The Annals of Probabulity
1989, Vol. 17, No. 2, 700-722

SHARP RATES FOR INCREMENTS OF RENEWAL PROCESSES

BY PAuL DEHEUVELS AND JOSEF STEINEBACH

Université Paris VI and Universitit Hannover

Let {N(t), t > 0} be the renewal process associated to an i.i.d. sequence
X\, X;, ... of nonnegative interarrival times having finite moment generating
function near the origin. In this article we give strong and weak limiting laws
for the maximal and minimal increments sup,.,.7_ g (N(t + K) — N(t))
and inf, _, . 7_p(N(t + K) — N(t)), where K = K is a function of T such
that 0 < K; < T.

1. Introduction. Let X), X,,... be a sequence of independent and identi-
cally distributed nonnegative random variables satisfying the assumptions

(A) p = E(X,) > 0;
B) P(X, = x) <1 for all x;
(C) s, = sup{s: ¢(s) = E(exp(sX;)) < o0} > 0.

Let §,=0, S,=X,+...+X, for n>1, and consider the corresponding
renewal process {N(t), t > 0} defined by

/

(1.1) N(t) =max{n>0:S,<t} = -1+min{rn>0:8,>¢t} fort<DO.

The purpose of this article is to study the limiting behavior of the increments
of {N(t), t > 0}. Throughout the sequel, we will consider a function {K;}7 .,
such that 0 < K7 < T for all T > 0 and define A} = A*(T, K,), where

A*(T, h) = Osflsll;_h(N(t + h) — N(2))

and

A=(T,h) = Ostigg‘—h(N(t + h) — N(¢)).

Several results are available concerning the limiting behavior of A*(T, K;)
under various assumptions on K;. Retka (1982) and Steinebach (1984, 1986)
discuss strong laws for a general K, while Bacro, Deheuvels and Steinebach
(1987) consider the “Erdos—Rényi case” where K, = C log T for some C > 0.

In the following, we will show by a duality between events that it is possible
to deduce the limiting behavior of A% from the knowledge of the corresponding
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INCREMENTS OF RENEWAL PROCESSES 701

limiting behavior of the extremal increments of partial sums

Ur =U*(n,b,) = OSﬁaf—bn(S’””" ~S;)

and

U, = U_(n’bn) = Il?nln (Sk+b Sk)’
for suitable choices of 0 < b, < n.

Roughly speaking, our argument says that, for T = S,, each time that U *
exceeds (resp. becomes smaller than) K, then AT becomes smaller than (resp.
exceeds) b,.

In the case where K (loglogT)?/log®T — oo, the results we seek can be
deduced from the limiting behavior of the increments of a Wiener process by
using the new strong invariance principle due to Mason and van Zwet (1987) [see
also Csorgd, Horvath and Steinebach (1987)].

In the range where K, = O(log T') and log T = O(K ;) as T — oo, our results
coincide with those of Bacro, Deheuvels and Steinebach (1987), which we will
only cite for completeness.

From there, we see that the main situation uncovered by invariance principles
or by the results of Bacro, Deheuvels and Steinebach (1987), corresponds to the
case where

(a) K;/logT - 0 asT - o0
and
(b) K;/10gPT - 0 asT — oo for some p > 1.

We will treat this case by our duality argument, used jointly with the results
of Deheuvels and Steinebach (1987). It will become clear in the sequel that the
methods of our proofs can be used to cover the case where K, satisfies more
general assumptions than (a) and (b), given the corresponding results for incre-
ments of partial sums.

The rest of this article is organized as follows. In Section 2, we consider the
“large-increment case” corresponding namely to K (loglogT)%/log®T — o,
which we treat by invariance principles. In Section 3, we establish asymptotic
expansions related to the moment generating function ¢(-). In Section 4, we
present our theorems for “medium-size increments,” corresponding to (a) and
(b). Finally, Section 5 contains the “Erdis—Rényi case,” where K = O(log T').
We conclude the article in Section 6, where we investigate how our results extend
to “generalized renewal processes” obtained by relaxing the nonnegativity
assumption on the X,’s.

