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INTEGRATION BY PARTS, HOMOGENEOUS CHAOS
EXPANSIONS AND SMOOTH DENSITIES!

BY RoBERT J. ELLIOTT AND MICHAEL KOHLMANN

University of Alberta and Universitit Konstanz

By iterating a martingale representation result a homogeneous chaos
expansion is obtained. Using the martingale representation, the integration-
by-parts formula of the Malliavin calculus is derived using properties of
stochastic flows. The infinite-dimensional calculus of variations is not re-
quired.

1. Introduction. Since Malliavin’s outstanding breakthrough [9] there have
been other treatments and simplifications of the Malliavin calculus, including
those of Bismut [2], Stroock [11], Bichteler and Fonken [1] and Norris [10]. In
this paper we apply a very simple representation of the integrand in a stochastic
integral, Theorem 3.1, to first derive the homogeneous chaos expansion of a
certain random variable. An integration-by-parts formula is obtained and, if the
Malliavin matrix M has an inverse which belongs to every L?(Q) (a condition
guaranteed by Hoérmander’s H;, hypothesis), it is shown the diffusion has a
smooth density. The principle simplification in this paper is the observation that
by considering an enlarged Markov system only the simple stochastic integral
representation of Theorem 3.1 is needed. No infinite-dimensional calculus is
required.

2. Flows. In this section we recall some definitions and properties of sto-
chastic flows on d-dimensional Euclidean space. Suppose w,= (w},...,w™),
0 < t, is an m-dimensional Brownian motion on (Q, F, P). Write {F,} for the
right-continuous complete filtration generated by w. Let X, X,..., X,, be
smooth vector fields on [0, c0) X R? all of whose derivatives are bounded. Then
from Bismut [2] or Carverhill and Elworthy [4] we quote the following result.

THEOREM 2.1. There is a map & Q X [0, 00) X [0, 0) X R* > R? such that:
(i) For 0 < s < tand x € R® {, (x) is the essentially unique solution of the
stochastic differential equation

(2-1) dss,t(x) = Xo( Z gs, t(x)) dt + Xi(t’ Ss, t(x)) dwti’
with §, (x) = x. (Note the Einstein summation convention is used.)

Received May 1987; revised January 1988.

'Supported by the Natural Sciences and Engineering Research Council of Canada under Grant
LAT964. .
AMS 1980 subject classifications. 60H07, 60H10, 60J60.

Key words and phrases. Martingale representation, stochastic flow, homogeneous chaos,
Malliavin calculus, integration by parts, smooth densities.

194

8§
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éig(jv%
The Annals of Probability.

v

L ®
www.jstor.org



INTEGRATION BY PARTS 195

(ii) For each w, s, t the map &, () is C* on R? — R? with a first derivative,
the Jacobian, 3¢, ,/0x = D, ,, which satisfies

X, X, .
(2:2) dp, ,= _g(t’ 3 t(x))Ds, (At + _@(t’ £, t(x))Ds, ¢ dwy,

with initial condition D, ;= I, the d X d identity matrix.
(i) If W, , = 9%, ,/9x® is the second derivative, then

X, D€ .
dW,t = __(t’ gs,t(x))m,tdt + _(t: gs, t(x))m,tdwtt

s d¢ a¢
2.3
(2.3) 32X0 92X, )
+ —a?—(t’ gs, t(x))Ds,t ® Ds,tdt + 3_§2(t’ gs, t(x))Ds,t ® Ds,tdwtl’

with W, , = 0 € (R* ® R%) ® R“

REMARKS 2.2. Note that (2.2) and (2.3) are obtained formally by differenti-
ating (2.1). However, if we consider the enlarged stochastic system given by
(2.1)-2.3) for (¢, ,, D, ;, W, ,), the coefficients are not bounded. Nevertheless,
Norris [10] has extended the results of Theorem 2.1. to such systems. To state
Norris’ results we first define a class of “lower triangular” coefficients.

