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SOME LIMIT THEOREMS FOR VOTER MODEL
OCCUPATION TIMES!

By J. T. Cox

Syracuse University

Let 7, be the (basic) voter model on Z%. We consider the occupation time
functionals f{f(n,)ds for certain functions f and initial distributions. The
first result is a pointwise ergodic theorem in the case d = 2, extending the
work of Andjel and Kipnis. The second result is a central limit type theorem
for f(n) = n(0) and initial distributions: (i) 8,, for a class of states 5, d > 2,
and (ii) », the extremal invariant measures, d > 3.

1. Introduction. Occupation time functionals have been studied for several
infinite particle systems. A sampling of this work is independent random walk
systems ([9] and [20]-[22]), branching Brownian motion and random walk
systems ([10]), the contact process ([12]-[14]), the voter model ([4] and [8]) and
the simple exclusion process ([1]). The objective of this paper is to extend some
of the work in [1] and [8] on pointwise ergodic theorems and “central limit” type
theorems for the voter model. We begin by defining our process.

Let X = {0, l}zd, endowed with the usual product topology. The (basic) voter
model 7, is the X-valued Markov process, which has flip rates at each site
x € Z¢ and time ¢ > 0,

n(x) > 1—mn(x), atrate(2d)”#{y:|x -y =1, n,(x) #n(y)}.

A complete description of 7, can be found in [18]. For each 0 < 8 <1 let p,
denote the Bernoulli product measure on X with density 8, po{n(x) =1} =0
for all x € Z<. For each probability measure u on X let P, denote the law of 7,
with initial measure p, and let # be the set of such measures that are invariant
for n,, ie., #£= {u: B(n, € -) = p}. £, will denote the set of extreme points of
#. Let 8, be the point mass at 7, and write P, for Rs,,- Finally, = will denote
weak convergence.

The fundamental result concerning the ergodic behavior of 7, is (see [7] and

(15])

THEOREM 0. For 0 <0 <1,
(1.1) P.(n,€ )=, ast— oo.

For d<2, yy=(1-0)p,+0, and S={y, 0<0<1}. For d>23, S, =
{vy, 0 <0 <1}.
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For d > 3 the measures v, are not product measures; their macroscopic
structure is studied in [5]. For d = 1,2 Theorem 0 indicates that clustering
occurs; see [2] and [6] for d = 1, and [3] and [11] for d = 2.

Holley and Liggett [15] have given explicit necessary and sufficient conditions
for a measure p to be in the “domain of attraction” of a v,, i.e., for

P(n,€ )=, ast- oo.
For fixed n € X and p = §,, this condition is

(1.2) lim Y p(x,y)n(y)=0, Vxez?,
t— o0 yEZ'i

where p, is the transition function of a rate 1 simple symmetric random walk on
Z°. As noted in [18], pages 68-69, it is enough to require (1.2) just for x = 0.

We are interested here in the asymptotic behavior of the occupation time
functionals

fotf(ns)ds,

for certain functions f on X and various initial measures for 7,, especially p,, v,
and §,. A “strong law” type result, or pointwise ergodic theorem, was proved in

[1].

THEOREM 1. Suppose d > 3, f € C(X) and 7 satisfies (1.2). Then

18 [i)ds~ [(§)dn(x), ast— oo, Pas.

This type of pointwise ergodic theorem has also been proved for the contact
process (see [12]-[14]) and the simple exclusion process (see [1]). As is pointed
out in [1], general considerations imply that the set of 5 for which (1.3) must
hold has », measure 1, but this fact alone fails to identify a single n for which
(1.3) is true.

The case d =1 is properly excluded from Theorem 1, since results of [8]
indicate that for f(n) = 1(0), and at least some 7 satisfying (1.2), ¢~ Y/{f(n,) ds
converges ‘weakly to a nondegenerate random variable. But there is no reason to
suspect the case d = 2 should be excluded, and this is our first result. Let 0 and 1
denote the elements of X that are identically 0 and 1.

