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FLUX AND FIXATION IN CYCLIC PARTICLE SYSTEMS

BY MAURY BRAMSON! AND DAVID GRIFFEATH 2
University of Wisconsin

Start by randomly coloring each site of the one-dimensional integer lattice -
with any of N colors, labeled 0,1,..., N — 1. Consider the following simple
‘continuous time Markovian evolution. At exponential rate 1, the color £(y) at
any site y randomly chooses a neighboring site x € {y — 1, y + 1} and
paints x with its color provided £(y) — §(x) = 1 mod N. Call this interacting
process the cyclic particle system on N colors. We show that there is a
qualitative change in behavior between the systems with N < 4 and those
with N > 5. Specifically, if N > 5 we show that the process fixates. That is,
each site is painted a final color with probability 1. For N < 4, on the other
hand, we show that every site changes color at arbitrarily large times with
probability 1.

1. Introduction. To date, the theory of interacting particle systems, beauti-
fully described in Liggett’s recent book [6], has focused on models with two
possible states per site. This assumption greatly simplifies the ergodic theory,
especially if the system enjoys additional nice properties such as reversibility or
additivity. One class of multitype processes which has been studied is the
collection of “linear systems” comprising the last chapter of [6]. Arguably
the prototype for this class is the stepping stone model, sometimes called the
“multitype voter model.” See [2] and [3] for historical background with lots of
references.

Recall the simple dynamics of the (continuous time) stepping stone model ¢,
on the d-dimensional integers Z%. The possible values at each site are chosen
from a finite or countably infinite set. Since this model has its origin in
mathematical genetics, think of the values as representing competing allelic
types. It is conceptually helpful (e.g., in simulation) to represent values as colors.
If ¢ is the current configuration, {(x) denoting the value at x and c a color, then
the transition rule is

{(x) — c at exponential rate # {y: |y — x| = 1, {(y) = c}.
Adopting a hybrid metaphor, we say that the color at a neighboring site y eats
the color at x in this case. Thus all colors try to eat neighboring colors with the
same appetite. In one and two dimensions the stepping stone model clusters,
which means that regions of solid color grow over time. Color postcards which
illustrate this clustering are available from the second author. Some theorems
concerning the clustering are presented in [2] and [3].
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Our purpose here is to take a first tentative step into uncharted regions of the
particle system realm. The long-range program is to explore multitype systems
which are not additive and do not obey any simple duality equation. By flimsy
analogy with differential equations, one expects a variety of new and more
complex phenomena in such cases. Of course the mathematics also becomes much
more difficult, but we hope to find a few problems which can be handled
rigorously.

One such problem is the subject of this paper. The process {, described above
is actually a special example of the stepping stone evolutions considered by
mathematical geneticists. The key feature of stepping stone dynamics, giving rise
to what Wright [11] calls isolation by distance, is that interaction can only occur
along the boundaries between distinct types. In this paper we consider a model ¢,
which also enjoys this key feature, but is otherwise extremely different from the
color-exchangeable system ¢{,. As before, there are N > 2 colors, labeled
0,1,..., N — 1. The transition rule is the same as for {,, except that the color at
neighboring site y can only eat the color at x if the former immediately follows
the latter on a “color wheel”:

£(x) — c at exponential rate #{y: [y — x| = 1, £(y) = c,

) and £(y) — £(x) = 1 mod N}.

We call this new process £, the cyclic particle system on N colors. If N = 2 there
is no constraint and the cyclic model agrees with the standard two-state voter
model. Chapter 5 of [6] contains a survey of known results concerning this much
studied process. If N = 3, the rule (1) is reminiscent of “Paper, Scissors, Stone,”
an age-old children’s game (cf. [7], pages 25-28, 225, for the rules and some
history). Variants which introduce additional hand signs correspond to models
with N > 4, and to other models with more intricate appetite rules. In a
biological context the N = 3 model is vaguely suggestive of Lotka—Volterra
dynamics: 2 = predator, 1 = prey, 0 = vacant, where 0 — 1 represents migration
of prey and 2 — 0 means starvation of predator. For N > 4 one can envision
more complex “food cycles.” The cyclic particle system makes sense in any
dimension d, and the case of most biological interest is d = 2. Here we will
restrict attention to one dimension, however, except for some concluding re-
marks. The reasons are technical. Our process is certainly not reversible and for
N = 3 it is not additive or even attractive. So far, without the tools that go along
with these properties, we are only able to get rigorous results for d = 1. The
relative tractability of interactions on the line is a familiar theme in particle
systems. A preliminary account of our results appeared in [1].

Throughout the remainder of the paper, then, unless explicitly stated other-
wise, assume d = 1. Also, we will only start £, from' the product measure 7
which paints each site any of the N colors with equal probability 1/N. There-
after, colors eat one another when they can find the right food, without
advantage to any color over any other. So what happens? Figures 1 and 2 show
the result of (discrete-time) simulations on 400 sites up to ¢ = 250.
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Fi16.2. The cyclic particle system on Z with five colors.
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Color versions of these graphics are also contained in the particle postcard set
which is available from the second author. Figure 1 illustrates the four color
system, which appears to cluster as time (running down the page) evolves. We
say that &, clusters if

(2) P(¢,(x) =¢,(y)) »1 ast— ooforeachx, y.

Figure 2 shows what happens when one more color is added: the five color
process seems to “get stuck.” Adopting more dignified terminology, we will say
that £, fixates if there is a limiting random configuration £, (possibly determin-
istic) such that for each x,

(3) P(£,(x) = ¢,(x) eventually in ¢) = 1.

