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A RENEWAL THEORY WITH VARYING DRIFT!

By Cun-Hul Zuanc
State University of New York at Stony Brook and Rutgers University

Let R be the excess over the boundary in renewal theory. It is well known
that ER has a limit r when the drift of the random walk p > 0. We study
renewal theorems with varying p. Conditions are given under which the tail
ER — r is uniformly dominated by a decreasing integrable function for p in a
compact interval in (0, ). Conditions are also given under which the de-
rivative of the tail (d/dp)(ER — r) is uniformly dominated by a directly
Riemann integrable function.

1. Introduction. Let X, X, X,,... be ii.d. random variables with EX = 0
and Var(X) =0¢2>0. Put S,=X, + --- +X,, n > 1. Define for each ¢ >0
and p > 0,

(1.1) T =T(c,p) =inf{n: S, + np > c}
and
(1.2) R=R(c,p) =Sp+ uT —c.

For fixed p > 0, the asymptotic behavior of R and T is well described by the
classical renewal theory. See, for example, Feller (1971). This article concerns
uniform renewal theorems with varying drift p.

Let us first consider the following nonlinear boundary crossing time that
motivates our investigation. Define

T, = inf{n: S, > A(n)},

where A(t) is a decreasing function. To approximate probabilistic quantities
involving the stopping time T, and the overshoot Sy, — A(T,) as the boundary
tends to infinity, Woodroofe (1976) and Lai and Siegmund (1977, 1979) suggested
that we consider the corresponding linear problems involving the stopping time
T(c4, 14) and the overshoot R(cy, p,), where ¢y, = —bA'(b), py = —A’(b) and
b = sup{t: A(t) =0} = ET + O(1). Applying classical renewal theorems, they
obtained nonlinear renewal theorems for the case A’(b) = constant. Noting that

T(ca,pa) = inf{n: S, > A’(b)(n — b)}

and A’(b)(t — b) is the Taylor expansion of A(t¢) near ET, we realize that a
linear renewal theory with varying drift is needed to study more general and
deeper nonlinear renewal theorems for two reasons: (a) to study the case
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724 C.-H. ZHANG

A'(b) # constant in the limit process; (b) to get high-order approximations by
considering

T = inf{n: S, > A*(n)},

where A*(t) is the linear interpolation of A(¢). In Zhang (1988) various nonlinear
renewal theorems were obtained by using the results in this article.

We shall state the main results in this section and prove Theorems 2 and 3 in
Sections 2 and 3, respectively.

A random variable Z is arithmetic if P{(Z/d = integer} = 1 for some 0 < d <
0. In this case, we shall also say that Z has an arithmetic distribution. The span
of an arithmetic random variable Z, denoted by span(Z), is the largest real
number d < oo such that P{Z/d = integer} = 1. If Z is not arithmetic we define
span(Z) = 0. Also, a random variable Z has a lattice distribution if Z + p is
arithmetic for some real number p.

Let Y(u), Y, (1), n > 1, be i.i.d. random variables for each p with Y = Y(u) =
R(0, p). Define

(1.3) m, =m,(p) = EY(p),

(1.4) r=r(p) = EY*(n)/(2m(p)),
(1.5) G=G(x,p) = fwa{Y(u) >y} dy/my
and

(1.6) f=1(u,p) = EexpliuY(n)].

Our first theorem is a uniform Blackwell-type renewal theorem.

THEOREM 1. Let p > 0. Suppose that X + p does not have an arithmetic
distribution. Let c;, and u, be two sequences of constants such that c, — oo and
0 < u, = p. Then for any real number x = 0,

x x
1.7) lim Plc, < Yi(uy) + -+ +Y,(u,) <c, +x} — =0,
1) | £ ple, < ¥(w) () < e+ 3} = s
(1.8) liin Y Plc,<S,+un<c,+x}=x/p
n=1
and
(1.9) li}enP{R(ck,uk) >x} = G(x,p).

Furthermore, if EX? = 6% < 0, then for any x > 0 and t,
lillenP{R(ck, u,) > x, T(cy, u,) > cp/uy, + t\/cko2/u;°;}

= G(x, p)P{N(0,1) > t},
where N(0,1) is standard normal.

