, but that is sufficient. For example, if we say, “There exists a
vector v in C¢ so that

lim n~"log|M(n) --- M(1)v| = x,”
n— oo
we mean that for almost every w there is a vector v(w) in C¢ so that
lim n~'og|M(n,w) --- M(1,w)v(w)| = x.
n-— oo
Let @ =min{y in [—o0,00]: max{m(A, y), m(C, y)} > 0}. Suppose that
m(M, y) > 0. Then for some vector v in C?/{0},
lim n~'log|M(n) - -- M(1)v|| = y.
n— oo
Define v’ in C%" by (v”); = (V"");, 4. If v/ # 0, then
lim n~'log|M(n) --- M(1)v|| = lim n~og|/C(n) --- C(1)v"|
n— oo n—oo

=>a

bl b

so y = a.
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If v’ = 0, define v’ in C¥ by (Vv); = (v),. Since v # 0, we have v’ # 0 and
lim n~Yog|M(n) --- M(1)v| = lim n™'log|A(n) --- AQ)V|

2 a,

so ¥ > a. Therefore (11) holds if x < a, as both sides of the inequality are 0.
Now suppose that x > a. Let

8= Zm(M’y)’ h= Zm(A:y) and k= Em(c’y)’

y<=x y<x y<x

and suppose that & > k. Since x > a we have g > 0 and A > 0. Let
W= {v € C% lim n”'log|M(n) --- M(1)v| < x}
n—>o

dmW=g. Let V=Wn {veC: (v);=0fori>d}.

From the upper block triangular form of the {M( j)} it follows that dimV = h.
We shall now proceed by contradiction. Suppose that g > h + k. Then we may
choose a basis for W by first choosing a basis for V, say {v(j)}, and then
choosing another (g — h) vectors, {w( j)}, to complete the basis of W.

Next, let u”(j) be the vector in C?" defined by the last d” entries of w().
{u”(J)} is a linearly independent set since {v(j)} U {w(j))} is a linearly inde-
pendent set and the last d” coordinates of each v( j) are 0.

On the other hand,

{w'(j)} c {u” inC%: lim n~Yog|C(n) --- C(L)u”| < x},
n—oo

a subspace of dimension k < (g — h), so {u”(j)} is a linearly dependent set,
which is a contradiction.
If A < k, repeat the argument for M’, A’ and C’, and use Theorem 1. O

LEMMA 3. The largest Lyapunov exponent of M is the maximum of the
largest Lyapunov exponent of A and the largest Lyapunov exponent of C.

ProoF. If {M(j)} is an iid sequence, then this is Lemma 3.6 of Furstenberg
and Kifer (1983). The same proof, using Theorem 1 where necessary, shows that
the result remains true in the stationary, ergodic, time-reversible case. O

Lemma 3 generalizes as follows.

LEMMA 4. Let1 <j < min{k,d’'} and 1 < k < d. The sum of the k largest
Lyapunov exponents of M, including multiplicities, is equal to

max{sum of the k largest Lyapunov exponents of M, includ-
ing multiplicities, of which at least j are Lyapunov
exponents of A, sum of the k largest Lyapunov expo-
nents of M, including multiplicities, of which at least
k —j + 1 are Lyapunov exponents of C}.
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ProoF. Let V(j, k) be the subspace of V(®), the kth exterior product of C¢,
spanned by v(1) A --- Av(k) such that at least j of the v(i) are in {e(i),
i < d’}. Let V'(j, k) be the subspace of the kth exterior product of C¢ spanned
by v(1) A --- Av(k) such that at least £ —j + 1 of the v(i) are in {e(i),
d’ <i<d). Then V® = V(j, k) ® V'(j, k), V(j, k) is M® invariant and
V'(Jj,k) is M® invariant.

By Lemma 3, the largest Lyapunov exponent of M® is equal to the maximum
of the largest Lyapunov exponent of M®) restricted to V(j, k) and the largest
Lyapunov exponent of M® restricted to V'(j, k). By the definitions of V(j, k),
V'(J, k) and the action of M® on V®, the largest Lyapunov exponent of the
restriction of M® to V{(j, k) is the sum of the % largest Lyapunov exponents of
M, of which at least j are Lyapunov exponents of A. Similarly, the largest
Lyapunov exponent of the restriction of M® to V'(j, k) is the sum of the &
largest Lyapunov exponents of M’, of which at least 2 — j + 1 are Lyapunov
exponents of C’. The lemma now follows from Theorem 1. O

THEOREM 5. Let {(M(j)} be a stationary, ergodic, time-reversible sequence
taking values in Mat(C, d). If
A(j) B(i)]

M(y) =
(/) [ o (/)
and E(log*|IM(1)|)) < oo, then m(M, *) = m(A, *) + m(C, *).

Proor. It is sufficient to show that for all y in [ — o0, 0],
0<m(M,Y) <m(A, y) + m(C, y),

for then
0< Y [m(A, y) + m(C, y) — m(M, y)]
(12) —d-d
=0,

which proves the theorem.

Consider {y: m(A, y) + m(C, y) — m(M, y) < 0}. This set is bounded above,
and by Lemma 2, this set does not contain —co. We need to prove that it is
empty. Suppose not. Let b be its largest element. By Lemma 2, we must have

X mM,y)< ¥ m(A, y)+ ¥ m(C,y),

y<b y<b y<b
which, along with the definition of b, implies
(13) m(M, y) = m(A, y) + m(C, y), fory>b.
Write
(14) m(M, b) = m(A, b) + m(C, b) +p,

where p is a positive integer.
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Lemma 4 with k=YX ., ,mM,y), j=1+X,.,mA,y) and k—j+1=
p+ Zyzbm(C: y): implies

Y ym(M, y) = max{sum of j Lyapunov exponents of A
y=b

(15)

+sum of (k — j) other Lyapunov exponents of M,

sum of & — j + 1 Lyapunov exponents of C

+sum of (j — 1) other Lyapunov exponents of M} .

However, it follows from (13) and (14) that
sum of j Lyapunov exponents of A
+sum of (k — j) other Lyapunov exponents of M

<b+ ) ym(A,y)
y=b

+sum of (k — j) other Lyapunov exponents of M

<b+ Y ym(A, y)+(p-1)b+ Y ym(C,y)
y=b y=b
= Z ym(M7 y)'
y=b

Similarly,
sum of £ — j + 1 Lyapunov exponents of C
+sum of (j — 1) other Lyapunov exponents of M

< X ym(M, y).
y=b

This contradicts (15), which completes the proof of Theorem 5. O

5. A concluding observation and question. m(M, *)/d defines a prob-
ability measure on [—o0,00]. If {M(/)} takes values on a compact subset of
GL(C, d), all the moments of this measure are finite. The mean of this measure
is E(log|det(M(1))|)/d. Can we find other useful relationships between this
measure and the stationary distribution of {M(j)}?
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which made it possible to prove Theorem 5 without any additional hypotheses
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