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WEAK CONVERGENCE OF SMOOTHED AND NONSMOOTHED
BOOTSTRAP QUANTILE ESTIMATES

"By M. FALK AND R.-D. REI1ss
University of Siegen

Under fairly general assumptions on the underlying distribution function,
the bootstrap process, pertaining to the sample g-quantile, converges weakly
in Dy to the standard Brownian motion.

Furthermore, weak convergence of a smoothed bootstrap quantile esti-
mate is proved which entails that in this particular case the smoothed
bootstrap estimate outperforms the nonsmoothed one.

0. Introduction. Let X,,..., X, be a sample of independent random vari-
ables (rv’s) with common distribution function (df) F and denote by F, the
corresponding empirical df.

Consider a functional T from the space of all dfs into the real line R. The
natural nonparametric estimator of T(F') is the statistical functional T(F,). As
an estimator of the df P{T(F,) — T(F) < t}, t € R, the bootstrap idea, intro-
duced by Efron (1979), suggests P{T(F,*) — T(F,) < t}, t € R, where F*
denotes the empirical df of a sample X;*,..., X* of independent rv’s with
common df F,. We add the index n to the preceding probability to indicate its
dependence on the outcome of F,.

Now, P{T(F*) — T(F,) < t} is a rv before the sample X,..., X,, is drawn
and thus, the bootstrap error

z,(t) = B{T(Fx) - T(F,) < t} - P(T(F,) - T(F) < t}, (<R,

defines a stochastic process with values in Dy, the space of all functions on R
that are right-hand continuous and have left-hand limits. We call Z, the
bootstrap process based on T.

Up to now mainly strong laws were obtained for the bootstrap error in the
statistical literature, i.e., it was proved for various choices of T' that sup, < g|Z,(?)|
converges to zero with probability 1 [see, for example, the paper by Bickel and
Freedman (1981)] or satisfies laws of the iterated logarithm [Singh (1981)]. A
survey of bootstrap results is given by Beran (1984a).

Convoluting Z, with a normal density, Beran [(1984b), Theorem 3] obtained
weak convergence in sup norm of the resulting process, suitably standardized, to
a degenerate Gaussian process. This is achieved under the assumption that the
functional T is locally quadratic, i.e., that it is a rather smooth functional.

However, as Beran (1982) points out in connection. with certain optimality
properties of the bootstrap estimate, it is an open question whether such results
can be obtained without smoothing.
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Now, for the particular functional T(F) = F~%(q) = inf{s € R: F(s) > q},
i.e., the g-quantile of F, q € (0,1), we will prove in the first section of the
present paper that the nonsmoothed process Z,, suitably standardized, converges
weakly in Dy to the standard Brownian motion on R, ie., to (Z(?));cr =
((By(—)); < 0s (By(2)),» o), where By, B, are two independent standard Brownian
motions on [0, c0).

This result indicates that the asymptotic behavior of the nonsmoothed
bootstrap process Z, is completely different from that of a smoothed version.
This is underlined by the results of the second section of the present paper in
which we estlmate P{F;'(q) — F"%(q) <t} by a smoothed bootstrap

P(F*"Yq) — F,'(q) < t}. This time the observations X/*,..., X;* are gener-
ated according to a smoothed version F of F,.

Although this approach is different from smoothing the process Z,, it turns
out that the pertaining limiting process is again a degenerate one, unlike in the
nonsmooth case.

The striking advantage of smoothing F, before bootstrapping in this par-
ticular case is the rate of convergence of the resulting estimator of
P{F;Yq) — F7(q) < t}, t € R, which is considerably better than in the non-
smooth case.-

Hence, smoothing F, before bootstrapping may be of great practical impor-
tance and thus, we obtain a partial answer to the problem: What are the
advantages of a smoothed bootstrap? Moreover, one might expect corresponding
results in general for those statistical functionals which depend on the local
behavior of the underlying df.