2. Large increments. We will use throughout the notation ¢2 = Var(X,).
Notice that the assumptions (B) and (C) jointly imply that 0 < 62 < c0. The
main results of this section are captured in Theorems 1 and 2 below.
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THEOREM 1. Assume that {K;}; ., satisfies 0 < K; < T, K;/T - 0 and
K, (loglog T)?/10g®T - « as T — 0. Then

(2108 (T/K7)"
T—w K}/%op"%?loglog(T/K)

(2.1) x (8% — 'K, F op~¥2(2K, log (T/K.))"*)

1
=3 in probability.

THEOREM 2. Assume that {K;};., satisfies 0<K;<T, K;/T -0,
K, 100, Kp(loglog T)?/log® T — oo and (loglog(T/Ky))/loglogT - 1 as T —
00. Assume further that K, has a continuous first derivative K such that

(2.2) K7/K7z=O((T1ogT)™") asT - co.
Then
meup (2log(T/K7))"”
T K¥%on"%%loglog(T/Ky)
(2.3) x (0% — 'Ky F op~¥%(2K, log(T/K,))"’)
3
= 5 a.s
and
o+ (2log(T/Kr))
T-w K/%op=3?loglog(T/Kr)
(2.4) x (A% — p" Ky F op~¥2(2K, log(T/K7))"*}
1
= E a.s.

Proor. The proof of both theorems relies on the result [see Mason and van
Zwet (1987) and Csorg6, Horvath and Steinebach (1987)] that there exists a
probability space on which sits a Wiener process {W(¢), ¢t > 0}, jointly with a
sequence identical in distribution with {X,, n > 1} (which we will assume,
without loss of generality, to coincide with {X,,, n > 1}), such that

(2.5) N(t) =p %t +ou 32W(¢t) + O(logt) as.ast— oo.
By (2.5) and the observation that our assumptions imply that
log T = o{ K}/*(loglog(T/K))(log(T/K7)) ™ /*} asT - oo,

we see that in (2.1), (2.3) and (2.4) we may replace A% — u 'K, by
top~*?supy ., o7k, (W(t + K1) — W(2)). The conclusion follows by applying
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the results of Révész (1982) and Ortega and Wschebor (1984), jointly with
Theorem 1.5.5 in Csérg6 and Révész (1981). We omit the details since this part of
the proof is identical to the proof of Theorems 3 and 4 in Deheuvels and
Steinebach (1987), corresponding to increments of partial sums. O

REMARK 1. Assume that 0 < L, < T satisfies L; — K; = O(logT) as T —
co. Then, by (2.5), it can be seen that (2.3) and (2.4) remain valid with A*(T, L)
replacing A7 = A*(T, K;). This enables us to relax partly the technical regular-
ity conditions on K, used in Theorem 2 through the use of an auxiliary
function. It is naturally possible to deduce from (2.5) and the corresponding
characterizations of the upper and lower classes for the increments of Wiener
processes similar results for other choices of K, [see, e.g., Csorgé and Révész
(1981), Theorem 1.2.1, and Csaki and Révész (1979)]. Such evaluations are
straightforward and will not be discussed here. We will limit ourselves to the
following result whose proof follows directly from (2.5) and the results of Csorgd
and Révész (1979).

THEOREM 3. Assume that {Kp)p ., satisfies 0 < Kp < T, Kp1, Kg/T |,
K;/logT — oo and (log(T/Kr))/loglog T — o, as T 1 0. Then

(2.6) Tll_)n:o (8% - [.L_lKT}/{OI.L_3/2(2KT log(T/KT))1/2} =+1 a.s.

REMARK 2. If, in Theorem 2, we replace the assumption that
K (loglog T)?/log®T — «0 by Ky (loglogT)?/log®T = O(1) as T — oo, the
same arguments as above show that

27) At — 'K, F o~ Y%(2K; log(T/K7))"? = O(log T)

as.asT - 0.

The aim of making (2.7) precise is the main motivation for Sections 3 and 4 in
the sequel.

3. Expansions related to the moment generating function. In the fol-
lowing, we refer to Section 2 in Deheuvels, Devroye and Lynch (1986), Section 2
in Deheuvels and Steinebach (1987) and Section 1 in Bacro, Deheuvels and
Steinebach (1987), where additional details are to be found.

