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A special class of stationary one-dependent two-valued stochastic processes
is defined. We associate to each member of this class two parameter values,
whereby different members receive different parameter values. For any given
values of the parameters, we show how to determine whether:

1. a process exists having the given parameter values, and if so,
2. this process can be obtained as a two-block factor from an independent
process.

This determines a two-parameter subfamily of the class of stationary one-de-
pendent two-valued stochastic processes which are not two-block factors of
independent processes.

Introduction. A discrete time stochastic process X = (X,,) is one-dependent
if at any given time n, its past (X}), <, is independent of its future (X,),. ,. In
contrast to the Markovian concept, a weakening of independence which has been
investigated thoroughly, no knowledge of the present value X, is assumed.
One-dependent processes arise naturally as limits of rescaling operations in
renormalization theory (see, e.g., O'Brien [8]). In an analogous manner m-depen-
dence (m > 1) can be defined, considering the present to be given by m succes-
sive observations. The works [2], [4]-[7] and [10] deal with various aspects of
m-dependent processes.

Examples of m-dependent processes are given by so-called (m + 1)-block
factors: Let Y = (Y,) be an independent process and f a function of m + 1
variables. If we define

Xn = f(Yn"“7Yn+m)’

then the (m + 1)-block factor X = (X,,) is an m-dependent process.

In this article we restrict our attention to one-dependent processes X which
are stationary and assume two values only, denoted in the following by 0 and 1.
It is not difficult to see that if X is a two-block factor, then it may be assumed
that the underlying independent sequence Y is identically distributed with the
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uniform distribution on the unit interval as the common distribution, and that f
can be identified with the subset A of the unit square on which it assumes one of
the values, say 1. Hence the distribution of a two-block factor is completely
described by a measurable subset A of the unit square, which we call an
indicator of the two-block factor. Of course, different A’s may give rise to
two-block factors having the same distributions.

It is natural to ask ([6], [7], [9]) whether all one-dependent processes arise as
two-block factors. Under certain extremal conditions, this is true ([3]). However,
in the following we produce a two-parameter family of stationary 0-1-valued
one-dependent processes which are not two-block factors. This extends a one-
parameter family of such examples recently obtained by two of us [1] based on
unpublished results of the other two of us.

The plan of the article is as follows. In Section 1 we show that every
one-dependent process can be parametrized by the collection of probabilities it
associates to runs of 1’s. Here we define cylinder functions for arbitrary parame-
ter values and note that a one-dependent process exists if and only if the
corresponding one-dependent cylinder function assumes only nonnegative values.

In general, it seems to be difficult to decide whether a given set of parameter
values yields a positive cylinder function and thus a process. However, if we
restrict our attention to a class of cylinder functions which we call special (for
lack of a better name), defined by requiring that three or more 1’s in a row have
probability 0, then an effective algorithm can be given to decide whether a
one-dependent process, with prescribed values of the probabilities a of a single 1
and B of two successive 1’s, exists. In Section 2 we present the basis for this
algorithm.

Section 3 contains a classification of those pairs (a, 8) corresponding to
special two-block factors. This section is essentially independent of the other
results.

In Section 4 we continue the development of our algorithm, which has the
following form. Two mappings ¢, and ¢,, depending on a and B, are defined on
R?, and a special one-dependent process exists for (a, 8) if and only if the orbit
of (1,1) under successive applications of ¢, and ¢, in any order always remains
in the unit square. Section 4 is devoted to dynamical properties of the more
complicated mapping ¢,.

Theorem 5 of Section 5 contains the final form of our algorithm, and the
remainder of this section is devoted to the determination of those (a, 8) giving
rise to special one-dependent processes. Although we have an effective decision
procedure for any given pair (a, 8), the time needed for decision grows as (a, 8)
approaches (3, 77) and no closed form expression for the admissible set of
parameters in a neighborhood of this point has been found. Away from this
point, things become easier, and several results are given. For example, if
0 < a < 4, then a special one-dependent process exists for every 0 < 8 < ja
(and no other B), whereas a two-block factor requires (for 0 < a < 2)

0<B<3(1+V1l-4a)a.