(1.10)
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We shall not provide a proof of Theorem 1 here since it can be proved by
modifying the existing proofs of the Blackwell renewal theorem. For example,
noting that span(X + u,) — 0, we can modify the methods of Woodroofe (1982),
pages 113-116, to prove (1.8) (and therefore the rest of the theorem), since we
only need to consider functions & with compact support there. For the nonlattice
case Theorem 1 can be easily proved by the coupling methods. See Lindvall
(1977). If m,(0) < oo, then (1.7) and (1.9) still hold when u, — 0. Sufficient and
necessary conditions for m,(0) < co were obtained by Chow (1986).

Assume that 6% < . Let 0 < a < b < o0 and

M=sup{ZP{c<Sn+nusc+1}:asusb,—oo<c<oo}.

n=1
By (1.8) M < co. Since the right-hand side of

P{R(c,p) >x} = i P{T(c,p) 2 n,S, + np>x + c)

n=1

sfoo Y Px+c—y-p<S,_,+(n-1p<cldP{X <y)

X~Hhn=1

<2M[” (1+b+y-x)dP(X <)
x—b

is integrable and independent of u, {R(c,p): ¢ >0, a < p < b} is uniformly
integrable, so that (1.9) implies lim, ER(c,, u,) = r(p). However, under higher
moment and smoothness conditions we have the following stronger results.

THEOREM 2. Suppose that E|X|®> < oo and for some k < o0 and 0 < a <
b < o0,

(1.11) sup{fw If(u, p)¥du:a <p < b} < 0.

Then

(1.12) fwsup{|ER(y,p) —r(p)l:y>x,a<p<blde < oo.
0

The Lebesgue integrability of ER(x, p) — r(p) on [0, o0) for fixed p > 0 was
established by Stone (1965) under the moment condition E|X|® < c0. The
smoothness condition (1.11) is similar to the condition C under which a renewal
theorem for curved boundaries was obtained by Woodroofe (1976).

A function A(-) is directly Riemann-integrable if it is Riemann-integrable on
any compact interval and

0
Y sup{la(x):n<x<n+1} < oo.

n=-o
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Note that A(x) > 0 is directly Riemann-integrable if A(x) is continuous, inte-
grable and eventually monotone at both tails.

THEOREM 3. Suppose that the density function p(x) of X exists and is
bounded by a directly Riemann-integrable function. Then (1.11) is valid. Fur-
thermore, suppose that in addition E|X|* < . Then forany 0 <a < b < oo,

(1.13) ’iosup{l(a/ap)(ER(x,p) —r(p)):n<x<n+1l,a<p<b)
< 0.

This theorem is essential for the expansion of variances of nonlinear boundary
crossing times in Zhang (1988). The methods in the following sections may also
be used to obtain other uniform renewal theorems with varying p or with respect
to d/dp when the needs for such theorems arise. Uniform renewal theorems have
been studied by Lai (1976) and Kartashov (1980). Although they. considered
uniform convergences for larger classes of underlying distribution functions, their
results are not delicate enough to meet our needs for nonlinear renewal theory.
Also, the convergence in Theorem 3 has not been considered in previous studies.
Chow and Lai (1979) investigated the behavior of the stopping times T(0, n) as
g — 0 to obtain results on driftless random walks.

We conclude this section with a proposition which gives an expression for

(9/9m)r(p).

ProPosSITION 1. Let r(n) be defined by (1.4). Suppose that EX? = 6% < o0
and X is not lattice. Then

(3/9m)r(p) = (1 - o®/n®)/2 + 5 P(S, + pn < 0}.

n=1

2. Proof of Theorem 2. Since the theorems with b = 2a can be proved by
considering X, /a, n > 1, we shall assume without loss of generality that the
domain of p is [1,2] in Sections 2 and 3.