DerFINITION 2.3. For positive integers «, d, d,,..., d, write S(d,,..., d;)
for the set of X € C*(R¢%, R?) of the form

XD(«h) !

XO(x!, x2 2
(2.4) X(x) = (, ) , forx=|" |,
X(k)(xl,x.z,...,xk) x*

where R? is identified with R% X .-+ XR%, x/ € R% and the X satisfy

|D"X(x)] .
(25) IXlls@,ny= Sup | sup ———=V sup |DX(x)|| < oo,
xeR?\0<n<N (1 + lxl ) 1<j<k

for all positive integers N. Write S(d, ..., d;) = U,S(d,,..., d}).

REMARKS 2.4. Note (2.1)-(2.3) can be considered, as a single system whose
coefficients are not bounded but are in S(d, d2, d?). The final supremum on the
right of (2.5) implies the first derivatives of X are bounded, as are the first
dérivatives D; in the “new” variable x7/ of X)(x%,..., x7). This means X is
allowed linear growth in x/, a situation illustrated in (2.2) and (2.3). We quote
from Norris [10] the following result.
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THEOREM 2.5. Let X,, X,,..., X,, € S(d,,...,d}). Then there is a map
¢: @ X [0, 00) X [0, 0) X R? > R? such that:

(i) For 0 < s < tandx € R?, ¢(w, s, t, x) is the essentially unique solution of
the stochastic differential equation

(2.6) dx, = Xo(x,) dt + X,(x,) dw/,

with x, = x.

(ii) For each w, s, t the map ¢(w, s, t, x) is C® in x with derivatives of all
orders satisfying stochastic differential equations obtained from (2.6) by formal
differentiation.

(iii) sup E[ sup |D”¢(w,s,u,x)lp
(2.7) |x|<R s<u<t

=< C(p’ S, t’ R’ N’ dl’“" dk’ a’"XOH.s(a, N)se+*» ”Xm”S(a, N))'

REMARKS 2.6. Norris proves Theorem 2.5. by induction on j. Write (2.6) as a
system of stochastic differential equations for j = 1,..., &,

def = X(ak, ..., xf) dt + XO(ab,..., x{) dwf,
(2.8)
x!/=x/ € RY.

Suppose the result is true for 1,...,j—1 and write X0, s, t, x7) =
Xz w),..., x{ @), x’). Then (2.8) can be written in the form
dxi = X(s, t,xf) dt + X,(s, t, x/) dw}

and Theorem (2.1) applied. The difficult step is establishing the result for j = 1.
However, this follows using a stopping argument, a technique employed by
Bismut [2, 3]. Using the notation of Theorem 2.1, the following result is well
known.

LEmMA 2.7. For 0 < s < t write V, , for the solution of

V= Vo G0t - £ G0t a

(2.9)
-V aa;{ (t £, t(x)) dwy,

with V, ,= 1. Then D, V, , = I, the d X d identity matrix.

* PROOF. Applying Itd’s rule to V, D, ;, we see d(V, D, ,) = 0. However,
V. .D,,=10
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REMARKS 2.8. An application of Jensen’s, Burkholder’s and Gronwall’s in-
equalities shows that sup; _, D, ,|, sup, ., /W, ,| and sup,_,_,V, ,| are in
L2(Q) for all p < co. Alternatively, this conclusion follows from applying
Theorem 2.5 to the system (2.1)-(2.3) and (2.9). For 0 < s < ¢, by the uniqueness
of the solution of (2.1)

go,:(xo) = gs, :(go, s(xO))
= gs,t(‘xf)’ ifx= go, s(xO)’
Differentiating (2.10), using the chain rule,

-(2.10)

(2'11) DO, t = Ds, tDO, s
and
(2'12) vv(),t= Ws,t(DO,s ® DO,S) + Ds,tm),s'

3. Representation and series expansion. Suppose 0 < ¢ < T and £, (x,)
is the solution of the stochastic differential equation (2.1). Consider a real-valued
twice continuously differentiable function ¢ for which the random variable
¢(§y,7(x,)) and the components of the gradient c.(§, r(x,)) are integrable. Let
M, be the right-continuous version of the martingale

E [c(go,T(xo))|Ft] .
We then have the following representation result.
THEOREM 3.1. For 0 <t < T, M,= E[c(£) 1(xo)] + [¢vi(s) dw}, where
vi(s)=E [cs(go,T(xo))Do,ﬂFs] Do—,;Xi(s’ $o’s(x0)).