The sum of our investigations is recorded in Figure 2 of Section 5.
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It is the opinion of the authors that this paper raises more questions than it
resolves. We mention two such questions. First of all, our methods are algebraic
in nature and seem to give no probabilistic mechanism to produce the processes
which we have discovered. In particular, we have not been able to determine if
they are m-block factors for some m > 3. Second, our methods for studying ¢,
and ¢, are at best amateuristic, and a more canonical approach is desirable.

1. Cylinder functions. Let W be the set of all finite sequences of 0’s and
1’s. An element of W is called a word. The empty word will be denoted by e and
the word consisting of n I's by 1>. If w,,...,w, € W, thenw=w, --- w, e W
is the concatenation of the words w;, ..., w,, and the w, are subwords of w.

DEFINITION. A (normalized) cylinder function is a mapping

wW-R
such that
(i) ple) =1,
(ii) _ p(w) = p(0w) + p(lw), wew,
(iii) p(w) = p(w0) + p(wl), weW.

The cylinder function p is positive if
p(w) =0, we W,
and one-dependent if
p(o)p(w) = p(o0w) + p(vlw), ov,we W.

By elementary measure theory, the set of positive cylinder functions is in
< one-to-one correspondence with the set of distributions of stationary 0—1-valued
discrete time stochastic processes, p(w) being the probability of “seeing” the
word w. Moreover, such a process is one-dependent if and only if its correspond-
ing cylinder function is one-dependent.

THEOREM 1. Let vy = (V;,Ys,--.) be any sequence of real numbers. Then
there exists a unique one-dependent cylinder function p., such that

”’Y(ln) = Yoy n=1.

ProOOF. In the proof of this theorem and the next theorem, we denote the
number of zeroes in a word w by n(w). Set vy, = 1. The requirement, together
with (i) of the definition of a cylinder function, defines p_(w) for all w € W with
nyow) = 0. We now proceed by induction on ny(w), as follows If we W with
nyo(w) > 0, then clearly

@ ‘w = 1"0v
for some n > 0 and v € W, and

no(v) = no(w) — 1.
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One-dependence now dictates that
py(1)py(0) = py(w) + p,(1""0),
and since ny(1"*%) = ny(v) < n,(w), the formula
L w) = Yoo (0) — p, (1" 0)

defines p, inductively on all of W. Straightforward induction arguments now
show that . is a one-dependent cylinder function, whose uniqueness is obvious
from the inductive definition. O

THEOREM 2. If for some m > 1 we have

Ym = Ym+1 = °°° =O’
and if 1™ is a subword of w € W, then
p’y(w)=0'

Proor. The hypothesis states that p (w) =0 if ny(w) =0 and if 1™ is a
subword of w. Now proceed by induction: If n(w) > 0, write as above
w = 1"0v,
with
p’y(w) = ‘Yn”’y(v) - nu‘y(ln+lv)’

If 1™ is a subword of w, then either n > m and y,=0or n <m and 1" is a
subword of v. In both cases, 1™ is a subword of 1**'v, and hence p (w) = 0 by
induction. O

In the sequel we restrict our attention exclusively to one-dependent cylinder
functions p = p, for which y; =y, = --- = 0. For the sake of brevity (and in
want of a more suitable name), such p are called special. By Theorem 2, if p is
special and if 111 is a subword of w, then p(w) = 0. Hence positive special
cylinder functions correspond bijectively to stationary 0—1-valued one-dependent
processes for which the probability of three 1’s in a row is 0; we refer to these as
special processes.

REMARK 1. Suppose that p is a one-dependent cylinder function such that
p(w) = 0 whenever 101 is a subword of w. Set a = p(1) and B = u(11). Then
p(11111) = p(11) - p(11) — p(11011) = B2,
but also
p(11111) = p(111) - p(1) — p(11101)
= p(D)(n(1) - u(1) - p(101))
=p(1) - p(1) - p(1) = 2%

Hence B2 = . This remark is intended to persuade the reader to examine the
induction arguments of the above proofs carefully.

£
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REMARK 2. Theorem 1 can be viewed as a parametrization result for one-
dependent cylinder functions with parameter y: Each cylinder function yields a
parameter, different cylinder functions possess different parameters and y is the
parameter of a process if and only if p, is positive. In the sequel, we set

N"hE=a Y2 = B, Y3=Y4= -+ =0
and discuss the admissible pairs (a, B) yielding special processes.

2. Positivity of special cylinder functions. In this section we derive a
necessary and sufficient condition for the positivity of the special cylinder
function defined by

p(1)=a, p(11)=8, p@1")=0, n=x3.