Let f be defined by (1.6). Then, by the Wiener-Hopf factorization [Feller
(1971), pages 604-610]

(2.1) f=1+(g-1U,
where

(2:2) g =28(u,p) = Eexpliu(X + p)]
and

(2.3) U=U(u,p)= exp[ y n‘1/0+ei“" dP{S, + np < x}|.
n=1 -

o0
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Since
Y. n7'P{S, + np < 0}
(24) o)
= log[EY(p)/E(X + )] = log ET(0, n) < log ET(0,1),
we have by (2.1)
(25) lg(u,p) —1/ET(0,1) < |f(u, p) - 1] < |g(u, p) — 1|ET(0,1),

(2.6) g(u,p) #1 when u + 0,

and for small u,

2.7) lg — 1| > 1 — e™| — |1 — Ee™X| > plu|/2 > |u|/2.

Therefore, for any M > 0,

(2.8) sup{|(f(u,p) = 1)/u|™":0<|u <M,1<p<2}<oo.

We shall consider Borel functions on (— o0, 00) X [1,2] in the space
o

(2.9) L* = {h =h(x,p): Y sup |h(x,p)| < oo

n=—o00 n<x<n+1

l<p<2
and introduce the following notation. For any complex-valued Borel functions 4,
h, and h, on (—o0,) X [1,2] for which the corresponding operations are
applicable, define

(i) "'(h(u, p) = A0, p)), w0,

Dh = Dh(u, ) = { tim Dh(u, ), u=9
u—0

D,h = Duh(u: p) = _l(ah/au)(u’ P‘)’
D,h = Dyh(u, ) = (3h/3)(u, 1),

h=hu,p) = (A) (u,0) = [ e™h(x,p) d,

— o0

b= h(xw) = (B) (z,0) = @) ! [ e h(u, p) du,

hyxhy = hyxho(x,p) = [ hy(x =y, 8)hy( 3, 1) dy,

h*" = hx p*(*= D n>1, h*' = h,
and L* = {fz: h € L*}, where L* is defined by (2.9).
By elementary calculus, we immediately have

D[ e dH(x)
(2100 7% . .
= [ e (H(x0) = H(x)) de = [* e"(H(z) = H(~ o)) d
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for any monotone function H(x) with |[*_|x| dH(x)| < oo,

(2.11) D,Dh=DD,h— D*h it [ |xh(x, p)|dx < oo
and
(2.12) {hy, by} © L* implies {h, + hy, by — hy, Byhy) C L*.

Define f, = f, g, =8, U, = U,
(2'13) fn = Dfn—l’ gn = Dgn—l’ Un = DUn—l’ n= 1:
and

ER(e,p) = r(w) + mi'(w) [ [“P(¥(k) 2 7) dya,

c>0,
0, c<0.

Then by Definition f,0, u) = EY™(p)/n!, n > 1.

(2.14) &(e,p) =

LEMMA 1. Let R and ¢ be defined by (1.2) and (2.14), respectively. If
E|X|? < o, then
(2.15) £(u, m) = 17, 1) /( i, 0)my(p)),
where f,, f, and m, are defined by (2.13) and (1.3).

A proof of Lemma 1 may be found in Carlsson (1983). Indeed, (2.15) is the first
displayed equation on page 149 of that article. We state without proof the
following lemma which follows easily from the argument of Stone (1965), page
334.

LEMMA 2. For any positive integer k > 2 there exists a universal constant
A, < oo such that for any probability distribution function H(x),

1Dt D?h(u)| du < Af” 1l dH(x),
-1 — o0
where h(u) = [*_e™* dH(x).

Our next lemma is the key to the proofs of Theorems 2 and 3. Since the
argument is to be used repeatedly, we define the space L(Z, ¢) for each ¢ > — o
and integer & > 0 as follows:

(2.16) L(k,c) = {h: h satisfies (2.17)-(2.20) },
where
(2.17) (frffh) (x,p)[{x>c} €eL*, n=0,0<j<kEk,
(2.18) sup |DjA(u,p) < 0, j=0,1,

(u,p)

(2.19) sup(|D2A(u, p)l: jul 21,1 <p <2} <o
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and
l A
(2.20) supf |DZh(u, p)| du < oo.
" _1
And we define L(k, ¢) = {(h: h € L(k, c)).