One can check that this is equivalent to (3) holding for one specific x. Finally, in
contrast to (3), we say that £, fluctuates provided that for each x,

(4) P(£,(x) changes value at arbitrarily large t) = 1.

[Of course properties (2)-(4) could be investigated for processes with initial
states other than =; we will not do so here.] The object of this paper is to
establish rigorously a “phase transition” between four and five colors, as evi-
denced by properties (3) and (4). We will only address the question of clustering
(2) at the end of the paper. Our principal result, then, is as follows.

THEOREM. Let £, denote the N-color cyclic particle system started from the
uniform product distribution m over N colors. If N < 4, then &, fluctuates [(4)
holds]. However, if N > 5, then &, fixates [(3) holds].

For clarity, the remainder of the paper is divided into five parts. Section 2
describes a graphical representation of £,, demonstrates fluctuation for N < 4 by
simple zero-one law considerations and also contains a preparatory result. In
Sections 3—5 we establish fixation. It turns out that the argument is quite simple
if N > 8, a bit more involved for N = 6 and 7, and much more complicated when
N = 5. In an attempt to distinguish the key ideas from technical details and
bookkeeping, we present the analysis in three separate sections. Finally, Section
6 describes a number of interesting problems concerning one-dimensional cyclic
systems and related generalized stepping stone models. The paper concludes with
some tentative speculation about cyclic models in two dimensions.

2. Preliminaries. It is convenient to construct the cyclic particle system £,
by means of a graphical representation. This technique is widespread in the
particle systems literature, so we describe it only briefly. See [6] (Chapter III,
Section 6) for background and additional references.

On the space-time lattice Z X [0, o), put down a rate 1 Poisson stream of
“arrows” (directed edges) connecting each site x to x + 1 and another indepen-
dent stream from x to x — 1. These random arrows, together with increasing-time
segments at fixed sites, give rise to paths which connect different space-time
points. Label the locations of Z X {0} with random colors, according to product
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F16.3. Graphical representation of the four color model on Z.

measure 7, and let £, be the resulting configuration. A change of state is said to
occur at x at time ¢ iff

(i) there is an arrow from (y, t) to (x,¢) (y =x + 1)
and
@) ¢, (y) - & (x)=1 mod N.

Arrows which induce such a change of state will be called active. If one restricts
the underlying probability space to a suitable set of measure one, then the
dynamics of £, are determined inductively. More details concerning similar
constructions may be found in [5], for instance. Figure 3 illustrates how one
realization of &, (with N = 4) is generated by the underlying Poisson stream.
Active arrows are labeled with the new state.

In order to show that £, fluctuates for N < 4, we need little more than the
graphical representation. Our argument is simple and “soft.” Let ® denote the
set of all fixed configurations (absorbing states) for £, By standard Markov
process reasoning, P-almost surely

(£, fixates) = (£, € ®},

where that right side means that £ _(x) exists for each x, with £ € ®. Since 7
and the dynamics of £, are invariant with respect to shifts in space and type
(fhat is, translations in Z and translations mod N in the type space, respec-
tively), it follows that ® is invariant under these shifts. We apply this invariance
to obtain the following result.
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LEMMA 1. Suppose that A C ® is invariant with respect to spatial shifts and
that a finite collection A, = A, A,,..., A, (I = 1) of type shifts of A forms a
partition of ®. Then

P(¢, fluctuates) =1,
i.e., (4) holds.

Proor. Let F, denote the o-algebra generated by £,(x) and all arrows
(active or not) leading to x. We take F = o(F,; —oo <x < o0) as the o-
algebra for our probability space and let I denote the sub-g-algsbra of events in
F which are invariant with respect to spatial shifts. The F, are P-inde-
pendent, so I is P-trivial by a standard zero—one law. In particular, since
{§, € A,y eventually)} € I,

P(¢, € Ajeventually) = Oor 1.

By symmetry, the same holds with A, replaced by any other A, (1 < k < ).
Since the A, partition @, the only possibility is

P(¢, € ® eventually) = 0,
as desired. O

Fluctuation for N < 4 follows easily from Lemma 1. Simply check that ® can
be partitioned as

® = (£} U (&), N-2,
= {50} U {&) VU {6}, N =3,
=A,UA,, N =4,

where £, (x) =k, A, = {& &(x) € (0,2} V x} and A, = {§: &(x) € {1,3} V x}.

To conclude this section, we present a sufficient condition for fixation that will
be applied subsequently to analyze cyclic particle systems with five or more
colors. First the key notions of active path and ancestral site need to be
introduced. A path from (z,0) to (x, ¢) in the graphical representation of £, is
said to be active if it is entirely comprised of (i) active arrows and (ii) fixed-site
increasing-time segments which do not pass the head of any active arrow.
Observe that there is always a unique location z € Z such that there is an active
path from (z,0) to (x, ¢); we call z the ancestor of (x, t) and write z = a(x).
(Conceptually, z is the initial location of the type that eats its way to x at time
t.) Of course as time evolves, some ancestral sites may color sizable intervals,
while others are eliminated. Offspring of a single ancestral site must constitute
an interval because active paths cannot cross one another. The same principle
dictates that by any time ¢ when active paths from ancestors z and z’ collide, all
ancestors between z and z’ must have been eliminated.

The key to our arguments is the Markov chain (£,, «,). More formally, the
basic properties of this chain that we exploit are:

(i) a/(x) is a nondecreasing function of x for each fixed ¢.
(ii) {a,(x); x € Z} is nonincreasing in ¢.