Let X = X, satisfy conditions (A)—(C) of Section 1. Set ¢(s) = E(e*X) and
let s, = sup{s: ¢(s) < o}. Clearly, ¢(-) is increasing and infinitely differen-
tiable on (— o0, s,). Introduce the following notation. Set m(s) = ¢'(s)/¢(s),
and observe, using (B), that m(-) is increasing and such that m(0) = p. Define

0<b= lim m(s) <p<a= limm(s) < oo,
s|—o sTsg

(3-1) /b b0, BO={1/a if a < oo,

A0={oo itbh=0, 0 ifa=o.
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It can be verified that 0 < B, < 1/u < Ay < 0, and that, for all B, < § < A,,
the equation in s: §m(s) = 1 has a unique solution § = §(8). Moreover, §(-) is
decreasing on (B,, A,) and satisfies

(3.2) 0li¢n1;0§(0) =85, &(1/p)=0 and 0liTIf410§(0) = —oo0.
For a fixed 8 € (B,, A,), the function s — 6 log ¢(s) of s € (— o0, So) has first

derivative 1 — #m(s) and strictly negative second derivative. Thus, it has a
unique maximum on (— 0, §,), reached for s = §(8), that is,

(3.3) ['(8) = sup{s —Ologo(s)} = 3(6) — 8log ¢(5(8)).

The function I'(-) is differentiable on (B,, A,) and satisfies
(3.4) I'(6) = —log¢(3(6)) and T(6) — 6T'(8) = 5(9).

I'(-) decreases on (B, 1/p] and increases on [1/p, A ). Moreover, I'(1 /p) = 0,
and I'(0) >0 for all B, <#(+#1/pn) <A, In addition [see, e:g., Bacro,
Deheuvels and Steinebach (1987)], if ¢, and c, are defined by

(35) ¢, = 01?20(1/“0)) and ¢, = 01iln§0(1/1‘(0)),
then
—a/logP(X=a) ifa=esssupX < ooand P(X =a) >0,
co=1{a/{asy—logé(s,)} ifa <esssupX = o0and0 < s, < oo,
(3.6) 1/s, otherwise (with the notation 1/00 = 0),

o = { —b/log P(X =b) if b=essinfX >0and P(X=5) >0,
' 0 otherwise.

We have the following lemma.

LEMMA 1. Forany ¢, < C < oo, there exist a unique A = A(C) € (1/p, A,)
and a unique s** < 0, solutions of the equations

(3.7) 1/C=sup{s — Alog¢(s)} = s** — Alog 8(s**).

s<0

Likewise, for any c, < C < oo, there exist a unique B = B(C) € (B,,1/p)
and a unique s* > 0, solutions of the equations

(3.8) 1/C = sup{s — Blog¢(s)} = s* — Blog ¢(s*).

s>0

Observe that I'(A(C)) = I'(B(C)) = 1/C, and that s* = §(B(C)) and s** =
8(A(C)). It follows from Lemma 1, that for all 7 > 0 sufficiently small [i.e., such
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that 1/7 > max(c,, ¢,)], the equation

1
T= sup{s - (Y + " 10g¢(8)}
(3.9) ) 1 1
- l‘(v +—|=35(y) - |y + = |log 6(3(v)),
K M

where we have used the notation §(y) = §(y + 1/p), has two solutions in y
which will be denoted by y,” < 0 < v,.

Let M, = E((X — p)") (resp. «,) stand for the rth centered moment (resp.
cumulant) of X, with, in particular, M, = 0, M, = 62 and «, = p. Our assump-
tions imply the existence of M, and «, for all r =1,2,..., together with the
expansions when s — 0,

1 1
log ¢(s) = Kk;s + 2—'x2s2 + 3—'x3s3 + .-
(3.10) ' '

1 1 1 .
=ps + 50232 +s 38% + E(M“ —30%)st+ .-

Noting that 5(y) is the solution of (d/ds)log ¢(s) = (y + p~!)~, straightfor-
ward computations show that

(3.11) 5(v) = —p% %y — §p%o " (Map — 20%)y2 + O(¥®) asy - 0.