1. Weak convergence of the bootstrap quantile process. At first we
define weak convergence in Dy. Consider therefore for K > 0 the space Dy of
those functions on [ — K, K ] which are right-hand continuous and have left-hand
limits. In complete analogy to the well-known space (D 13, d), where d denotes
the Skorohod metric, we can equip Dy with the Skorohod metric dy and all
results on the metric space (Dy, ;}, d) carry over to (D, di) [see Chapter 3 of
Billingsley (1968) for details].

In particular, we know that dy is smaller or equal to the supremum metric on
Dy and their restrictions to the subspace of continuous functions in Dy generate
the same topology.

Now, a sequence W,, n € N, of stochastic processes with values in Dy, is said
to be weakly convergent to W, denoted by W, —, W, if for any K > 0 the
restriction WX := (W (¢))_x.,.x converges weakly in (Dg,dyg) to WK:=
(W(t)) _k <1< k-

Now we are ready to formulate our first main result. Suppose that F is
differentiable near F~(g) and denote its derivative by f. Moreover, suppose that
f(F i(q)) > 0 and define

Z(t) = cn1/4[P{n1/2(F* (q) — F;Y(q)) < t}

(1.1)
_P{n1/2(Fn—1(q) - F_I(Q)) = t}]’
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where

(12) ¢ = (a1 — ) F(F (@) *|e{(a(t — @) H(F(2))t},

and ¢ denotes the density of the standard normal df ®. Then, Z, € Dy and we
have Theorem 1.3.

1.3 THEOREM. If F is continuous and differentiable near F~'(q) such that
f = F' is Hélder-continuous of order 8 > 1/2 and f(F~(q)) > 0, then

Zn 9 Z= ((Bl(_t))tso’ (B2(t))t>0)’
where B,, B, are independent standard Brownian motions on [0, o).

Lemma 1.4 will be quite useful for the derivation of the preceding result. It
follows from Reiss (1986), elementary computations and the probability integral
transformation theorem.

1.4 LEMMA. Suppose that F is continuous and let F, be the empirical df
pertaining to a sample of n independent rv’s identically distributed according to
F. Then, for q € (0,1) and u € R, the conditional distribution of the process
(F(t + F;%q)));cr &ven F, '(q) = u equals the distribution of the process

((m —1)/n)F,_,(F(t + u)/F(u)), t<o,

W, () = m/n, B t=0,
m/n+ ((n = m)/n)G,_n((F(t + u) = F(u))/(1 = F(u))),

t>0,

where m = nq if ng €N, m = [nq] + 1 else (here [x] denotes the integral part
of x € R) and E,,_,,G,_,, denote the empirical df ’s of two independent samples
of independent and uniformly on (0,1) distributed rv’s.

Replacing ¢ by t/n*? and u by u,=F'(q) + un"'/?, we deduce from
Lemma 1.4 together with the bound for the oscillation behavior of empirical
processes due to Stute [(1982), Lemma 2.3] the consequence:

1.5 COROLLARY. Suppose that F ’satisﬁes the assumptions of Theorem 1.3.
Then, uniformly for t, u in finite intervals of R,

W, . (t/n'/?) = W,(¢) + op(n=%*),
where )

qF, {1+ f(F~Y(q))t/(qn'?)}, t<0,
Wu(t) =4 =0,
g+ (1 - )G, {f(FY)[(1-q)n?)}, t>o0.
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Now we are ready to prove Theorem 1.3.

Proor oF THEOREM 1.3. Choose g: (Dg, dy) — R uniformly contmuous
and bounded. We have to prove

(1.6) [e(ZF) aP  [a(z¥) ap.