These properties are easily verified using the graphical representation.
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Focusing on the origin, let us abbreviate a, = a,(0) and define
T(z) = min{¢: a, = z} = the first time that 0 has ancestor 2.

To show that £, fixates, we will actually argue that the origin never has
ancestors from a long distance away. A precise formulation of this condition and
the argument for its sufficiency are the subject of our second lemma.

LEMMA 2. &, fixates if
(5) lim P(T(z) < oo for somez < —n) = 0.

ProOOF. Define
7(j) = the time of the jth change of state at the origin,

a(j)=a,;, = the ancestor responsible for the jth change at the origin,
B = {7(j) < oo forall j},
G, = {|la(j)| < nforall j}.
First, we claim that
(6) P(BNG,) =0 foreachn.

In fact, the claim follows from the previously mentioned fact that active paths
cannot cross over one another: On the one hand, successive changes of state from
the same side of 0 (i.e., all from +1 or all from —1) necessarily involve distinct
ancestors. On the other hand, each alternation of sides (i.e., a change from +1
followed by a change from —1, or vice versa) eliminates all of the descendents of
at least one ancestor. This reasoning would be incorrect for N = 2, since 0’s’and
1’s can alternately push back and forth. But for N > 2, by the time a(j) induces
an alternation of sides, a(j — 2) has no descendents [these descendents having
been trapped between descendents of a(j — 1) and those of a(j)]. Thus in-
finitely many changes of state at 0 necessarily involve infinitely many ancestors,
and hence the event B N G, is actually impossible. Thus (6) holds. Since (5) and
reflection symmetry imply that G, occurs for some n with P,-probability 1,
applying (6) we conclude that

P(B) = P(B N (UG,,)) - P(U(B N G,,)) - 0.
But B¢ = {lim £,(0) exists}, so £, fixates. O

3. Fixation for N > 8. In order to verify condition (5), we need to show
that active paths have a hard time getting to the origin from far away. Thus we
need to exploit the obstacles which block and often terminate such paths. To this
énd, we introduce an edge process e,(x) which keeps track of the distance on the
N-torus between the type at x and the type at its left neighbor x — 1:

e,(x) = min{ £ [£,(x) — £(x — 1)] mod N}.
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\
Say there is a live edge at x~ if e,(x) = 1 and a blockade at x~ if e(x) > 2. The
crucial observation to make is that live edges, which follow the motion of active
paths, cannot be created; as time evolves they either move by nearest neighbor
jumps or are annihilated by collision with a blockade. For example, the first case
occurs if the states at x = —1,0,1 change from 211 to 2 2 1, whereas the
second case occurs when 2 1 4 changes to 2 2 4. Of course the larger N, the
greater the preponderance of blockades over live edges (and the greater their
magnitude) and hence the less chance a live edge has of moving very far.
We tabulate the “credits” and “debits” due to edges of different values with
the aid of a comparison function ¢:

o(x) =0, if eo(x) =0,
=ey(x) —2, ifl<eyx)=<N/2

If there is a blockade of magnitude e,(x) at x~ at time 0, then it is easy to check
that at least ¢(x) live edges arriving at x~ must be “sacrificed” before that
location can possibly become live. (As in the scenario 213 — 2 2 3, no loss in
live edges need occur when e = 2.) Our argument for N > 8 will be based on this
type of worst-case bookkeeping.

Denote the events in (5) by H,. On H,, let p be the first time an active path
from (— 00, —n) X {0} reaches the origin, and let m_< —n be its initial posi-
tion. Also, let m,> 0 be the rightmost (i.e., greatest) source of an active path
which reaches the origin before time p. Now focus on the edges e, (x) at time 0
for locations x~ with x in the interval I = (m_, m,]. On H,, each blockade
eo(x), x € I, must at some time before p be replaced by a live edge, and these
live edges must also originate in I. (Again, this is a consequence of the fact that
active paths cannot cross.)

Making use of our comparison function ¢, we conclude that

{there are at least as many live edges as the total amount of }

H,c |« blockade mass” in interval I at time 0

n

) c {x§I¢(x) < O}

m

c {Zcp(x) <Oforsomel>n,m> 0}.
—1

The summands in this last event are (bounded) ii.d., since &, is completely

random on the N types. It is easy to compute py = E[¢(x)] and to check that

py > 0if N > 8. For instance,

pe= 0+ (=D + 10+ H(+1) + 3(+2) = &,
A standard large deviations estimate shows that the probability of the event in
(7) tends to 0 (exponentially fast) as n — co. Hence lim P(H,) = 0, which proves
fixation for eight or more colors.

4. Fixation for N = 6,7. In order to show fixation with fewer than eight
colors we need to improve our bookkeeping by taking advantage of some effects
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which are not worst-case. For instance, when a live edge collides with a blockade
of size 2, the result may well be a blockade of size 3 rather than the new live edge
assumed above, depending on the side from which the live edge arrives. By
effectively exploiting this single improvement one can handle the cases N = 6,7.
There is a slight complication however when we incorporate this effect: Condi-
tioning on which live edges first collide with certain blockade sites inevitably
destroys independence between contributions to a credit/debit tally such as (7).
Our remedy is a traditional one in probability, block averaging.