Proor. It is well known (see [5], for example) that any F-martingale M, has
a representation

(3.1) M,= M, + fo Yi(s) dw,
for some predictable integrands ;. Because the process £, ,(¥,) is Markov
M, = E[c(£,1(x,))IF]

= E[c(4,7(x))IF]

= B, [c(¢,r(x))]

= V(t,x), say,wherex = éo, (x0).

(3.2)

By the chain rule and Theorem 2.1, ¢(§, 7(x)) is differentiable, in fact smooth, in
x. The differentiability of E[c(£, r(x))|F;] in ¢ can be established by writing the
backward equation for £, 7(x) as in Kunita [8]. Consequently, applying the 1td
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rule to V(¢, x), with x = £, (x,),
av
o) 050 [ 1)
(3.3) ’
A%
+ (ta—x(s, §o,s(xo))Xi(s’ £o, s(xo)) dw

J0

where

0 1 a (m o\ 97
t J

i=1 i, j=1\k=1

By the uniqueness of the decomposition of special semimartingales, comparing
(3.1) and (3.3), we must have (as is well known)

A% B
Ts + LV =0,
and
v(s) = (s £o,s(%0)) Xi(s, &, s(%0))-
From (3.2)
'A%
7 = Elebar(®)D. o)
so by (2.11)

vi(s) = E[Cs 50 T(xO) o, TlF]DO 3 §o, s(xO)) d
REMARKS 3.2. Note in particular the representation

C(go,T(xo)) = E[c £o, T(xo))]

(3.4)
+/ E[Cs §o, (%)) D, TlF]DO (s, §o, o(%0)) dw,

Theorem 3.1 can be extended immediately to vector (or matrix) functions c.
Finally, it seems the proof of Theorem 3.1 can be extended to the non-Markov
case ([6]).

3.3 NOTATION. Write £@ = ¢ for the solution flow of Theorem 2.1, and
D® = D for its Jacobian given by (2.2). Write ¢ for the d + d2-dimensional
process with components ¢ = (¢©, D©), Write D® for the Jacobian of this
d + d?dimensional process. Write ¢@ for the process ¢® = (¢@, D®) and so
on. Then £+ = (¢ D), Note ¢™ is a process for which the stochastic flow
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results of Theorem 2.5 hold. Write

c(l)(égl (xo)) (50 T(xo)) o, T

9c®
3¢®

e (x8)) = g5 (80 (x6) DL

and so on, so
dc™
g™

o+ 1)(58'!; 1)(x(()n+1)))

(&7 (7)) D2

Note the initial condition at 0 for the variable D™ is always the identity matrix
of appropriate dimension. Write X{™ for the vector field coefficient of w* in the
stochastic differential equation defining £ and abbreviate

X,-(")(s, £7(x6™))  as X{M(s).

Then by iterating Theorem 3.1, we have the following representation of the
random variable c(£, r(x,)).

THEOREM 3.4. If ¢ has bounded derivatives of all order, then for any n,

(€ r(m0)) = Eleleor(xo)] + X E[eP(eith(xi0)]

(3.5) X fOT(fO o ( fOS"Dé,"s:”‘le(s,,) dw? ) - ) D;1X,(s) duw
+j(;T(‘/:1 e (/(;snE'[c(n+l)|F'sn+ ]Déns),”}X (sn+1) dws{l“) . )

XDy, 3 X;(s) dw}.