THEOREM 2. Suppose d = 2, f € C(X) and 7 satisfies (1.2). Then
(1.4) %ftf(ns) ds > (1 -0)f(0) + 0f(1), ast— o, P, a.s.
0

The right-hand sides of (1.3) and (1.4) are the same for d = 2 by Theorem 0.
“Central limit” type behavior for the occupation time functionals was consid-
ered in [8] for f(n) = 1(0) and initial distribution p,. The result is
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THEOREM 3. For the voter model with initial distribution p,, 0 <8 <1,
there are constants 0 < o2 < oo such that as t —> oo,

¢2, d=1,

, t2/log t, d=2,

o?(t) = var(fns(O) ds) ~ 030(1 — 0){ 4372, d=3,
0 tlogt , d=4,

t, d=5

-

and
([0 ds - 8) /o(t) -z
0
where Z is nondegenerate, and normal if and only if d > 2.

[f(t) ~ g(t) as t = oo means lim, _, f(¢)/g(¢t) = 1.] The reasons for consid-
ering p, for the initial distribution are twofold. Product measure is a natural
initial distribution given the dynamics of the model, representing “complete
independence” of the voters at time 0. Moreover, the duality equation used to
study the voter model (see the next section) is readily analyzed in this case, and
is far less tractable in others. For d > 3 it seems that the most natural choice for
an initial distribution is »;, which makes 7, a stationary process. We have been
able to show that in this case, and for some §,, central limit type behavior can
still be obtained. Our result is

THEOREM 4. If n, has initial distribution
(i) Vo, d> 3,
or

(ii) 8, d > 2, where 1 satisfies (1.2) uniformly in x,

then as t — o0,

/2

(15) ([(1.0) - Bn,(0)) ds) / (vas, [ 1,00 @) =2,
where Z is standard normal.

The extra assumption of uniformity in (1.2) for initial distributions §, is
probably not needed, but our proof requires something a little stronger than
(1.2). The remainder of the paper is organized as follows. In Section 2 we extend
a key lemma of [5] to cover initial distributions §, and »,. Theorem 2 is proved in
Section 3 and Theorem 4 is proved in Section 4.

2. The key lemma. To analyze the voter model, one needs a duality
equation, which connects the voter model with a coalescing random walk system.
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We define, for n > 1, x; € Z% s; > 0 and ¢ > max;s;:

£(xy, 81),---5(X,, 8,)) = the system of coalescing rate 1 simple symmetric
random walks on Z9 starting at x, € Z¢, the walk at x; frozen until time s;,
such that two walks coalesce only after both are unfrozen.

The system £, is constructed on a “percolation substructure”; see [13] for details
of the construction. For n € X and A C Z¢ we will write A C 5 for A C {x:

n(x) = 1}.
The duality equation for 1, and £, (see [13]) can be written as

(2.1) Pv,(nt—s,-(xi) =1,1<i< n) = P(gt((xl’ 81)s-+5(%,,8,)) C "7)'
We will also need to start 7, in py and »,, in which case we have

-Pp,(nt—si(xi) =1L,1<i<n)= Eg¥GuamGnod p=p,,

= EONe(G1 80,0 (s 82) L=,

where N_(-) = lim,_,  #£,(-).

As in [5] and [8] our results depend on obtaining good moment and cumulant
estimates. If 7, has initial distribution p let Sk(¢) be the mth cumulant of
fon,(0) ds, formally

oo

logE“(exp(ALtns(O)ds)) =y —Sﬂ(t)

m= 1

We will need the so-called Ursell functions (see [16], [17] and [19]). Given
random variables Y,,...,Y,,, not necessarily distinct, denote the mth-order
Ursell function u,,,

(Yo V) = L (- s =11 T p(m)- olm),

s=1 T=(mM,..., )

the second sum over partitions 7 of {1,2,...,m}, and p(m) = E(I1; cnY;). We
will need a combinatorial result from [16] [17] and [19]. Let (#’, 7r") be a
nontrivial partition of {1,2,..., m}. Then one can write