Let o(x) = inf{t: e (x) # ey(x)} be the time of the first edge change at x~.
For fixed L < oo, introduce the cylinder event:

c = [ay path (active or not) to (x, o(x)) stays within distance L
* of x between time 0 and time o(x)

To obtain (5), it is easiest to argue by contradiction. So we assume that £, does
not fixate and hence that 6(x) < co with probability 1. Then given any & > 0, we
can choose L large enough that P(C,) = P(C)) =1 — «.

As in the previous section, let H, denote the event in (5). Divide the integer
lattice Z into contiguous blocks of sites, with M sites per block, where M will be
much larger than L, but still small compared to n. Define a modified comparison
function ¢’ on sites x by

if ey(x) =2, e, (x) =3, x is
at least distance L from the

(82) ¢(x) =2, edge of the M-block to which it
belongs and C, occurs,
(8b) ¢'(x) =¢(x), otherwise.

This modification of ¢ allows us to exploit the fact that under the conditions of
(8a), two live edges need to be sacrificed at x~ in order for that location to
become alive.

One can mimic the argument of the previous section, but with the difference
that one now uses the improved comparison function ¢’. Repeating the reasoning
down through (7), we conclude that

m
9) H,c {qu(x)sOforsomelZn,sz}.
-1

By construction, the summands of (9) which belong to different M-blocks are
independent. (They use disjoint regions of the Poisson diagram.) So it suffices to
show that the expected contribution from any single M-block is strictly positive.
The same large deviations reasoning as in Section 3 then yields (5). We will
compute this contribution for N = 6; the case N = 7 is easier.

If there is an initial blockade of size 2 at x~, then until time o(x) the
dynanucs of £, on the half-lines (— o0, x — 1] and [x, 00) are independent. By
symmetry, the blockade has probability 1 3 of becoming a size 3 blockade and
probability 3 of becoming a live edge; the probability that C, also occurs is at
least § — ¢ for a site x further than distance L from the boundary of its
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M-block. Of course, for N = 6, on the average } of these sites have ey(x) = 2.
Making use of such sites, we see that the contribution within a single M-block
from terms ¢’(x) which satisfy the conditions of (8a) has expectation at least

(M - 2L)§(4 - )(+2).
Moreover, the contribution from ¢’(x) as in (8b) is at least
M50+ 3(=1) + 5-0+ 3(+1).
For small ¢ and M sufficiently large, the total is clearly positive.

5. Fixation for N=5. Our method for establishing fixation, which was
detailed above, can be summarized as follows. We specify effects E, which occur
by (random) time p, which take place with density p, on the line, which
eliminate at least r;, live edges if they happen, and are defined so that distinct
effects eliminate distinct edges. If £r, p, exceeds the initial density of live edges,
then the blocking argument above implies fixation.

The proof when N = 5 proceeds along the same lines, but seems to require
minor modifications and some rather tedious bookkeeping. First of all, we need
to take advantage of effects which involve up to three changes of state per site.
This involves appropriate redefinition of the cutoff constant L and events C, to
ensure that the overwhelming majority of sites in an M-block undergo at least
three changes of state before influence is felt from outside the M-block. [Now C,
should also require that paths originating at x stay within distance L of x until
time o4(x) = time of the third edge change at x~, in order to maintain indepen-
dence of the M-block summands.] By choosing L and M sufficiently large, one
can establish fixation provided that Lr,p, exceeds the initial density of live
edges, even when the E, involve up to three (or, in fact, any finite number of)
changes per site. We omit further details on this point.

Second, we will exploit contributions from nine different types of effects in
order to overcome the initial density of live edges, which equals Z. Below, we
specify representatives F, of each different effect, tabulate corresponding re-
wards r, and give lower bounds on the probability =, that F) occurs at a given
location x~. Each effect F, will be represented by an icon and a more formal
description, both of which assume that £i(x — 1) = 0. A symmetry index s, will
indicate how many distinct situations are represented by F,. In the one case
where £(x — 1) = £i(x) = 0, the symmetry index equals 5, due to rotations in
the type space. In all other cases the symmetry index is 10, due to type rotations
and reflection about x~ on the line. Under this scheme, the average number of
live edges eliminated per site is given by Yr,s,m,.

We leave it to the reader to check the crucial fact that there is no “double
counting” in our tally. After detailing the tally sheet and checking that it does
indeed establish fixation, we will then proceed to demonstrate the lower bounds
on .

&

The Effects F,.
F,: 1012 r=25 =10,m > 0.00316.
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This icon means that £y(x —2) # 1, §{(x — 1) =0, £i(x) =1 and that a 2
from the right eats the 1 at x before any change occurs at x — 1. The effect
eliminates two live edges, hence r, = 2.

F,: 10 1 2, r,=2,s,=10, m > 0.00316.

This icon means that £(x — 1) =0, £§(x) =1, §((x +1)# 2 and that a 1
from the left eats the 0 at x — 1 before any change occurs at x. The effect
eliminates two live edges.

Fy: 1—0V1e—2, r;=2,s;=10, m > 0.00093.

This icon means that {y(x —2) =1, §(x —1) =0, §(x) =1, {(x+ 1) =2
and that either the 1 at x — 2 eats the 0 at x — 1 or the 2 at x + 1 eats the 1 at
x before the 1 at x eats the 0 at x — 1. The effect eliminates two live edges.

F: io 12 r=1,s=10,7 > 0.00135.

This icon means that §(x — 2) # 1, {i(x — 1) = 0, £x(x) =1, £y(x + 1) = 2,
the 2 at x + 1 eats the 1 at x and then a 3 from the right arrives at x before
there is any change at x — 1. The effect eliminates one live edge not counted in
F.