By Theorem 2, we need only examine words not having 111 as a subword. Let V
be the set of all such words and denote by V, those words of V' having exactly n
0’s. Then

Vo= {e, 1,11},
and if we define the set of words

U = {0,10,110},
then for each n > 0 the set of words V,, can be identified with

U X V.
That is, each v € V,, has a unique representation
V= Uply g ot Uy,

with vy € V, and u, € U,1 < & < n.

We now describe an algorithm for calculating the values of p(v), v € V. For
each v € V, define the column vector v € R3 by

x(v)
v=|y(v)
z(v)
with
x(v) = p(00),  y(v) =p(100), 2(v)=p(1100).
Also set :

p(e) 1
f=1 u() (“ -
pan| P
Finally, define the 3 X 3 matrices

‘ 1 -1 0 : 0 1 -1
‘My=|a 0 -1|, My=|0 « 0|, M=
0

co o
Sco o
™R
-

B 0 0 B 0
indexed by elements of U.
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THEOREM 3. Ifv €V, then

v=MM, - M,M,,f

1

PrROOF. The case n =0 is easily checked from the definitions. Now use
induction on n, together with the following formulas:
p(v) — p(10v), if o =00,

x(v) = p(0v) = p(v) — p(lo) = { p(v) — p(110v’), if v = 100,
u(v), if v = 1100/,

¥(v) = p(100) = ap(v) — p(11v) = {Z:EZ;,_ #1109, ii Z : (()10),’100',

z(v) = p(1100) = Bu(v) — u(11lv) = Bu(v).
The formula for x(v) shows that the first rows of the matrices M are correct,
and those for y(v) and 2(v) verify the second and third row, respectively. O

CoROLLARY. For (x, y) € R\ {(x, ¥): xy = 0} set

y B
¢0(x’ y) = (1 - a?’l - 5)’

¢‘1(x’ y) = (1._ ﬁ’1)'
ay

Then the pair (a, B) is admissible if and only if either a =  =00r 0 <a <1,
0 < B < a, and all iterates of the point (1,1) under successive applications of ¢,
and ¢, in any order remain in the unit square S = {(x, y):0 <x < 1,0 <y < 1}.

PrOOF. Theorem 3 yields all values p(v), v € V, as iterates of f under the
three M-matrices. In testing positivity we can disregard M,,, since it brings us
back to a multiple of f. Next, reduce the dimension by normalizing such that the
third coordinate is always equal to B, i.e., set

1 (% 1 x
(I)O(x’ Y B) = ;MO(;)y (I)l(x’ Y :B) = ;MIO('[};)

and then drop 8 to obtain
y B
q)O(xy y) = (1 - ;ya - ;)y

_[i-f.
(I)l(x’ y)'_ (1 y: ),

Wlth initial value (1, @). Clearly a = u(1) must lie in the unit interval, and
0 < B =p(l) <a is also necessary. The case a = B8 =0 yields the special
process which is given by all 0’s, and if a > 0, then we can replace y by ay,
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which results in the given ¢, and ¢,, with initial value (1,1). Noting now that if
(%, ¥), ¢o(x, ¥), ¢:1(x, ) have positive coordinates, then ¢y(x, y) and ¢(x, »)
cannot have a coordinate greater than 1 and that x =0 or y = 0 leads to a
negative coordinate, we see that the proof is finished. O

3. Determination of the parameter set corresponding to two-block
factors. Let p, be the cylinder function corresponding to a two-block factor
with indicator A, such that p,(111) = 0. In this section we determine the range
of possible values for a = p4(1) and B = p4(11). By the definition, we have for
any n > 1,

1 1
pa(17) =/(’) .../;IA(xO,xl) e 1(x,_, %) dxg -+ dr,.

Moreover, if T: [0,1] - [0,1] preserves Lebesgue measure, then A and
(T x T)~Y(A) give rise to the same process.

Examples of sets A for which p4(111) = 0 can be obtained in the following
manner. Let a, b € [0,1] with ¢ < b and define

F(a,b) = ([a, b) x[0,a)) U ([5,1] X [0, b)).