Likewise, we see that 5(y,*) is the solution of s — ((d/ds)log ¢(s)) log ¢(s) =
7. It follows that

§(y,i) =7F {27#/02}1/2
- {27]1./62}((2M3[.L — 30*)/(6u0?)) + O(7%/%) as 10,
which, jointly with (3.11), implies in turn that
vt = & (2r0t/u0)
- {2702/;.43}(1.4(M3u — 30%)/(66%)) + O(r32) as 7-0.

Consider now a function {K;}r ., satisfying 0 < K, < T, jointly with as-
sumptions (a) and (b) of Section 1, which we repeat for convenience:

(3.12)

(3.13)

(@) Kp/logT —» 0 as T — oo;
(b) K;/logPT — 0as T — oo for some p > 1.

Let A > 0 be an arbitrary but fixed constant. By Lemma 1, there exists a
T\ < o such that T > T, implies the existence for any |A| < A of a unique
positive solution a7 (A) [resp. negative solution az(A)] of the equation in v,

1
Y+ -
K

1
In
Let af= a#(0). We will make use of the following lemma.

(3.14) K7'log(TK;!log*T) = sup {s - (y + —)log ¢(s)} =T
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LEMMA 2. Let A > 0 be fixed, and let aF (M), af(v) and af = af(0) be as
in (3.14) for \| < A, |v| < A and T > T,. Then, as T — x, we hace uniformly
over |A\| < A and |v| < A the asymptotic expansions

Kraf = iau‘3/2{2K;T log(T/K;)}"?

(3.15)
—3(1+ 0(1))o™ % % Myp — 30*)log(T/K)
and
loglog T
@i (\) ~ af (v) = (L+ o)A = #) o
(3.16)

op~%%loglog T
(2K logT)V?"

+(1+0(1))(A—»)

Proor. (3.15) follows from (3.13) and the observation that af = v,* for the
special choice of 7 given by 7 = K7' log(T/Ky). This, in turn, implies that
aj ~ +op 32K;'/%2log T)'/? and proves the second equality in (3.16). A
similar argument shows that, uniformly over |0| < A, a7(0) ~ af as T > .

Next, by (3.14), T(a#(8) + 1/p) = K7! log(TK7" log °T). By (3.4),
I"(y + 1/pn) = —log ¢(5(y)), so that the mean value theorem implies that, for
some 0 < p < 1,

(3.17) r(a;(u) + i +h — hlog ¢(3(az(v) + ph)).

_l" + 1
= (af(ll)+ "';

The fact that af(v) ~ af(A) ~ af implies that, in (3.17), the choice of A
given by A = af(A) — af(») satisfies & = o(af) as T — o. Since by (a) and (b)
and the second equality in (3.16) af — 0, by (3.11), §(af(v) + ph) =
5((1 + o(1))af) ~ —p’0~2%af as T — oo. This, jointly with (3.10), implies in
turn that, for the above choice of A,

(3.18)  log¢(3(af(») + ph)) = —(1 + 0(1))p% 2} asT - co.
It follows from (3.14), (3.17) and (3.18) that

e+

1)
- I‘(a%(u) + ;) =(A—v)K;'loglog T

~(af(X) —afF(»))pYo %af asT - oo,
which, in view of (3.15), completes the proof of (3.16). O

In the sequel, R > 0 will denote a fixed constant, the value of which will be
precised later on. We will define two integer sequences {b;(\)} and {b,(\)} by

1
(3.19) br(A) = [KT(aTi()\) + ;)] forT=Rn,n>1+T,/R,and A\| <A,

where here and in the sequel, [u] < u < [«] + 1 denotes the integer part of u.
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Note that (a), (b) and Lemma 2 jointly imply that b, = b*(A) ~ K rRn/ 1t 88
n — o0, and that we have

(i) b,/logn > © asn— «©
and

(ii) b,/log?n - 0 asn — o forsome p > 1.

LEMMA 3. Let A| < A be fixed and assume that {K;)r., satisfies,
addition to (a) and (b),

(c) K;/log T is nondecreasing in the upper tail,
(d) K1 has a continuous first derivative K1 such that

(3.20) Ki/Kp=0((TlogT)™") asT > .

Let b, = b (M) be as in (3.19). Then {~b,,} is nondecreasing in the upper tail
and there exists a real-valued sequence {b,} such that

(iii) b,— b,=0(b,/logn) asn - o;

(iv) by — b, = 0(b,/(nlogn)) asn— oo.