F: 1—0 01, ry =2, s; =5, m; > 0.00057.

This icon means that £(x —2) =1, {((x — 1) =0, £(x) =0, éy(x + 1) =1,
the 1 at x — 2 eats the 0 at x — 1 and the 1 at x + 1 eats the 0 at x (in either
order). The effect eliminates two live edges.

Fy: 0 23, rg =1, sg = 10, m; = 0.02000.

This icon means that £(x — 1) = 0, £(x) = 2 and that a 3 from the right
eats the 2 at x before a change occurs at x — 1. The effect eliminates one live
edge.

F,: 0 23, r, =1, s; = 10, m, > 0.00288.

This icon means that £ (x — 1) = 0, £,(x) = 2, §(x + 1) = 3, that the 3 at
x + 1 eats the 2 at x and then a 1 from the left eats the 0 at x — 1 before any
other change at x. The effect eliminates one live edge not counted in F.

F: 0 223, ry=1,s,=10, 7 > 0.00030.

This icon means that £y(x — 1) = 0, §i(x) =2, £x(x + 1) =2, §(x +2) =3,
that the 3 at x + 2 eats the 2’s at x + 1 and x and then a 1 from the left eats
the 0 at x — 1 before any other change at x. The effect. eliminates one live edge
not counted in Fy.

Fy: 1—0 273, .r,=2,s,=10, m > 0.00028.
This icon means that £,(x — 2) = 1, £(x — 1) = 0, £q(x) = 2, £o(x + 1) = 3,

that the 1 at x — 2 eats the 0 at x — 1 and then the 3 at x + 1 eats the 2 at x
before any other change at x — 1. The effect eliminates two live edges.
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Computing our claimed lower bound on the mean number of live edges
eliminated per site, we find that

Yrs,m, > 0.4016 > 2,

as desired. So the remainder of this section is devoted to our techniques for
estimating the . .

The above effects only take place when there is no interference from extra-
neous sites. Such interference can certainly take place, so we need to show that it
does so with small probability. The next lemma gives estimates for interference
from the right when it is competing against (independent) exponential clocks
with rate A = 1,2, 3. Of course the same estimates will control interference from
the left, by symmetry. We formulate the lemma in terms of a cyclic model £ on
the half-line [x, o), with £7(x) =1, with the colors at sites y > x initially
Bernoulli and with the same dynamics as £, except that arrows from sites in
(— o0, x — 1] are suppressed. The 1 at x initially is for notational convenience;
the same bounds clearly apply to configurations which are shifted in the type
space. Let T™ (A = 1,2,3) be independent exponential random variables with
respective rates A. Let UM (A = 1,2) be the sum of two independent exponen-
tials with rate A.

LEMMA 3. With &, T® and U™ as above, the following estimates hold.

(A) P(¢H(x) =2 for somet < T®) < 0.14.

(B1) P(¢}(x) =2 for some t < T®) < 0.077.

(B2) P(£5(x + 1) # 2, £/ (x) = 2 for some t < T®) < 0.01.
(B3) P(at least two changes of state at x before T®) < 0.003.
(C) P(¢/(x) =2 for some t < T®) < 0.06.

(D) P(¢f(x) =2 for some t < UY) < 0.31.

(E) P(¢f(x) =2 for some t < U®) < 0.15.

ProoF oF LEMMA 3. (A),(B1),(B2),(C): We estimate five separate contribu-
tions, according to the different possible initial values of £ (x + 1) (with prob-
ability + each).

(a) £5(x + 1) = 2. The 1 at x cannot become a 2 unless the first arrow from
x + 1 to x occurs before T™, Suppose that £ (x + 2) = 3, that an arrow occurs
from x + 2 to x + 1 before T™ and before any arrow from x + 3 to x + 2 or
from x + 1 to x. Then there is an arrow from x + 1 to x before T and before
any arrow from x + 2 to x + 1, and subsequently T™ occurs before the next
arrow from x + 1 to x. In this case the 1 does not change before 7™ even
though the first arrow from x + 1 to x precedes T». We obtain

P(&/(x) =2forsome t < T™, £/ (x + 1) = 2)

. 1/ 1 \. 1 1({ 1 1 A
sE(>\+1)_3'3()\+3)()\+2)()\+1)’

(The small improvement from the second term simplifies bookkeeping when
A=1)
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(b) £4(x + 1) = 1. In order for a 2 to arrive at x, a 2 must first arrive at x + 2
(or be there initially) and then at least two more transitions must occur before
T, Thus this case contributes at most

1 1 2
X A) e+ =
—5 P(2atx+2beforeT |§o(x+1) 1)(>\+1) :

We rewrite this last probability as
4
1 Y P(2at x + 2before T®|Ed (x + 1) =1, £ (x + 2) = 2 — j (mod5)).

We claim that the jth term in the above sum is at most (1/(A + 1))/. This is
clear for j = 0,1. For j = 2, the 0 at x + 2 can become a 1 at rate 2 if thereisa 1
at x + 3 (since there is also a 1 at x + 1), but then at least two rate-1 transitions
are needed to change the 1 at x + 2 into a 2. If there isnot a 1 at x + 3, then at
least two rate-1 transitions are needed. So we get the desired bound. Each
additional increase in j requires at least one more transition and the claim
follows. We conclude that the contribution from this case is at most

1 1\ 1 \? A+1 1 \? 1

5 5 Z (A+ 1) ()\+1) = (0’04)( A )(A+1) (0’04))\(}\+1)'
’I‘hroughout the remainder of the proof and in estimates for the =, to follow, we
will use the weight factor of (A + 1)/A given above to bound similar sums of
conditional probabilities.