Proor. From (3.4)

(0,r(x0)) = E[e(to,r(xo))] + [ B[V DFLX ()
=E[c] + E[c] [ D51 X,(5) dui
0
+ /0 T( /0 "E [c(2)|F;1] DX O(s,) dw;‘I)DOj 1X (s) dw/.

"The result follows by repeated application of the representation of Theorem
3.1.0
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REMARKS 3.5. In principle, it is possible to write the previous expansion in
terms of D, ,, W, , and higher derivatives of the diffeomorphism £, 1> rather
than by considering higher and higher dimensional systems. However, this gives
rise to very complicated formulae. Consider the case when d = 1. Then ¢® =
(¢9, D) is two dimensional and by Theorem 3.1

E[C‘l’(€“’)IF‘s] = E[cg(go,T(xo))Do,T]

+ ,/:E [céi(gu,T(x))Do' TD,,, T

(36) +eg(£,, 2 (%))W, 1Dy JF,] X,(u) du]

s 3X, ,
+ _/(; E [cﬁ(gu,T(xO))Du, T|El] 3—$(u) dw.

Here we are writing £, (x,) = £, 7(x), where x = £, ,(x,), and Dy = D, D,
where D = D, . Note the final integral in (3.6) is a result of differentiating in
the D variables. Recalling (2.11) and (2.12), we have

E[c<1)(§(1))|F;] = E[Cs(go,T(xo))Do,T]

+ _/:E[ng(io,T(xo))Dg,T
+cs(§o,T(xo))VVo, TIFu] DO_,lllXi(u) dwzf
(3.7) = [(B[ex(to,2(50)) Do, 1B, D5 25, X, (u) do

s X, ‘
* [[Elebo ()R] D51 ! @)

= E[cé(go,T(xO))DO,T] + fOst(u,2) dw;,

where
v, (4,2) = a(u,2,1) Dy X (u) — a(u,2,2) D5 2W, ,X;(u)
3.8 X,
38 +a(u,2,2) Dy, — ().
Y
Here
a(u,2,1) = E[cﬁi(g(r,T(xO))DOZ,T + Ce(go, z(xo))vvo, TIFu]
and

a(u,2,2) =E [cg(go,T(xO))DO, T|Fu] .
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Substituting (3.7) in (3.4), we have

o(&,7(%0)) = E [ (4, /x0))] + E[Cs(io,T(xo))Do,T]fOTD(;;Xi(s) duw;
(3.9) .
+f0 (/0 v;(u,2) dw,{)D(;;Xi(s)dwst,

In turn, the martingales a(,2,1) and a(u,2,2) can be expressed as stochastic
integrals. Substituting again, we have

c(£o,7(%0)) = E[e(&,r(x0))] + E[cé(go,T(xO))DO,T][)TD&;Xi(s) dw;
+E[c££(£0,T(x0))D02,T + c€(£0,t(x0))VVO,T]
< [ [D51%,(w) dwt | D51 X(s) dus
= E[ex(o,(xo) Dy o] [ [ D52, X () diaf | D571, () d

Ix;

+E[ei(fo,r(x0))Dor] [ ( [oaid @) dw,{)Da,éXi(s) du]

(3.10)

+ fOT{fOs(fOqu(v,3) dwf)Do_,in(“) dw]

+f0(/0 Yi(v,4) dwf)Dojgm’qu(u) dw;

s u c')X(u) . _ .
+f0 (fo (v, 5) dwf)Do";—(;g—dw,{}DO’;Xi(s)dws‘.

REMARKS 3.6. Theorem 3.4 [or (3.10) in the one-dimensional case] indicates
how a “Taylor series” expansion for the random variable c(§o,7(x)) can be
obtained as the sum of multiple stochastic integrals.

The coefficients of the stochastic integrals are functions of the expected values
of ¢(§y r(x,)) and its derivatives, and the Jacobian D, r and its derivatives. The
integrands in the multiple stochastic integrals do not involve ¢, but are functions
of the Jacobian and its derivatives, and the coefficient functions X,. By unique-
ness the expansion is the same as the homogeneous chaos representation. This
expansion can be used to investigate variations about the expected trajectory
and large deviation problems ([7]).