(22)  un(Yy,...,Y,) = Z + [p(m U my) = p(m)p(m)] p(m) - - -,

where the sum is over all partitions 7 = (7, 7y, 73,...) such that =, C 7/,
7, C w”’. We will also use the much simpler combinatorial fact that

t t
(2.3) Sk(t) = fo ds, - - fo 8 (Mg (1) e (X))
The main technical result we need is the

KEY LEMMA. For m = 2,3,... there exist finite constants K, such that if
x; €29 s, > 0, ¢t > max;s,,
u;( nt—sl(xl)’ ooy Mp—s, | xm))
(2.4) < K, P(#&,((x1, 81)5---, (xm, Sw))=1), p=pyors,
= K,,,P(Nw((xl, 81)se0s (Xm» 8)) = ) b=



VOTER MODEL OCCUPATION TIMES 1563

The case p = p, is in [8], based on Proposition 2 of [5]. The estimate is useful
because it is shown in [8] [equations (4.3) and (4.4)] that if

(25) gn(t) = sup jo‘dsl /O‘ds,,,P(#g,((xl, 8)eeer (% ) = 1),

then ‘

8.(t) = O(t- (t/logt)™ "),
= O(t . t(m—l)/2)’
=0(t- (logt)™ "),
= 0(t),

We will omit the straightforward modifications of th
to prove (for d > 3)

(27) S:p '/(;tCLgl e '/:dsm P(Noo((xl’ sl)’ ceey (xm’ sm)) = 1) = O(gm(t))

(2.6)

proof of this fact needed

@

PROOF OF THE KEY LEMMA. Proposition 2 of [5] was proved assuming 7, had
initial distribution p,. The key lemma asserts, in effect, that it holds for two
other choices of initial measures, namely 6, and v,. Here are the details. Fix m,
the s; and the x;.

Construct m independent random walks X,(i), 1 < i < m, X,(i) frozen at its
starting point x; until time s, Let P and E denote the probability law and
expectation operator for these walks. For each nontrivial partition = =
(my,...,m)of {1,2,...,m}, let Xt” denote the process such that only those walks
with index from the same =, interact. This interaction is that if X.(i) and X.(j)
collide at some time s > max(s,, s;), then X.(i) survives if and only if i <.
Given =, let X= denote the positions of the set of surviving particles with
indices from =, at time ¢.

Now consider

u‘r‘r't( nt—sl(xl)’ et T’t—sm xm))

m

=L 0760t T B(ITno)- - B [In )
s=1 T=(Ty,yeen, W) tem LE 7
We will prove that
(2.8) U( Mo (%1), s M (%)) = E(S)
where
(2.9) E=Y ()" s=-1) X p(m)--- o(7,)
s=1 T=(Tyyeee, W)
and

p(m) =1X™cq), ifp= 8,

2.10 V.
(2.10) = Nl if p = v,

N(m) = lim,_, #XJ.
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Once this is done, the purely combinatorial argument used to prove (2.2)
applies to show that if (#’, #) is a nontrivial partition of {1,2,..., m}, then

(2.9) 2= E t [P(‘”l Um) — P(”H)P("z)]P(”s) )

the sum over partition (7, m,,...) with 7, C 7/, m, C #”. Now if #X{b2-m > 1
[or N({1,2,..., m}) > 1], then there is some nontrivial partition (', 7”’) such
that the walks X.}, € #’ and the walks X./, € #”, do not meet by time ¢ (or
never meet). In either case, if 7, C #’ and =, C #” and p is given by (2.10), then

p(m U m,) = p(m)p(m,).
Consequently, 3 = 0 on {#X{*%»™ > 1)} [or N, ({1,2,..., m}) > 1]. Taking
expectation yields (2.4) with
K,=Y (s—-1)#{7=(m,...,m)}.
s=1

All that remains is to prove (2.9) and (2.10).
Suppose p = §,. Letting §,(m,) = £,((x;, 5;),---,(x;,,8,)) if 7w, = {iy,..., 8},
duality implies

Eﬂ( I1 "t—sj(xj)) = P(¢/(m,) cn)

jewa
= p(Xt"" c 'r,).
Thus

u;’n( nt—sl(xl), e ’int—s,,,(xm))

E(-)"7Me-1! T BErcn)- BXpcw)

Y(-1)Ys-1! Y B(Xrco,.., XMcCy),

s=1 T=(M,eue, )

since fof a given 7 = (m,...,m,), X1,..., X]s are independent. This is the
p = 8, case of (2.9) and (2.10). Now suppose p = »,. Then duality implies

B, TLne-o(x) = [ dn(®) Plt(n) < 1)

= T Pl(m) = A)BFD
Acz?