(¢) &7 (x + 1) = 0. The 1 at x eats the 0 at x + 1 before T (and before any
change at x + 1 from the right) with probability at most 1/(A + 1). At that
point the situation reduces to (b). It is also possible for a 1 at x + 2 to eat the 0
at x + 1; three more transitions must then occur before 7). The total contribu-
tion is at most

1 \1 1(/A+1 1 V2 1 1/A+1 1 1 \®
—_— — | —— —_— + —_. —
xri)s sl i) +5 s ) ()
(0.04) A+2
VTN + )Y
(d) £§(x + 1) = 4. A 0 must first appear at x + 2 and eat the 4 at x + 1; we

estimate the chance of this as in (b). Then five additional changes must take
place (one at x, two at x + 1, two at x + 2), in any of four possible ways. The
total contribution is at most

1 1/A+1 1 1
s 3 ) - emset
5 5\ A A+1/(A+1 >\(>\+1)
(e) £5(x + 1) = 3. A 4 must appear at x + 2 and eat the 3 at x + 1. Then

seyen additional changes must occur (one at x, three at x + 1, three at x + 2),in
any of four possible ways. The contribution is at most

T e e e LT
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Add together the contributions from (a)-(e) to obtain the desired bounds
(A), (B1),(B2),(C). [For (B2), omit the contribution from (a).]

(B3): We estimate three pieces, depending on the initial state.

(f) £&(x + 1) # 2. First the 1 at x must change to a 2 and then two more
changes (at x + 1, then at x) must occur before 7®. By (B2), the probability of
the first event is at most 0.01; the contribution is therefore at most (0.01)(1)%

8 £&3(x + 1) =2, £5(x + 2) # 3. The 2 at x + 1 must at some point change
to a 3 and then a change must occur at x. Applying (B2) to the first event, we see
that the contribution is at most £(0.01)(3).

(h) &f(x+1)=2,¢5(x+2)=3. The first change on [x, x + 2] may occur at
any of these three sites. The first change is at x (and before T®) with
probability at most 1. In this case two more changes are needed before T'®. The
first change is at x + 1 with probability at most § and then at least nine more
changes must occur, in one of four ways. And the first change is at x + 2 with
probability at most %, after which at least five more changes must occur. The
total contribution is at most

E )7+ 40+ )
Add together the contributions from (f)-(h) to verify the claim.

(D), (E): Our method is entirely analogous to that for (A),(B),(C), but the
arithmetic is a bit messier. The probability of j arrows before U™ is less than

o) e

The weight factor is now w* = Xau*(j). Below, we write contributions (a’)—(e")
corresponding to the previous contributions (a)—(e). The probability of “; ad-
ditional changes before U®” is given by u(j).

(@) u*(l),

®) % *uM(2);

@)% 5[ux(1)w uN2) + wrur@)];

@) i - twMue);

(€) 3 - swul®).
The sum of these contributions is less than 0.31 if A = 1 and less than 0.15 if
A = 2, as desired. O

We now proceed to derive the claimed lower bounds on the probabilities ;, of
the effects F,, one by one. As in the proof of fixation for N = 6,7, we will assume
that £, fluctuates with probability 1, in order to ensure that desired changes of
state occur eventually. Thus our argument is essentially a proof by contradic-
tion. We will use the abbreviation P, to denote probabilities where conditioning
is,implicit, but clear from the context. For instance, the conditioning on the right
side of the first inequality below is with respect to {£,(x — 1) = 0, £i(x) = 1}.

The estimate for m,. 10 1 < 2. This effect makes a major contribution, so
we exercise some care in its estimation. Let T® = the time of the first arrow
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from x to x — 1 or from x + 1 to x, T_= the time of the first change at x — 1
from the left and T', = the time of the first change at x + 1 from the right. We
have

P(F) = t- %[P*('So(x —2)# 1, §(x+1) =2,
arrow from x + 1tox at T®, T® < T,, T® < T_)
+P(8(x—2) # 1, (x +1) =1,
arrow from x + 1 to x at T®,
" exactly one change at x + 1 before T®, T® < T_)]
>1.1. 1. 1[(Py(§(x—2) #1, T®<T.)

—P,(&y(x — 2) # 1, exactly one change at x + 1
before T®, T® < T_)
—P*(io(x —2) #1, > 2changesat x + 1
before T®, T® < T_))
+P4(&(x — 2) # 1, exactly one change at x + 1
before T®, T® < T_)]
= % : % : % : %[P*(‘So(x - 2) # 1) - P*(‘So(x - 2):# 1, T® 2} T—)
—P,(¢(x —2) # 1, > 2 changes at x + 1
before T®, T® < T_)]
>1.1.1.1[4_(0,01) — (0.003)] = 0.003148,

=5 5 5

this last inequality following from Lemma 3(B2), (B3). To beef up the estimate a
bit, we argue as follows. Suppose that thereisa 1 at x + 1 and a 2 at x + 2
initially. Suppose further that an arrow occurs from x + 1 to x before any other
of the types {x —3tox — 2, x tox — 1, x + 2tox + 1, x + 3 to x + 2}. Then
successive arrows occur from x + 2 to x + 1 and from x + 1 to x before any
other of the types {x —3tox — 2, x tox — 1, x + 3 to x + 2}. Then F, occurs
after time 7'® and so the event is disjoint from that of the preceding estimate.
The chance of this event (assuming the initial data of F)) is

(#-1.1.1.1).(1.1.1)=0.000016.