PROOF. Observe that (iii) and (iv) coincide with conditions (i) and (ii) in
Theorem 2, page 382, in Deheuvels and Steinebach (1987) (see, e.g., Theorem A
in the sequel).

We will show that (iii) and (iv) are satisfied with the ch01ce of b given by

b, = k(Rn), where k(T) = Kp(af(X) + 1/p). Since |b, — b,| < 1 by (3 19), (iii)
is a straightforward consequence of (i), and we need only prove that, as T — o,
(3.21) 0<k(T)/k(T)=0((TlogT)").

Here, we have used the fact that our choice of 5 ensures that

(Buss = 8) /8, ~ Yow(B,1/B,) = [ (R (0)/R(1)) at.

For the proof of (3.21), we see that joint use of (3.14) and (b) yields

d d
—7 (K7 log(TK7" log* T)) = 'd'TF( £0) + %)
= (1+ o())(TK7) ™ = (1 + 0(1))(log T) K1/t

which by (3.20) is O(TK)™!). Moreover, by (3.4), (3. 10), (3.11) and (3.15),
d 1
a7 [57 00 + 2] = (g 8(5(a£ 1)) g0 ()

~ +o W2(2K;! log T )"* Ta,;(x).
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Hence
d
ﬁa%(?\) = O(T YKy logT) "7,

and by (a)-(d),

d
K'(T)/k(T) = Kr/Kr + (1 + o())n—rar(A)
=0((TlogT)™") asT > oo,

which proves the right-hand side of (3.21). In addition, (c) implies that, in the
upper tail, K;/K; > (T log T)~ ™. It follows that k'(T)/k(T) ~ K;/K; > 0 as
desired. This proves the second half of (3.21), jointly with the fact that k(T)?,
which in turn implies that b, = [k(Rn)] is nondecreasing in the upper tail. The
proof of Lemma 3 is now complete. O .

Consider now an arbitrary integer sequence {b,}, which will be assumed in the
sequel to satisfy (i) and (ii), that is,

(1) b,/logn - w0 asn — oo;

(ii) b,/log?n - 0 asn — oo for some p > 1.

By the same arguments as used in (3.14) [see Deheuvels and Steinebach
(1987), (2.4), page 372], it can be shown that, if A > 0 is any fixed constant, there

exists an n, such that n > n, implies the existence for any [A\| < A of a unique
positive solution §; () [resp. negative solution 8, (A)] of the equation in §,

-1

b, 'log (nb; 'log*n) = sup {s — log ¢(3)}

1
8+ —
I

(3.22)

1\ 7! 1
=|6+—-| Irl6+—].
B B

Assume, from now on, that b, = bF()A), and define accordingly aZ(A) by
af(A) = 8,F(N). Because of the close relationship between (3.14) and (3.22), it
may be expected that af(A) — az,(A) should be small. This is formulated
precisely in the following lemma.

LEMMA 4. Let |\| < A be fixed, and let af(\) and af(\) be defined via
(3.3), (3.14), (3.19) and (3.22). Then
a;f(A) = afF(A) = =(1 + o(1))(log(R/p))(210g T) ~'a}

(3.23)
asT = Rn - .
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Proor. Throughout the proof, we use the notation T = Rn. By (3.19), (a)
and (b), we have, as T — oo,

b, 'log(nb,; 'log*n) = (K log (TK;! log"T)}

(3.24)
X

. 17! log (R/p)
aT—()\) + ;) (1 - (1 + O(l))—l;gT—)

Now define » by the equation
1 -1
(3.25) b, 'log(nb; 'log*n) = {K7! log(TK ;! log"T)}(aTi(v) + ;) .
Recall by (3.14) that

1
K7'log(TK;!log’ T) = I‘(a%(v) + .

Thus, we see from (3.22) and (3.25) that af(r) = aX(MA). By (3.16), (a)
and (b),

(a%(n o] - (am) =

so that a simple expansion in (3.25) yields
b, 'log(nb;'logn) = {K7" log(TK7" log* T)

-1 -1

1+o|(r—A)

loglog T
logT )’

-1

1
+(»r = A\)K7! loglogT}(aT’—’(v) + "

(3.26) 1yt
= {K7' log(TK;! log"T)}(a;—’()\) + ;)
X[1+ (1+0(1))(r—A) lolgolgoiT

A comparison of (3.24) and (3.26) shows that (v — A) ~ (—log(R/p))/loglog T,
so that, using again (3.16), we have, as T — oo,
a;(A) - ar(X) = af(v) — af(A)
loglog T —log(R/u)
a% = a%’
2log T 2log T

We now have in our hands all the technical tools necessary for the proofs of
our main theorems which may now be presented.