= EONo((Zis 8:)s-, (i, 53,))

= EgNam),
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Thus
u;‘:( nt—sl(xl)? ey T’t—sm xm))

m
Y(-1)*(s—1) ¥ EoNm ... FfN
s=1

ﬂ=(7rls"') ﬂs)

YD T s-1)! Y E[gNm ... gRam)],
s=1

since for a given 7 = (m, ..., 7,), we must have 1\700( T yeees 1\700( @) independent.
This completes the proof. O

3. Proof of Theorem 2. We will proceed by first showing that (1.4) is valid
for the special case f(7) = 7(0), and then arguing that (due to the clustering) this
case suffices. For the first step, we note that

E, [ ,(0) ds = [ "P(£,,(0,0) € ) ds

(3.1) = " 2,0, y)n(y) ds

ye€ z?
~ t0,
as t = oo by (1.2). Furthermore, the key lemma (with m = 4) and (2.5) and (2.6)
imply that

B[ [{(10) = E(n.0) @] = 5.(2) + 35,)

= O(t*/log?t),
as t = oo. The proof of

1o
(3.2) lim ~ fo 1,(0)ds =6, P,as.,
is now standard. By Chebyshev, for any ¢ > 0,
1
P"l

tooo t
. fo‘(,,s(o) ~ E,(n,(0))) ds| > 3) - O(@)’

as t = oo. By Borel-Cantelli, for any r > 1, this estimate and (3.1) give

lim — [ (0)ds -0, P
i A [00@ 0, s

By considering r” < ¢ < r"*!, we obtain

0 1 4 1
— < liminf — 0)ds < lim - 0)ds<rf, P as.
; S limin tfons() Hszptfons() A
Let r |1 to complete the proof of (3.2).

For the next step we note that it suffices, by standard arguments, to assume f
is of the form

f(n) = T n(x), finite A C Z2.
x€A
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Due to the clustering that occurs one suspects that 7 (x) = 1,0) “most of the
time.” This is indeed correct, as we will prove

1
(3.3) lim 7/‘1(«,3(0) #1,(x))ds =0, as.P,, x<Z2
t— o0 0
To prove (3.3), we will first establish
2
t
(34) E [1(0,00) # 1) ds) = O(e2/10g?t),

as t — oo; with this estimate (3.3) is proved the same way (3.2) was proved.
Consider

B [n.0)(1 ~ n(x)) s

([~ 1P(1,00) = 10) = 1, 1(x) = ,(x) = 0) duds.
O<s<ux<t O<u<s<t
By duality, the first integral is
P(£,0,t—s)en, &(x,t—s) &1,
(3.5) [)sssust (gt( )Em gt( ) K

£,0,t—u)en, &(x,t— u) &€n)duds.
A little thought shows that (3.5) is bounded above by

'/;535u<tp(#£t((0’ t- s),(x, t- s))= 2, #gt((O, t— u)’ (x, t— u)) = 2) duds
B 05s5u5tp(#£t_3((0’ t—u),(x,t—u))=2)
X P(#£,((0,t—s),(x,t—s)) =2) duds
= Lsssustp(fo(x) > 2(u — 8))P(1y(x) > 2s) duds,

where 7y(x) is the first hitting time of 0 for a rate 1 simple symmetric random
walk on Z? starting at x. The well-known estimate (see [23], for example)
w

P (1> u) ~ g’ as u — oo,
used in the last integral produces an expression which is
O(t%/logt), ast— oo.
We conclude (3.4) holds. O