COROLLARY 3.7. Taking c(£y, 7(%,)) = & (x,) € R%, so ¢; = I, the d X d
identity matrix, and c; = 0, (3.4) gives

0.1(x0) = E[to,r(x)] + [ "Dy, 1IF,] D51 X(s) du,

with corresponding higher-order expansions.
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LEMMA 3.8. Write * to denote the transpose. Suppose ¢ and g are real-val-
ued, differentiable functions such that the random variables c(€o,7(x0)),

8(&o, (%)), Cg(go,T(xo)), gg(fo, (%)) are in L*(Q). Then
E [c(fo,T(xo))g(fo,T(xo))]
= E[c(£,r(x))] E [ (&6, 2(x0))]

+E['Z": [[Blex(t0.r(x0) Do, ]
XDy s X,(s)X;*(s)Dg;'E [gg*(fo,T(xo))w;] ds]

Proor. By Theorem 3.1
8(¢o,r(x0)) = E[8(80r(x0)] + [ B[ (80,1 (x0)) Do iF] D5 1 X,(5) .

The result follows by taking the expectation of the product with (3.4). (Note
g =g)0

DEFINITION 3.9. The nonnegative matrix
m
M, = ¥ [DoiX(w)X*(u)Dy,du |
i=1"s
will be called the Malliavin matrix for the system (2.1). Note that something
similar to M,  appears in Lemma 3.8. In some references, [11] and [12], the
matrix Dy 1M, rDgfy is called the Malliavin matrix.
4. Integration by parts.
THEOREM 4.1. Suppose c is a twice continuously differentiable scalar func-
tion such that c(§, r(x,)) and c,(¢, 1(x,)) are square integrable. Then for any

square-integrable predictable process u(s) = (u(s),..., u,(s)),

E [C(§O,T(x0))j(;Tui(s) dwsi]
_ th[cg(gO, t(xo))DO’T/()TD(;gXi(S)ui(S) ds]

ProoF. Using the representation (3.4),

E [c(éo,T(xo))LTui(s) dwsi]

= .=mlE|:./(;TE[Cg(go,T(xo))Do’Tl.Fs] Dy i Xi(s)uy(s) ds]

13
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and by Fubini’s theorem this is

= glE[ce(go,T(xo))Do,T/(;TDO_,;XL'(S)”;‘(S) ds|. a

COROLLARY 4.2. The result is still true for vector- (or matrix-) valued
functions c.

COROLLARY 4.3. Taking each u(s) to be (Dy s X,(s))*, we have

E[0(50,T(xo))‘/(;T(DO_’;Xi(s))*dwsi] = E[cg(go,T(xO))DO,TMO,T]'

COROLLARY 4.4. Consider a product function

h(go,T(xo)) = C(go,T(xo))g(éo,T(xo))
satisfying the conditions of the theorem. Then

B[l r(xa))(60,(50) [ (D63X,(5))" a|

(1) = B[ (ce(0,r(x0)8 (80, (x0))
+c(&, (%)) 2¢(&, T(xo))) o, 7 Mo, T]

REMARKSs 4.5. What we would like to do in (4.1) is take
&= My 1D; 1,

so that we can obtain a bound for c,. However, D; 7 and M; } involve the past
of the processes &, 1, D, 1, M,, 7. This difficulty can be circumvented by consid-
ering an enlarged system, similar to the technique used in Section 3. However,
the sequence of enlarged systems is different to that discussed in Section 3, so
different notation will be used. Note that even when the original process £ is one
dimensional the method leads to a discussion of higher-dimensional processes, so
not much simplification is obtained by taking d = 1.