5 5

Combining pieces, we obtain the claimed bound. of 0.00316.

The estimate for m,. 1-—>01 2. P(F,) = P(F,), so we use the same lower
bound as above. ’

The estimate for ;. 1 —>0V1 «—2. Lemma 3(C) handles this situation.
Interference from outside [x — 2, x + 1] can only occur if an effect comes in
from either the left or the right before T® = the time of the first arrow from
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x—2tox —1or from x tox — 1 or from x + 1 to x. Let T_= the time of the
first change at x — 2 from the left and 7', = the time of the first change at x + 1
from the right. Then

P(F)=>=1-1.1.1P,(arrowfromx — 2tox — 1
or from x + 1 to x at time T®,T® < T_, T® < T,)
1,1,1,1, %(P*(T(f*) <T_,T® < T+))

v
"
"
"
-

21-1-3-4-31-2P(T®>T,))
>1.1.1.1.2(1—2(0.06)) > 0.00093.

3
The estimate for m,, 101<—2 .Lemma 3(B1) and symmetry (assuming
fluctuation) will be applied. T® will denote the time of the first arrow from x to
x — 1 or from x + 1 to x. Let S, be the time of the first change at x + 1 from
the right and let T, be the time of the first arrow from x + 1 to x after S,.
Similarly, T'_ will be the time of the first arrow from x — 2 to x — 1 after the
first change at x — 2 from the left. Then

P(F)=4%4-1.1.1p (arrowfromx + 1tox at T®, T® < T, < T_)
>4.1.1.1[P,(arrow fromx + 1tox at T®, T,< T_)

— P, (arrow from x + 1to x at T®, §, < T®)].

The two events of the second bracketed probability are clearly independent and
the two events of the first bracketed probability are positively correlated.
Positive correlation follows from the observation that T'® is the time of the first
arrow in a rate-2 stream which is put down either from x to x — 1 or from x + 1
to x according to a fair coin toss. Thus the conditional law of T, given that the
first arrow is from x + 1 to x, is stochastically smaller than the conditional law
of T, given that the first arrow is from x to x — 1. (In a suitable coupling, the
influence from the right has an extra arrow to use.) We conclude that

P(F)=#-1-1.1.1(1—(0.077)) > 0.00135.

5

The estimate for ms. 1 —>0 0 «— 1. Introduce

T® = time of first arrow from x — 2 to x — 1 or from x + 1 to x,
G_= {arrow from x — 2to x — 1 at T®},
G, = {arrow from x + 1 to x at T®},

U® = the time of the first arrow to x after T®, on G _,

= the time of the first arrow to x — 1 after T®, on G,

H_= {arrow from x — 2 to x — 1 at U®},
H = {arrow from x + 1 to x at U®},
T _= the time of the first change at x — 2 from the left,
T, = the time of the first change at x + 1 from the right,
U _= the time of the first change at x — 1 after T,
U, = the time of the first change at x after T.
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We have
P(Fy) = (1)'[Pe(G_,H,, T®<T_,U® < T,,U® < U_)
+P(G,,H_,T?<T,, U®<T_,U®<U,)|.

These two probabilities are equal. Since H , are independent of the other events
and since both have probability }, this is at least

()[4 = Pu(G_,T_< T®) — P(G_,T,< U®) - P,(G_,U_< UD)].
Lemma 3(B1), (E) gives the lower bound
1)‘%[1 - (0.077) = (0.15) — 2P,(G_,U_< U®)].

On G _, the event {U_< U} requires two arrows in [T®, U®]if {pe(x — 3) = 2
and at least three otherwise. The weight factor corresponding to T'® is £, so the
chance of a 2 at x — 3 at time 7® is at most 2 - 1. The time between 7® and
U® is governed by a rate-2 exponential. Thus

P.(G_,U_<U®) < {(0.3)(3)* + (0.7)(3)"] < 0.03.
Substitute this estimate to obtain the claimed bound of 0.00057.
The estimate for mg. 0 2 «—-3. By assuming that £, fluctuates, so that either

the 0 at x — 1 or the 2 at x is eaten eventually, we can compute the probablhty
of this event exactly. As in the proof for N = 6,7, symmetry gives

The estimate for . 0 2 «——3. We use Lemma 3(A) and symmetry
(again assuming fluctuation). Let T = the time of the first arrow from x + 1 to
x, T_= the time of the first change at x — 1 from the left and T', = the time of
the first change at x + 1 from the right. It follows that

P(F,)=1-1.1p(TO<T_,TY<T,,T_<T,)

= 5 5

—1.1.1.1 1 1

=1.1.1.1 (T()<T T()<T)
1 1 1

>z 55" 5(1 — 2(0 14)) 0.00288.

The estimate for ;. 0 27 2 «—3. We use Lemma 3(D) and symme-
try. Let U® = the time of the first arrow from x + 1 to x after the first arrow
from x + 2 to x + 1, T_= the time cf the first change at x — 1 from the left and
T, = the time of the first change at x + 2 from the right. It follows that

P(F)>1.1.1.1 *(U(l) <T_,UM<T, T < T+)
— 1

=1.1.1.1.1 *‘(U“)<T_,U(1)<T+)
>3-1-%-3%-5(1-2(0.31)) > 0.00030.
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The estimate for my. 1 ——0 2 3. Argue just as for the G_ half of F} to get
half the bound obtained for P(F;),

P(F,) > (0.5)(0.00057) > 0.00028.