The proof will be based on the normal approximation to the distribution
of sample quantiles. By F, we denote again the empirical df pertaining to a
sample of n independent and uniformly on (0,1) distributed rv’s. Put @, (x) ==
®(x/(q(1 — g))/?) for x € R and q € (0,1). Then, by the probability 1ntegral
transformation theorem we obtain

Z,(8) = e[ B {n(F () - FyY(q) < 1)
~P{n/2(F(F;(q)) - FY(a)) < ¢}]
= cn*[P{F;(q) < F(tn™V? + F(q))}
—P(F,(q) < F(tn™"* + F(q))}]
(17) = cen A [P{n"%(F;Y(q) - q) < nV2(F(tn"/2 + F7Y(q)) - q)}

—P{n'*(F;'(q) - q) < n/*(F(tn"2 + F"Y(q)) - q)}]
= ctnl/“[(I>q{n1/2(F,,(tn_l/2 +F;Y(q)) - Q)}
—0,{{(F(q))t}] + 0(1)

Z,(t) + o(1)

uniformly for ¢ € R by the normal approximation to the distribution of sample
quantiles as given in Proposition 1.5 of Reiss (1974) and a Taylor expansion of F
at F~Y(q). By the uniform continuity of g with respect to supremum metric on
Dy, it suffices therefore to prove (1.6) with ZX in place of ZX.

Conditioning on F, %(q) =un~'2 + F~ 1(q) =: u, we can write

[e(ZK) dP = [E(e(ZX)\F;(q) = u,)
X (P*(n*(F;(q) - F~X(q))))(du),

where P*Y denotes the measure induced by P and a rv Y.

(1.8)
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From Corollary 1.5 we obtain that uniformly for « in any finite interval of R
E(g(ZX)1F (q) = u,,)
= E(g{(ctnl/“(‘l’q(n‘”(Wn(t) - q))
=0 ({(FH@)t)))_orax)) + 01)
- B{8{{ 1)
x(W,(¢) - q - f(F“(q))tn‘Vz))_Kstsx}) +0(1)

by a Taylor expansion, the Kolmogorov—Smirnov theorem and elementary
computations. Note that the preceding expectation is independent of u. More-
over, it is routine to show that the process

(1(F (@) n 4 (Wil0) = q = [(FH@)in ")),

converges weakly in (Dy, dy) to ZX, i.e., the standard Brownian motion on
[— K, K ]. Hence, we have uniformly for u in any finite interval of R

(1.9) E(g(ZF)IF, "(q) = u,) = E(8(2%)) + o(1).
Since n'/*(F, (q) — F~Y(q)) has a limiting normal distribution, the assertion
now follows from (1.8) and (1.9). This completes the proof. O

The continuous mapping theorem [see Theorem 5.1 of Billingsley (1968)]
implies the following result for the unweighted bootstrap quantile process

Z(t) = n*[P,(n**(F*"Y(q) — F, (q)) <t
—-P(nV%(F;Y(q) - F%(q)) <t}], teR.

1.10 CorOLLARY. Under the conditions of Theorem 1.3

z, “’.@((ct_lBl(_t))tgo’ (ct_lB2(t))t>O)’

where B,, B, are two independent standard Brownian motions on [0, c0).

2. Weak convergence of a smoothed bootstrap quantlle estimate. In
this section we investigate the approx1mat10n of P(F,(q) — F (q)<t), tER,
by a smoothed bootstrap P{F* '(q) — F, (q) < t}, t € R. Again F* denotes
the empirical df of a sample X}*,..., X * of 1ndependent rv’s, but this time these
are generated according to a smoothed version F of F,.

Deﬁne F w(t) as the kernel estimator of F(¢), i.e., put
(@1)  B(0)=n 5 K((t- X)/a,) = JE((t - %)/a,)F,(ax),
i=1

where the bandwidth «, > 0 tends to zero as n increases and the kernel function
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K: R — R is itself a df. These estimators were extensively studied as competitors
of the empirical df by Reiss (1981) and Falk (1983).

This particular choice of a smoothed empirical df allows us to generate rv’s
X*,..., X¥ according to F, in a simple way: If Y;*,..., Y, * are independent rv’s
with common df F,, and V,,..., V, are independent rv’s with common df K and if
these two samples are independent, then we may take X* :== Y* + a,V,, i =
1,...,n. '

Suppose that the kernel function K has a density, say k. Define

i) = (na,) ™ L k(2= X) /),

which is the kernel density estimator. Theorem 2.2, the main theorem of this
section, reveals that the stochastic behavior of the bootstrap error is now
asymptotically related to that of the kernel density estimator f,(F~'(q)).