LEmMMA 3. Let f,, n > 0, be defined by (2.13). Suppose that E|X|? < o and
(1.11) is satisfied. Then

((fa/f)*R) (x, p)I{x = ¢} € L*

for any h € L(k,c), c > —c0 and k > 0. In particular, fa € I:(k, —o0) for any
k>0 and

f2/f, € L*.
PROOF. Since for x > 0,

(2.21) P{ sup Y(p)=>x+ 2} < P{ max X > x} <P{X> x}éT(O,l),

1<p<2 J<T(@,1)
by (2.10), (2.12) and (2.13) for n > 0 and j > 0,
f#{fy = mify + (f; — m)D(f /) € L*.
It follows from (2.11) and Lemma 2 that
(2.22) f> € L(k, — ) defined by (2.16), k> 0.
By (1.11) there exists an integer m > 0 such that

(2.23) sup [ ® 1w, )™ % du < co.
I - 00

Since X is strongly nonlattice by (1.11) and (2.5),

sup{|g(u, p)| = |Ee™|: ju| = 1,p) <1
and by (2.5)~(2.8)

(2.24) (sup)lfl(u, p)(A+ Ju]) 7 < oo.
u,p

By algebra

fo/fr = (m; — f)/A-f)= (1 +f+ - +fm_1)(m1 = fu) + f"fa/fy.
It follows that
225)  (fo/f)h=(+f+ - +fm ) (m, - f)*h + [Q,h,
where @, is a polynomial of f, f, and f,/f,. By (2.17) and (2.12)
(226) [+ f+ o+ ) (my — £)*B] (2, w)I{x = ¢} € L7,
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To bound ( f mQsz)v, we consider
(2.27) D2([mQuh) = QDR + Qu(D2fy) /fi + @s),

where @,, @, and @, are polynomials of D/h, j=0,1, Dif, 0<n<2,
0<j<2, j+nrn<3, and (D/f,)/f,, n=12, 0<j<2, n+j<3. Since
E|X]® < o0, by (2.10), (2.11), (2.21) and (2.24)

sup |(DJf,)/fil < oo foralln=1,2,0<j<2,n+j<3,
(u, 1)

so that by (2.18), (2.10) and (2.21)

sup |@,(u,p) <0, 0<n<3.
(u, 1)

By (2.19), (2.11) and (2.24)
sup{|D2A(u, p)| + 17 (u, 0)D2f(u, p): ] 2 1,1 < p <2} < oo.
By (2.20), (2.24) and Lemma 2

sup f_ll(IDfﬁ(u,#)l + 1f~(u, p)Dfy(u, p)I) du < co.

Therefore, by (2.27) and (2.23)
sup f_wwID.f( Qo) (u, p)l du < co.

By the inversion formula for Fourier transformations

(1 +2*)(f"Quh) (%, 1)

= (m)™" [ e {1+ D2)(£7Quh) (u, 1) d.
It follows that
sup (1 + x)("Qh) " (, b))

(x, p)
2.28) . oo . % R
( < (27) 1[( sup/ |f|’”du) sup |Q,h| + supf ID2( f"Q,h)| du]
B ™ (u, p) BT ®
< .
Hence, f "@,h € L* and by (2.25) and (2.26)

(( fo/f)*R) (2, p)I{x > ¢} € L*. O

PROOF oF THEOREM 2 By (2.10)
(Df")"(x, ) = P{Y; + -+ +¥, > x}I{x > 0},

(D’ ") (%, 1) = fwa{Yl + o +Y, >y} dyI{x > 0}.

It follows from (2.21) that there exists a function M(x) not depending on p such
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that M(x) = 0 for x < 0, M(x) is decreasing for x > 0, [*M(x) dx < oo and

(2.29) (Df ™) (%, u)l < M(x), Jj=1,2,1<n<m.
Since
(2-30) fof "=1fo+ (f, — ml)Df" = D*f + (Df — m,)Df",

Q+f+-+f™Ym, - f)f, is a polynomial of D/f?, j=1,2,1<n<m,
so that by (2.29) and the fact that M * M(x) < 2M(x/2)[*M(y) dy

/O sup{|((1+F+ - +f™ ) (m — f)f) (y,p):y 22,1 < p<2}de < 0.
Replace A by fo and take £ = 1 in (2.25) and (2.28), and we have by (2.22)