REMARK. If the clearance in our proof (0.4%) seems too close for comfort, we
note that improvements can be made. For instance, a simple correlation in-
equality shows that the events in the second to last lines of the computations for
F, and Fj are positively correlated. Thus, extra terms of (0.14)2 and (0.31)? can
be added within the respective large parentheses of the final lines in those
computations. This adds another 0.0015 to our tally. Also, a few additional
effects could be listed, making contributions of the same order of magnitude. But
we do not know an easier proof of fixation for N = 5 and doubt that we have
missed a “big piece.”

6. Related results and future directions. We conclude with an informal
discussion of several intriguing questions raised by our work. We hope to address
some of these problems in the future.

First of all, note that our model ¢, is closely related to a discrete time
deterministic cellular automaton [10]. Namely, suppose that at each time n €
{0,1,...} the color £,(y) at site y paints every neighbor x such that

¢.(y) — £,(x) = 1mod N.

This rule is interesting if N > 3. Once we specify a random initial configuration
of N colors on the integers, the entire trajectory of £, is prescribed. Suppose
that, as in the theorem, the initial measure is 7. Then the conclusions of the
theorem hold for N = 3,4 and for N > 6. In fact our proof goes through in these
cases without significant change once the graphical representation is tailored to
the discrete space-time lattice. Thus we obtain one-dimensional cellular au-
tomata with novel ergodic behavior, due to the rich structure of the invariant set
®. With substantial additional effort, our method can be adapted to prove
fixation for the five-color deterministic dynamic; details may be found in [4].

As noted in the Introduction, for three- and four-color models we have
sidestepped the issue of clustering (2). In the two-color case (the voter model),
clustering occurs at rate ¢'/2 and is well understood. See Section V.3 of [6], for
instance. Suitable rescaling leads to annihilating Brownian edges in the limit.
One can investigate the corresponding “clustering rates” when N = 3 and 4. A
natural first step is to study the same problem for the corresponding determinis-
tic systems of the previous paragraph. Here the dynamics are particularly simple
and some exact connections with random walks occur [4].

Another tack is to allow more general “appetite rules,” while still maintaining
the simple nearest neighbor spatial interaction. If all N colors eat at the same
rate, but each color is only allowed to eat certain others, then there is one model
for’ each directed graph on N sites. Exchangeable stepping stone dynamics
correspond to the complete graph, whereas this paper treats the cyclic graph.
More generally, if appetites are allowed to differ, then there is a model for every
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Q-matrix of rates g;; at which color i eats color j. All such systems preserve the
key feature that change only occurs along boundaries between color clusters;
they therefore constitute a natural class of models for spatial competition.

Ideally one would like to categorize all possible types of ergodic behavior for
such generalized stepping stone models, along the lines of the classification of
cellular automata [10], iterates of maps or other dynamical systems. Four
possibilities are:

(i) Some color takes over the world.
(ii) The system converges to a nontrivial equilibrium.
(iii) There is some set of two or more colors which form continually expanding
clusters.
(iv) The system fixates.

Are there other scenarios? Who wins in class (i) situations? (The answer is
sometimes paradoxical.) What are sufficient conditions to ensure that a given
model belongs to each of the four classes? In the case of clustering, when is there
a “natural scale”? One-dimensional generalized stepping stone models are suffi-
ciently tractable that satisfactory answers to at least some of these intriguing
questions should be forthcoming.

Analogous models in two dimensions are much more interesting and much
more meaningful to mathematical biologists /geneticists. We conclude the discus-
sion with a few remarks concerning N-color cyclic particle system dynamics on
the two-dimensional integers. £, evolves as in one dimension, except that types
try to eat one of the four nearest neighbors selected at random. Essentially the
same argument as in one dimension shows that the three- and four-color models
fluctuate in two (or more) dimensions. We have simulated a discrete-time version
of the four-color two-dimensional model on a high-performance Cellular Automa-
ton Machine (CAM) [8], developed by Tom Toffoli at the MIT Laboratory for
Computer Science. A still frame is shown in Figure 4, but this in no way does
justice to the intriguing dynamic which one sees with the aid of the CAM.
Started from a random state, the simulation suggests quite convincingly that £,
does not cluster. Rather, the simulation rapidly stabilizes to a “bubbling equi-
librium” in which waves of color grow for a while, then “fold over” and are
“swallowed up.” Connected clusters containing several hundred cells of the same
color are common. If we start from large squares of the four colors, then the
simulation quickly settles down to the same steady state. And if we start with a
small patch of randomness surrounded by a solid sea of one color, then cyclic
waves spread out from the random source. This last effect is nicely illustrated in
[8]. Charles Bennett has pointed out a resemblance to Zhabotinsky’s oscillating
chemical reactions [12]. The cover article [9] of the June 1974 Scientific Ameri-
can gives a colorful account of those dynamics.

Preliminary two-dimensional simulations suggest that fixation sets in some-
where between 8 and 16 colors. (One must exercise caution, however. If the initial
state consists of a large enough solid square of one color surrounded by a sea of
random colors, then simulations also suggest that fixation is questionable for
even more colors.) We are presently unable to prove fixation for any N when
d = 2; the unusual self-organizing wave patterns make rigorous analysis difficult.
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F1c. 4. The cyclic particle system on Z* with four colors.

We are beginning to investigate some simpler two-dimensional models, for which
one can prove fixation once the number of colors is sufficiently large.
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