4.6 NoraTION. Write $O(w, 5, ¢, x) = £, (x) for the stochastic flow defined
by (2.1). Now D{)(x) = D, (x) denotes the Jacobian of the flow ¢®. From (2.11),
it D=D,, and x = §, (x,),

D§P(x,) = D,, (x)D,

so the system (¢©, D©) is Markov. Write ROy(x) = [{( D, 1X,(u))* dw} and
R = R{),. Then R{), = R + D™'R¥(x), so the system (qb(o) D‘O) R©) is Markov.
Fmally, Tecall the definition (3. 9) of M, , and write MO, =M, ,, M = M.
Then M{®, = M + D~'M, (x)D* "' and the system

¢D = (6@, DO, RO, Y©)
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is Markov with coefficients in
S(d, d+d?2d + d%2d + d?).

Consequently, Theorem 2.5 applies to this system and its stochastic flow ¢®.
Note that M, , is the predictable quadratic variation of the tensor product of
R, , with R}, Wmte X for the coefficient vector fields of w* in ¢®. Further-
more, write D) for the Jacobian of @, RY, = [ADO ' XP(u))* dw! and M)
for the predlctable quadratic variation of the tensor product of R, with R‘O)*
which we shall denote by
M) = (R(), ® RD,).

Then define

¢ = (¢®, DO, RO, YO),
so ¢? is a Markov process for which the results of Theorem 2.5 hold. Proceeding
in this way, we inductively define ¢**V = (¢, D™, R, M™), where R(™ =
JADM X ™(u)) dw;, and M™ = (R™ ® R®). Write v, for the gradient
operator in the components of ¢™.

THEOREM 4.7. Suppose c is a bounded C® scalar function on R® with
bounded derivatives. Let g be a possibly vector- (or matrix-) valued function on
the state space of ¢ such that g(¢™(0, T, x,)) and v,8($™(0, T, x,)) are both
in some LP(Q). Then

E[c(49(0,T))g(¢7(0,T)) ® R, ]
= E[(v4e)(4°(0, T))g(4™(0, T)) Dy, My 1]
+E[c(¢9(0, T))(v,8)(¢™(0, T)) D{pMS3].
Proor. Applying Theorem 3.1 to cg, we have
c(¢(0, T))g(4™(0, T))
= E[e(¢°(0, T))g(¢™(0, T))]
+ ["E[(v4)(6°0, 7))&(6(0, T))Dy 1IF,] D5 1 X,(s) dus}

+ [TE[c(49(0,T))(7,8)(6(0, T)) DI, D2 X0(s) s

Taking the tensor product with R(0 and the expected value, the result follows.
O

REMARKS 4.8. To write out the preceding result in terms of D, ,, W, , and
higher derivatives of the flow involves very involved calculations. Even in
dimension 1 it seems better to introduce the sequence o™ of flows. Note
Theorem 2.5 implies sup, . |D§")|, sup, _ JM§")| are in every LP(Q). Theorem 4.7
is an integration by parts formula as only one term involves the gradient of
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derivatives v c = c; of c.
COROLLARY 4.9. Taking g(¢(0, T')) = My 1Dg 1, if My 1 is in some LP(Q),
E[c€ go,T(xo) ] = E[c £, z(xo))Mo_,TD(iT ® R((?,)T

(4.2)
-E [c(go,T(xO))(Vlg)(DO,T’ M, t)Dél)TMél)T] .
Because the remaining terms are integrable we have, therefore, proved the
following result.

THEOREM 4.10. Suppose §, (x,) is the solution of (2 1) and c is a bounded
smooth function with bounded derivatives. Then if Mg ; is in some LP(Q),

(4.3) |E[c€ ¢o,7(%) ]l < K sup |c(x)].
xeR®

REMARKS 4.11. It is well known that inequality (4.3) implies that the
random variable £, 5(x,) has a density (see Malliavin [9] or Stroock [11]). The
remaining question concerns the existence and integrability properties of M 1.
These have been carefully studied (see Malliavin [9], Stroock [11] and Norris
[10]). In fact, it is known that M; 7 is in LP() for all p < oo if the following
condition H, of Hérmander on the coefficient vector fields X,,..., X,, of (2.1) is
satisfied.