(2.31) “sup{|(#2/0) (3 p)l: y= 2,1 < p <2} dx < 0.
0

The proof is complete since (1.12) follows from (2.31), Lemma 1, (2.21), (2.14) and
(2.29). O

3. Proof of Theorem 3. We split the proof into several lemmas.

LEMMA 4. Let p(x) be the density function of X and define

(3.1) a=aql(x,n) = ¥ p*"(x - np)I{x < 0).

n=1
Suppose that p(x) is bounded by a directly Riemann-integrable function. Then

sup g(x, p) < oo.
(x, p)

ProoF. Let M > 0 be an upper bound for p(x) and ¥%_,P{k < S, + np <
k + 1} foralll < p < 2 and k. Theorem 1 ensures such an upper bound M < cc.
Given x < 0,

a(ew) =p(x- )+ % [ plx—y—u) dP(S, + nu <3}

n=1""®

sM+[sup ZP{ksSn+np<k+1}]Z sup p(x—y—np)

k n=1 kb k<y<k+1

SM[1+2§ sup p(y)]<oo. O

—o0 k<y<k+1

LEMMA 5. Let h and h, be two Borel functions on (— o, 0) X [1,2] such
that h(x, u) vanishes on (0, 00) X [1,2]. Suppose that Sup,, ,ylA(x, p)| < o0 and
[&21hy(y, w)| dy I{x > 0} € L*. Then

h*h(x,p)I{x >0} € L*.



732 C.-H. ZHANG

Proor. Clearly,

e e = [ B = 3w n)
< fxwlh(x =% B)h(, 1)l dy

< [sup (3, n)l]f |k (y, p)ldy € L*. O
(G x

LEMMA 6. If E|X|? < o, then
D, f, = fi(iug — q(0, p)) + gU,
D“f2 =fd - f2(I(O’ f") +hH+ U
and
Dp,f3 = £,4(0, u) + f,D§ — f2q(0, p) + fo + U,
where f,, g, U,, n > 0, and q are defined by (2.13) and (3.1).

Proor. By (2.1)-(2.3)

D,g = iug, Dg =g, f=8U and D, f, = &DU + UD,g,.

Since by (2.3)
it 0 A
DU=UD, ¥ n™' [ e™p*(x — nu)dx = Uliug — q(0, 1)),
n=1 -
we have
Dufl = fl(lué - Q(O, IJ')) + gU.
And the expressions for D, f, may be derived from
Dp,fn = D;:.Dfn—l = DD;:. fn—l‘ o

PROOF OF THEOREM 3. (i) Let us first prove that (1.11) holds. By (2.1)-(2.3)

(logU) (x,4) = ¥ n'p*"(x — np)I{x < 0}

n=1
<q(x,p) <M< oo
and

(o8 Y") () < M{ [ (ogY (]

o0 n—1
sM(Zj-lp{s,+jso}) < .
J=1 )
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By (2.4)
(U-1)(x,p) < X (n) H(oglU)")**(x, )
n=1

< MET(0,1) < =.
It follows from (2.1) that f =g + g(U — 1) — (U — 1) and

flx,p) = [p(x - )+ f_x (U-1)(x—y,p)p(y—n)dy|I{x 2 0}.
By Lemma 5, (3.2), (2.10) and (2.21)
(3.3) f,eL*, fEX"<=x,n>1.

Therefore, (1.11) is satisfied with k = 2 by Parseval’s identity and the uniform
boundedness of f(x, p).

(ii) Since by (2.10), (2.14) and Lemma 1 the Fourier transformation of
ER(x, ) — r(p) on the positive half-axis is f,?/( fym,) — fy/m,, we shall con-
sider ( fo/f,)D, f,, (fz/fl)ZD fi and D, f;. By (21), f, =gU and U, = DU =

L~ fy — Ug,). It follows from Lemma 6 that

(34) (f/f)D,fo=1F(g+1) + (n7" = g0, p))f/f, — v (f/f1) 8.