~(r=2)

assought. O

4. Medium-size increments. In the sequel, we shall assume at times that
assumptions (a)-(d) of Sections 1-3 hold. We repeat these assumptions for
convenience.

(a) K;/1o0gT - w0 as T - o;

(b) K;/log?T - 0 as T — o for some p > 1;
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(c) K;/logT is ultimately nondecreasing;
d) K;/K;=0O(TlogT) Y as T » co.

We shall denote by a; (resp. ar) the positive (resp. negative) solution of the
equation in v,

o K;'log(TK7') = sup {s - (y + l)logqs(s)}

=35(y) - (Y + — |log $(5(v)).

Note (see Section 3) that a7 exists for all T sufficiently large.
Our main results are listed in Theorems 4 and 5 below.

THEOREM 4. Assume that {K;}; ., satisfies 0 < Kp < T, K;/logT - oo,
and, forsomep >1, K;/log?T - 0as T - . Let aj beasin (41) and A%
be as in Section 1. Then

" -_l-(2log(T/KT))1/2
T KX %% loglog (T/Ky)

(42) {A% _#_IKT_KTaTlL}

1
=3 in probability.

THEOREM 5. Assume that {K;}; ., satisfies 0 < K; < T, K;/logT 1 0,
and, for somep > 1, K;/logP T — 0 as T — oo. Assume further that K has a
continuous first derivative K1 such that

(4.3) K;/Kr=0((T1ogT)™") asT - .
Let ai be as in (4.1) and A} be as in Section 1. Then
£ (2log(T/Kr))"* 3
44) 1 p 'K;— Krat) = = a.s.
(44 sy K1op~ % loglog(T/Ky) (A% - r~ Kraj} y @8

and

+ (2log(T/K )" 1
4, nf p 'Kr— Kpai} == a.s.
(4.5) hnlloo K1/ %op=32 loglog(T/K ) (aF - r - Kraf} g *°

REMARK 3. Let &7 = afX;, where X, = [K[T]], and set djf
p~ Y% + o F. Denote by p(a) = inf {d(s)e™**}, with ¢(s) = E(exp(— (X, —
1)s/0)) = ¢(—s/0)e*/°. Routine computations show that s7; (resp. ;) is
the unique positive (resp. negative) solution of the system of equations in .=,

1/2 M
(46)  pr (‘;_d) =TW, d=pWV+o, A=Ay
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Observe that (4.6) coincides with (viii) in Theorem D of Steinebach (1986),
page 549, so that with our notation, the above-mentioned Theorem D can be
shown to be equivalent to

(4.7) Af —p Ky — Kpat =o(K¥?) as.asT > o.

It is clear that (4.4) and (4.5) improve upon (4.7) by replacing the o(K?)
term by O(K1/*(log T') ' loglog T'). Moreover, our results cover also the case of
Ar.

It is noteworthy that some regularity assumptions on K, are necessary in the
proofs. In the above-mentioned Theorem D of Steinebach (1986), it is assumed
that K;/T |, K;/logT 10 and K;/logPT — 0 as T — 0. It is obvious that
these conditions are implied by those of Theorem 5 [in particular, (4.3) =
K /T | ], which are therefore slightly more restrictive.

Observe also that, in the intersections of the ranges covered by Theorems 2
and 5, the conditions imposed on K, in each of these theorems are equivalent
[with the only exception of K (loglog T')?/log®T — o].