ConpITION H,. X|,.. o [ Xir X], for i, J=0,...,m, [X,[X}, X,]] for
i,J,k=0,...,m, etc evaluated at x, € R span R%

Finally, recall that, if u is a nonsingular linear map of R? to itself, then the
map ¢: u — u~! has a derivative ¢'(u), which is a linear map on the space of
linear maps of R? to itself, given by ¢'(v)h = —u~'hu~!. Applying this to
&(Dy 1, My 1) = My 1D; 1, we have
E[ce £o, T(xo))]

= E[ c( £, r(%0)) M, o.rDor ® RO)r
+E[ £o,7(x0)) M5, T((V1Mo T)(D l)TM(gl)T))MO_,flI‘D(Z%‘]

+E[e(£,2(x0)) My 3 D5 1((v,Dy. 7 ) (D& MS: ) ) Do k]

(4.4)

5. Bounds for higher derivatives. To show the density of £, r(x,) is
differentiable, we must obtain bounds for higher derivatives of the form

(5.1) ' [z; (50 T(xo))] < K sup |e(x)].

x€R?
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Here a = (ay,..., ;) is a multiindex of nonnegative integers and

¢ dHn Q% FLY

9g"  0tn oy Aty

In fact, a well-known argument from harmonic analysis (see [10]) implies that if
(5.1) is true for all @ with |a| = & + -+ +a,; < n, where n > d + 1, then the
random variable £, 7(x,) has a dens1ty d(x) = d(x,,...,x4) which is in
cr- d- 1( Rd)

To see how to proceed, apply (4.2) to c; in place of c. [If preferred, (4.2) could
be applied to just one partial derivative dc/9£, in place of ¢; however, the result
of Corollary 4.9 is true for vector functions c.] This gives

(5.2) E [ ee(£0,2(x0))] = E[celbo,7(%0)) M5 105} @ BE]
~E [ ee(£0,7(20)) (718 (Do, 72 Mo, 1) DMy ).

Consider the two terms on the right,

(5.3) E [Cg(go,T(xo))M(Z;‘Do_,'}‘ ® RO,T]
and
(5.4) E [Cg(so,T(xo))(V1g)(Do,T’ MO,T)D(g,l)TMé,DT] :

5.1 NotaTioN. Write M = My, D = Dyp, D® = D{", etc. Let
g(¢V) be the function M~'D7'® RM 1D-! and g,(¢®) be the function
(v,&)XD, M)DOMOM~ p-t,

Applying Theorem 4.7 to ¢ and g;, we have
E (4o, 7(%0))g:(4®) ® Ry ]
(5.5) = E[c,(£0,r(x,)) My 4D5 %k ® RO ]
+E [ c(£,7(%0))(v28) (20, T)) DM |
Applying Theorem 4.7 to ¢ and g, we have
E[c(£0,2(%0))8:(47) @ Ro, 1]
(5.6) = E[ei(£0,7(20))(v18)(Do, Mo, ) DO My |
+E [ c(£o,7(%0))(V382)(6®(0, T)) DEr My |

Substituting in (5.2), we obtain an expression on the right which involves only ¢
and not its derivatives. This procedure can be iterated, using Theorem 4.7. At
any stage, to replace a term of the form E[c.(§,, T(xo))h(¢(")(0 T))] by one
involving only ¢ define A(¢™(0, T)) = h(¢*(0, T))M; +D;  and apply Theo-
rem 4.7. Clearly, higher powers of MO,T are introduced at each iteration. [From
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Theorem 2.5 Dy ; T is in every L¥(Q).] Hormander’s condition H, is sufficient to
ensure that Mg 1 is in every L(Q), 1 < p < co. We have, therefore proved the
following result.

THEOREM 5.2. Suppose Hiormander’s condition H, is satisfied. Then the
random variable £, r(x,) has a density d(x) which is in C*(R?).
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