If A C F(a, b) and if (x4, x,) € A, (x,, x,) € A, then clearly x, < b and hence
Xy < a, so that no choice of x5 permits (x,, x;) € A. That is,

A C F(a, b) = py(111) = 0.
The following lemma shows that, up to a measure preserving transformation
T, the reverse implication is valid.
LEMMA. If p,(111) = O, then there exists a transformation T: [0,1] — [0,1]
preserving Lebesgue measure and a, b € [0,1] with a < b such that
(TxT) 'AcF(a,b)

modulo Lebesgue measure on the unit square.

ProOF. Define

A, {x2 e [0,1]: LIIA(xz, x,) dxz > 0},

A,

{xl e [0,1]: /A 1 ) i > o},

A, = {xo e [0,1]: fAlA(xo,xl) dx, > 0}.

Then A, 2 A; 2 A, and the formula

0 :”A(lll) = LO(LIIA(%’ x1)(L21A(x1’ xz)(follA(xz’ x3) dxa) dxz) dx1) dx,
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allows us to conclude that the Lebesgue measure of A, is 0. Choosing
a =1 — Lebesgue measure( 4,),
b =1 — Lebesgue measure( A,)
and T measure preserving with
T((a,1]) = A,,
T((b, 1]) =4,
yields the desired result. O

In accordance with our previous usage, a set A such that p,(111) = 0 will be
called special. In order to calculate a and B, note that the first formula of this
section for n = 1 and n = 2 reduces to

a = p4(1) = Lebesgue measure(A)

and
B=pa(1)) = [(Hy(x)Val(x) d,

where H,(x) and V,(x) denote the Lebesgue measures of the horizontal and
vertical sections of A at x, respectively. In particular, if A C F(a, b), the part of
A lying in the lower right rectangle [b,1] X [0, @) does not contribute to
B = p4(11). A simple but tedious calculation (which we omit) now shows that for
fixed a, the minimal value of 8 occurs when A = F(a, b) for suitable a and b,
and the maximal value of 8 (for 0 < a < 2/9) occurs when

A = G(a, b) == F(a, b)\([5,1] X [0, ),

again for suitable a and b. Further reduction eventually produces

THEOREM 4. Let p be a cylinder function with o = p(1), B = p(11) and
0 = p(1™) for n > 3. Then p. is the cylinder function of a two-block factor if and
only if

@) 0<ax<iand

(ii)) m(a) < B < M(a), where

(«) 0, 0<ax<i,
m(a) =
%a—2—27{1+(1—3a)3/2}, i<a<;
and
1 - 2
M(a) = 1141 -4a)a, 0<ac<g,
= Z<acxi
27 9 — = 3°

For related results and similar calculation we refer to de Valk [2]. In the next
sections we shall need the following observation.



136 J. AARONSON, D. GILAT, M. KEANE AND V. DE VALK

LEMMA. If A = F(a, b) and a = p (1), B = p4(11), then the equation
#—x2+ax—B=0

has the three real rootsr, = a, r,=b—aandr;=1—b.

PROOF. One easily calculates
a=a(b-—a)+(1-b)b=rr+nrn+nn
and
B=a(l -0b)(b-a)=rnmn. O

4. A study of ¢,. Before using the corollary of Section 2 to determine
admissible pairs (a, 8), we investigate the mapping ¢,. Recall that for fixed
0<a<land0<B<a,

ay B

=[{1- —=,1- —|.
¢O(x’y) x, ax

4.1. Fixed points. These are given by solutions to the equations

ay
x=1-—
x
and
y=1——li;
ax

eliminating y results in
p(x) =x*—x22+ax—B=0.

This equation can have either one real root and two complex roots, or three real
roots. As p(0) = —B <0 and p(1) = a — B8 = 0, one root must lie in the unit
interval. The sum of the roots is 1, so that if the other two are also real, they also
lie in the unit interval, because they have the same sign. If we denote these roots
by ry, ry, r; and set @ = r;, b = r, + r,, then it follows from the lemma at the
end of Section 3 that the cylinder function p corresponding to the pair (a, B) is
equal to p,, with A = F(a, b). Hence we have proved the

ProposITION. If x3 — x2 + ax — B = 0 has threereal roots andif 0 < a < 1,
0 < B < a, then the pair (a, B) is admissible and corresponds to a two-block
factor with indicator A = F(a, b) for suitable a and b.