2.2 THEOREM. Suppose that F is three times continuously differentiable near
F~Y(q) with f(F"Y(q)) >0, f=F. Let K: R - [0,1] have bounded support
[—1,1], be three times differentiable with bounded second derivative and sat-
isfy [k(x)dx =1, [xk(x)dx =0, where k= K’'. Then, if nal—> oo and
nalog?(n) - 0 we have

(na,)"” f:gIPn{nl/z(Fn*“(q) - F%(q)) <t}

—P{n**(F;*(q) - FY(q)) < t}
() (F(F Y (q)) - H{F(q))|
= op(1),
where Y(t) = (q(1 — @)~ *to{ f(F~(@))(q(1 — q))"'/*t}, t ER.

PrOOF. At first we prove the following auxiliary results, where ¢ > 0 is
chosen sufficiently small:

(2.3) sup |F,(¢) — F(¢)| = Op(n™1% + a2).
Jt-F(q)| <e '

Note that (2.3) immediately implies ¥, }(q) — F~(q) = op(1).

(2.4 swp | F(8) = F(8)] = Op{(na,) ™ + a),
[t-F~q)| <e )
@5)  sup | F(0) ~ [R(=)f(t - apz) dx‘ = Opfn V2 2),

[t-F~Y(q)| <e

(2.6) 1B Y (q) — F(g)| = Op(n"'72 + a2).
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ProoF OF (2.3). By using integration by parts we can write, where 0 < 4 < 1,

E(t) - F(t) = [K((t - x)/a,)(F, - F)(dx)
+ [K((t - x) /o) F(dx) - F(t)
= o, [R((¢ = 1) /o) (F(x) = F(x)) ax
+ [R(x)(F(t - ax) - F(t)) dx
= [R(x)(F,(t - a,x) = F(t — a,x)) dx

+ fk(x)f’(t — da,x)a’x?/2 dx
= Op(n™/2) + O(a2)
uniformly for ¢ near F~'(q). O

PRrOOF OF (2.4). In analogy to the preceding steps we obtain

Fut) = £(8) = o* [R(2)(F(t = a,x) = F(t = a,x)) dx
+ [R(x)(F(2 = aux) = £(2)) de

= a;lfk'(x){Fn(t — a,x)
—F(t — a,x) — F(t) + F(t)} dx + O(a2)

since [k'(x)dx = k(1) — k(—1) = 0. By Lemma 2.3 in Stute (1982), the first
term in the preceding sum is of order Op((na,) '/?) uniformly for ¢ near
F~Y(g). This implies (2.4). O

Proor of (2.5). Put s, = FA',,_ Y(q), s, = F~Y(q). Then, by a Taylor expan-
sion with 4 € (0,1),

|ﬁn(32) - F(s,)| = |‘FA;‘L(32) - ﬁn(sl)l = fn(SQ + (s, — 32))|s2 =8|
= Fuls, + 9(s1 = ) (@) = FY(a)l-

From (2.3) and (2.4) we conclude that )"\,,(s2 + ¥(s; — 83)) — f(s,) = 0p(1) and
hence, the assertion is immediate from (2.3) and the preceding representation. O
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PRroOF OF (2.6). In analogy we can write
Fi(8) = &z [R/((¢ = x) /e, ) F(x)
= a7 [k (x){E(t = a,x) = F(t = a,x)} dx

= a,;z/k"(x){F,,(t —a,x) — F(t — a,x) — F(t) + F(t)) dx

— OP(n—l/Qa;3/2)

uniformly for ¢ near F~!(q). Finally, observe that
ax? [R((t = x)/e,) F(ds) = [R(2)[(t = a,x) i — (1)
uniformly for ¢ near F~Y(q). O

Now we can prove Theorem 2.2. Repeating the arguments of the first part of
the proof of Theorem 1.3 we can write uniformly for ¢ € R,

P(n'*(F*"X(q) - F,(q)) < t} = P(n'/*(F, (q) - F X(q)) < t}
= @, {n'2(E (712 + £7(q)) - q)}
—o,(n/2(F(tn" 2 + F(q)) - q)} + O(n""2).