REMARK. Since only the m = 4 case of the key lemma was used here, one
can avoid the general combinatorial argument that produces (2.2), and instead
verify “by hand” the m = 4 case. However, the full strength of the key lemma is
needed in the next section.
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4. Proof of Theorem 4. Theorem 3 (for d > 2) was proved in [8] by first
establishing the variance estimates and then showing

—_— = > = .
; m (t) N orallm = o, U Ko

Our strategy here is exactly the same. Since the key lemma and equations
(2.5)-(2.7) imply the cumulants Sk(¢) for p = §, and », are of the same order as
for p = pg, it is only necessary to prove

(4.1) tm i var [2.0) ds /02(,:) 50, =8,
t— o0

to establish (1.5). For the point masses 8, this is where we use the extra
assumption of uniformity in (1.2).

For the initial distribution p write p,(x) for E,n(x). Let X,(u), X(s) be two
independent random walks, both starting at the origin, frozen until their starting
times u and s. Finally, let 7(u, s) = inf{t > max(u, s): X,(u) = X,(s)}. Then

var,( [00) ) = B, [(n-0) = o (0) )

(4.2) =2 [B(n.-0) = n.,(0) = 1)

0<s<usx<
~e- (O, (0)] duds.

Letting 7, have distribution p, independent of the random walks X,(u), X,(s),
the preceding integrand can be written as

P(X,(u) € o, 7(u, 5) < ¢) + P(X,() €no, X,(5) € o, 7(u, 8) > 1)
— e o(0)p,(0)
= P(X,(u) €ng, X,(8) € o) — pe—s(0)1,_,(0)
+P(X,(u) € o, X,(5) &m, 7(u,s) <t)
> P(X,(u) €y, X,(s) & mo, 7(u,8) < t),
for p = &, and »,. The last inequality follows because
P(X,(u) €ng, X,(s) €ny)

= ¥ 2.0, %)p,_5(0, y)u({n: n(x) =n(y) =1})

> Y p,_0, x)p,_ (0, y)u({n: n(x) = 1})u({n: n(y) = 1))

(both p = 8, and p = », are positively correlated)
= P(X,(u) € ﬁO)P(X,(s) € ny)
= "’t—u(O)M‘t—s(O)‘
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We have established that the integrand of the right-hand side of (4.2) is at
least as large as

P(X,(u) € no, X,(s) & mo, 7(u,8) <1),

which can be written as
¢
(43) X [P(r(u,s) € dv, X,(u) = x)P(XE, € o, Y, & mo),

where X7, Y are two independent random walks starting at x.
Now suppose that p = §,, so 0 = 1. Then

P(X7, €mno, Y2, € m) = P(X2, €n)(1 - P(YE, € mp))
=0(1—-0)+e(x,t—v),
where lim, _,  sup,|e(x, £)| = 0. This is the assumption that (1.2) holds uniformly
in x. If p = »,, then
P(Xix—v € No> thx—o & nO) = P(Xto—v € No> },t(lo & 7’0)

= Y Pi-o(0, ¥)P,_ (0, 2)7e{n: 1(y) = 1,4(2) = 0}

=0(1-6)+e(t—v),
where ¢(¢) — 0 as ¢ = oo. This last fact follows from elementary properties of »,;
see [13] or [18] for instance. In either case, p = §, or v,, (4.3) can be written as
f‘p(f(u, s) € dv)[6(1 — 8) + &(t — v)],
for some &, |&(t)| — 0 as ¢ - co. Consequently,
Varﬂ(ftns(()) ds) > 2 dudsP(7(u,s) € dv)[8(1 — ) + &(¢ — v)],
0 O<s<u<v<t
for p = 8, and v, 7 satisfying (1.2) uniformly in x.
We will omit the details checking that this integral is
[6(1 - 6) +o(1)]2f duds P((u, s) < t),
O<s<u<t

and now remark that (see the calculation in [8]) this expression equals
¢
(1 + o(0))va, [9.(0) ds ) = (1 + o(V)o*(0),

as t > oo. Thus we have established (4.1) (with the liminf at least 1). This
completes the proof. O
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