Having discovered the situation for three real roots, we now restrict our
attention to those (a, 8) for which

i

2-x+ax—-B=0

has only one real root x, € [0,1]. If now x, = 0, then we have 8 = 0 and a > §,
and a simple application of the corollary of Section 2 shows that (a, 8) cannot be
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admissible. Hence we may also assume that 8 > 0 and x, > 0. Now set

B
=1-—.
Y ax,

By the foregoing, ¢y(x¢, %) = (%o, Y)-

4.2. Regions of increase and decrease. Recall that
S={(x,9):0<x<1,0<y<1}

and define
a
X, = {(x,y)ES:l— le},
x
ay
X = {(x,y) €S:1- - Sx>,
Y. = {(x,y)esil— £ Zy},
ax
B
Y ={(x,y)€8:1- — <y},
ax
I=XnY_,
M=X,nY_,
M=X,NY,,
V=XnY,,

thus dividing S into four regions whose boundaries are segments of the parabola
1
P:y=—x(1-x)
a
and /or the hyperbola

B
H:y=1- —.
ax
Figure 1 has two parts, according to whether a« < % or a > 1.
By definition:

(i) If (x, y) €1, then ¢y(x, y) is to the left and below (x, y).
(ii) If (x, y) € II, then ¢,(x, y) is to the right and below (x, y).
(iii) If (x, y) € III, then ¢y(x, y) is to the right and above (x, y).
(iv) If (x, y) € IV, then ¢ (x, y) is to the left and above (x, y).

+ 4.3. Line segments. It is trivial to check that if L is a straight line segmeht
in S, then ¢,(L) is a straight line segment.

4.4. Image of P. It is trivial to check that ¢, P) € H.
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(@)

(b)
Fig. 1. (a) a <%; (b) a> 1 [e= (x4, %))

4.5. Images of regions. It follows from Sections 4.3, 4.4 and the definitions
that

s(I) NS cIUII,
do(I) N S c III,
$(III) NS c T U IV,
$(IV) N SclL

4.6. Entering region 1I. We now show that our hypothesis of one real root
(= one point of intersection of P and H) implies that for each (x, y) € I, there
exists n such that '

¢ (x, y) €1,
i.e.,“either '
¢ (x, y) €11
or it leaves S. Assume the contrary. Then Sections 4.2 and 4.3 imply that some
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line through (x,, y) must be taken into itself by ¢,. If L is such a line then
either

(i) L is vertical or
(ii) L is tangent to P at (x,, )) or
(iii) L intersects P (not necessarily in S) at some point (x;, ¥;) # (%o, ¥)-

Now (i) is impossible because 1 — (ay)/x, cannot be equal to x, for more
than one value of y and (ii) implies (by Section 4.4) that P and H are tangent at
(%4, %), Which says that x, is a root of multiplicity three of p(x) = 0 and is
excluded by hypothesis. But (iii) also is impossible, since ¢, maps (x;, y;) € P to
a point (x,, ;) € H (by Section 4.4) with y/ # y,.

4.7. Invariant polygons. Let 0 < ¢ <1 and set x; = ¢, y; = 1. Suppose that
we successively apply ¢, to (x,, ¥,), obtaining a sequence (x,, ¥,) which remains
in S. Then by Sections 4.6 and 4.2 there is an n > 1 such that

(x4, 3,) €lforl <k <n,

(%0, ) €11
and
(X415 Fnsr) € HL.
We now claim that the points

(1’ 1)’ (xl’ yl)’ et (xn+1’ yn+1)’ (1’ yn+1)

are the vertices of a convex polygon C(t), and that ¢(C(¢)) € C(¢). By the
properties in Section 4.2, connecting the given points in the given order forms a
nonself-intersecting polygon, and the inclusion is obvious if one notes that
é4(1,1) lies on the line segment joining (1,1) and (x, ¥;) and that ¢u(1, ¥,.1) lies
on the line segment joining ¢4(1,1) and (1,1 — B/a) = ¢y(1,0). The convexity of
C(t) is also easy to show, but we omit the calculation as it is not needed in the
sequel.