Next we will show that it suffices to consider |#| < log(r). For ¢t < —log(n) we
have, if n is large with 4 € (0, 1),

Qq{n1/2(F(m_1/2 + F—l(q)) _ q)}
< (I>q{n1/2(F(—log(n)n‘1/2 +FY(q)) - q)}
= (I)q{ —f(FY(q) - 19log(n)n_1/2)log(n)} =o(nt)
and
o {n}(F(m 2 + F;(q)) — q))
< & —f,(E, "(g) — 9 log(n)n"'/?)log(n)}

= op(n™")
since f(F, '(q) — & log(n)n"'/?) > f(F~Y(q)) in probability by (2.4) and (2.6).
Equally, one handles ¢ > log(n) and hence, we can restrict ourselves in the
following to |¢| < log(n). By using a Taylor expansion we can write

@, (n(F (1 + F(q)) - a)} = 0w 2(F{tn™ V2 + F7Y(q)) - q))
= o;{(nV2(F(tn"'? + F"'(q)) - q)}
xn'/{(B,(tn? + FY(q)) — F(tn™'* + F'(q))}

+0(n{E(m 7 + B (q)) - F(n ™ + FY(q)))’).
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Now, by Taylor’s formula,
/Y E (V2 + F; Y (q)) — F(tn™2 + FY(q))}
= n"*{q + (B @)™ + /(B (q) + 9ytn 220!
—q = {(F(q))tn 2 = /(F(q) + dytn~/2)?n ")
= (£, 1(q)) = f(F ' (q))}t + Op(log*(n)n""?) |
if fn’ is bounded in probability near F~!(q). But this is immediate from (2.5) and

the assumption na® - oo.
Moreover, by (2.5) and (2.6),

f(E:(9) = T(F () + FAF (q) + 9(F, () - F(q)))
x{E,'(¢) — F q))
=f(F%(q)) + Op(n™ V2 + a2)
and thus, we obtain altogether
n/ B (tn? + E;(q)) - F(tn™'? + F'(q))}
— {F(F (@) = F(F (@)}t + Opf{log(n)n~ 2 + log(n)a2)
= {L.(F(q)) = f(F ()}t + op((na,) "7

uniformly for |¢| < log(n).
Finally, observe that

o (n'/*(F(tn ™ + FY(q)) - q)

> (q(1 - ) " { {(F (a))(q(1 - q)) "t}

uniformly for || < log(n) and that (na,)Y*(f(F %q)) — f(F~(q))) has a
limiting normal distribution with mean zero and variance f(F~(q))fk?(x) dx.
This completes the proof of Theorem 2.2. O

The preceding result immediately entails the following consequences for the
bootstrap process Z, pertaining to the smoothed empirical quantile, i.e., with

Z,(¢) = P{n"*(F*"(q) - F;'(q)) < t} - P{n"*(F;"(q) - FX(q)) < ¢},
our final result is Corollary 2.7.

2.7 COoROLLARY. Under the assumptions of the preceding theorem we have

() (na,)?Z, =9 V() F(F~Y(q))[k*(x) dx}/?X, where X is a standard
normal random variable and

(11) (na,)"?sup; cplZ8)| =g (F(F(q))2me) /% X.

Notice that the accuracy of the bootstrap approx1mat10n in Theorem 1.3 is of
order O(n~'/*) whereas the rate in Corollary 2.7 is roughly O(n~%/%) for an
appropriate choice of «,,.
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Final remark. In an earlier version of the paper the smoothed empirical df
was defined via a smoothed empirical quantile function. By using that approach
one can show that an iterated bootstrap leads to an asymptotically consistent
estimator of the df of the maximum bootstrap error.
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