Since E|X|®> < « and U — 1 is the Fourier transformation of a nonnegative
integrable function,

sup |DZU(u, u)|
(u, p)

(3.2)

sup|D;U(0, )|
m

(3.5) sup 2Uj(0, 1)
n

sup2u”'( Df, — D(Ug,))(0, 1) < .

m
By (3.2), Lemma 5, (2.10), (2.21), (2.29) and (3.5)

(3.6) U-1€L(k0), k=12
Since g,U = g,(U — 1) + g,, by (3.5), (3.6) and Lemma 2
(3.7) glUeL(k0), k=1,2.

By (3.3) and Lemmas 4 and 5, (f,(§ + 1))'I{x > 0} € L*. Therefore, we have by
(3.4), Lemma 3 and (3.7)

(3.8) ((f/f1)D,f) (x, w)I{x 2 0) € L*.
For ( f,/f,)?D, f, we have by Lemma 6 and the definition of D,
(39)  (f/f)'Duf = fo§ — mi( fo/f)d — q(0, ) f,2/f, + ( f/f1)’8U.
Since gU =f + (U - 1),
(3.10) gUe L(k,0), k=1,2, by (3.3)and (3.6).
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It follows from Lemmas 4, 5, 3 and (3.10) that

(311)  (f,d — q(0, ) f2/f, + (f/)°8U ) (%, n)[{x = 0} € L*.
Let us use the assumption that E|X|* < c0. By Stone (1965)
(3.12) f° | ¥ P(S, + n < x} dx < oo,

%  n=1

which implies that
o0

(3.13) ID2G(u, p)| < 2[0 x| ¥ P(S, + n < x}dx < oo.
o &

n

By Lemmas 3, 4, 5, (3.3) and (3.13)
(3.14) ((f/f)4) (x, ) I{x = 0} € L*.
By (3.9), (3.11), (3.14) and (2.12)
(3.15) ((f/£)°Dufy) (x, p)I{x = 0} € L*.
Now let us consider D,m,. By Lemma 6
D,my = D, £,(0,p) = —q(0, p)my + U(0, ),
which implies that
(3.16) s1‘1‘p|D#m1(y)| < .

Since (m,(p))~! is bounded, by Lemma 1, (3.8), (3.15), (3.16), Theorem 2 and
(2.12)

(317) (D) (x,mI(x = 0) = (D,( £2/( fymy))) (x, p)I(x 2 0) € L*.
Finally, let us consider D, f;. Again by Lemma 6
D,Lfa = £,G(0, n) + f,DG — f3q(0, n) + f, + U.
Since
(Uy)(x, w)I{x > 0} = 0
and

(DG) (x,p) = i P(S, + np < x}I{x <0},

n=1

we have by (3.3) and Lemmas 5 and 4

(3.18) (D,( fo/my)) (%, p)I{x = 0} € L*.

Let h, = I{x > 0}. It follows from (2.14), (2.10), (3.17) and (3.18) that
(319) (D,[((ER - r)he)"]) ko = (D £2/( fim,) = fy/m,)) by € L*.
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Let h,(x) = x2exp[—|x|] and A, be the right-hand side of (3.19). Then
(hehy)"= @7)(D[((ER ~ r)ho)])# ((hohn)")
= (27)D,[((ER = r)h,)" *(hoh,)"]
= D,[((ER - r)hohy)"].
Hence, by Lebesgue’s dominated convergence theorem
(ER = r)ho = (1/h,)((D,) " '[(hhy)])”
= (l/hl)(D#)_l(h2hl) (exchange integral D! and A)
= (D;t)_lh2
and the proof is complete by (3.19). O

ProoF oF ProrosiTION 1. By (2.1)-(23) f,=gU and f, =gU + pU,.

Since fl(O’ ﬂ) = EY(P‘)’ fz(os I“') = EY("")2/21 gl(O’ ﬂ) =pu and gZ(O’ P‘) =
(EX? + p%)/2,

r(p) = @n) (o> + u?) = 3 nE(S, + nw)

n=1

It follows that
Dr(p) = (1 - o>/u%)/2 - gln-lpupr{s,, < —x)dx

=(1-o’/w%)/2+ iP{S,,+;LnSO}. O

n=1
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