5. Determination of admissibility. Now we can use the results of the
previous section, together with the corollary of Section 2, to determine the
admissibility of a given pair (a, 8). Suppose first that (a, 8) is admissible; if C
denotes the convex hull of the orbit closure of (1,1) under ¢, and ¢,, then
oo(C) € C, ¢,(C) € C and C C S. Now set

y* =min{y: (x, y) € C},

t*=1—ay*,

L* = {(x,1): t* <x <1}.
'I:hen o,(x, y*) = (¢*,1) implies that L* c C. If we set
¢t = min{x: (x,1) € C},



140 J. AARONSON, D. GILAT, M. KEANE AND V. DE VALK

then ¢ < ¢* and the ¢, invariant polygon C(t) of the previous section is also
contained in C and hence ¢,-invariant. Conversely, if for some 0 < ¢ < 1 the
polygon C(t) is also ¢,-invariant, then clearly (a, 8) is admissible, since the orbit
of (1,1) is contained in C(¢). We have shown

THEOREM 5. The pair (a, B) is admissible if and only if
(i) 0<a<1,0< B < aand either
(i) the equation
¥ —x?+ax—-B=0
has three (not necessarily distinct) real roots or
(ii’) the equation
¥ —x+ax—-B=0
has exactly one real root, and there exists t € (0,1) such that C(t) is well defined
[i.e., the ¢,-orbit of (1,1) enters region III without previously leaving S] and
such that

where
y* =min{y: (x, y) € C(¢)}.

A computer program has been written which decides, within the limits of
machine accuracy, whether for given (a, 8) the conditions of the above theorem
are verified or not, and a copy is available on request. Moreover, we have the
following rigorous results concerning admissibility.

1. If (a, B) is admissible, then 0 < a < ; and 0 < B < a/4.
2. If0<a < iand 0 < B < a/4, then (a, B) is admissible.
3. Ifl<a<1and2e¢®? - a< B < i(a— a®?), then (a, B) is admissible.
4. In the following ranges, (a, 8) is not admissible:
() i<a<iand27B <9a— 201 - 3a)*? -2,

(i) 1<a<land278 <9a—2and

(i) 1<a<iand B> i(a—a*?).

These results, together with the two-block factor region, are summarized in
Figure 2.

Finally, we sketch our proofs of results 1-4.

1. If « > 1, then either the x-coordinate of ¢,(1,1),

1-—a- B/a
is“;negative, or if this is nonnegative, the x-coordinate of ¢Z¢,(1,1),
(1 -2a)(1 - B/a)
l—-a—-B/a '’




ONE-DEPENDENT PROCESSES 141

1 [

2127 -
91125+

1116 |

1127 1

0 29 b 113 9125 ) "

Fie. 2. T, one-dependent processes which are two-block factors, P, one-dependent processes which
are not two-block factors, N, no one-dependent processes, U, unexplored.

is negative. If 8 > a/4, then (¢,4,)"(1,1) becomes negative in its x-coordinate
for some n, since

(¢10)"(1,1) = (&°"(1),1)
with
fn=1-1,

and g2"(1) is eventually negative iff ¢= g(¢) has no real root, leading to

B> a/4.
2. This is the simplest polygon case, corresponding to a < § in Figure 1. Here
(£,1) belongs to region II, so

1 2
¢0(§,1) = (1 — 2a,1 - —ali) € III.
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The quadrilateral with vertices
1 1 28
1,1 -1 - - —
(7 )7 (27 )7 ¢0(2,1)’ (1:1 a)

has lowest y-coordinate

2
y*_l__ﬁ
with
1
1- B > =
ay* 2

and is thus invariant under ¢, and ¢,.
3. This is the next polygon case. For ¢t € (0,1), C(¢) is a pentagon [i.e.,
¢o(t, 1) € II] if ¢ satisfies

at’> — (a+ B)t+a2 <0,
and ¢,-invariance holds if
(a=B)t2—(a®+a—2B)t+ a(a—B) <0.
Discriminant calculation and elementary considerations lead to the bounds given
in result 3.

4(i) and 4(ii). Here one can show directly that u(0") = z,, is negative for some
n. By one-dependence one easily derives the recurrence

2= Rp—1 7 02, 9 + len—B’
whose characteristic equation is
p(x) =2 —x®+ax— B=0.

In the ranges indicated, there is one real root and two complex roots whose real
part is larger than the real root, and it follows that z, becomes negative.
4(iii). Here we have (similar result to 1)

(6,62)"(1,1) = (g7(1),1)
with
_ (a—2B)t—a(a—pB)
g(t) = a- B

Hence if g(t) = ¢ has no real root, then g™(1) becomes negative for some n. A
discriminant calculation leads to the given bound. ‘
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