The question whether these conditions [and in particular (2.2) and (4.3)] may
be relaxed is, to our best knowledge, open, even in the case of Wiener processes.
It is possible though [see, e.g., Deheuvels and Steinebach (1987), Remark 7] to
prove that the result holds under slightly weaker but more cumbersome assump-
tions, and we limit ourselves to the relatively simple case discussed above, for the
sake of conciseness.

REMARK 4. Theorems 4 and 5 are in agreement with Theorems 1 and 2 in
the range where K (loglog T)?/1og®T — o and K/log? T — 0 as T — oo, for
some fixed p > 3. In general, (3.15) implies that, for Myu — 30* # 0 [note here
that log(T/K;) ~ logT],

(21og T)"?
KX %p=32loglog T

(48) log?2T
= _ 1/23-15-3,-1/2( M. — 304
(1 +0(1))223 %% ( st — 30 )qu/z loglog T

(KraiF on=%*(2K, log(T/K1))"*}

as T — .
Thus, we see that, whenever My — 30* # 0, the results of Theorems 1 and 2
are not valid if
(4.9) K, (loglog T )?/10g®*T » o as T — .

On the other hand, if Myp — 30* = 0, this may still be the case. An interesting
example is given by the inverse Gaussian distribution. In standard form corre-
sponding to expectation p and standard deviation ¢ = p%/2, this distribution has
density [see, e.g., Johnson and Kotz (1970), Chapter 15]

(410)  f(x) = x732(2n) P exp( - (x — p)’/(2u%)) forx >0,
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and cumulant generating function
(4.11) log ¢(s) = p'l(l -(1- 2,u28)1/2) for s < s, =1/(2u?).

Straightforward computations show that in this case T'(y + 1/u) = 1y2 so
that we have exactly (recall that here op=3/2 = 1)

(4.12) ai = +(2K7! log(T/K )"

In view of (4.12) and Theorems 4 and 5, we see that, whenever X, X,
have a common inverse Gaussian distribution, the results of Theorems 1 and 2
can be extended to the case where K;/logT — x a T — . It is obvious that
['(y + 1/p) = ;v characterizes the inverse Gaussian distribution given in (4.10).
In general, the same arguments as used in Section 2 show that if a distribution
has the same cumulants as the inverse Gaussian up to order r, then the leading
term in (4.8) will be (for r > 2) K77~ V/%(log T )"~ V/*(loglog T')~*. In this case,
the results of Theorems 1 and 2 will fail to be true in the range K/log T — xc,
Kp(log T)~ "~ b/=U(loglog T )2/~ 1 » .

An application of this remark for all » = 2,3,... proves the following charac-
terization.

CoROLLARY 1. Among all distributions of nonnegative random cariables
having a moment generating function finite in a neighborhood of 0, the incerse
Gaussian distributions are characterized by the fact that (2.1) holds for all
functions {Kr}r ., such that 0< K;<T, K;/T - 0 and K;/logT - x as
T - x.

Similar characterizations may be obtained via Theorem 2. We omit the
details. Note here that the inverse Gaussian plays the same role for renewal
processes as does the Gaussian distribution for partial sums. Further results
concerning this distribution will be discussed in Section 5.

In the remainder of this section, we present the proofs of Theorems 4 and 5.
First, we introduce some notation. Consider A7 = A=(T, K;) and US~ =
U =(n, b,) as defined in the Introduction, and define the events

\

Er(\) = {A; > K,

Ly (L,
4+ ===+
o u) (2

op~ 322K logT)_l/z loglogT}
and
B0 = 8z >k ( —(1 +>\\) + 1)}
= > a —_ —_ ,
T ( T T\ T‘2 1

where a7(0) is defined as in (3.14).
The motivation for E;(A) is that (4.2) holds (for A7) iff, for any fixed ¢ > 0,

(4.13) lim P(Er(e)) =1 and lim P(Er(~¢)) = 0.
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Likewise, (4.5) holds (for A7) iff, for any ¢ > 0,
(4.14) P(E;(e)io.) =1 and P(Ep(—¢)io0.) =0,
where {E;(¢) i.0.} denotes the event that, for any T; > 0, there exists a T, > T}
such that Er(e) holds.

Note that similar definitions and arguments can be used for A7 and (4.4). In
the sequel, we will limit ourselves to the proof that A7 satisfies (4.2) [resp. (4.5)]
under the hypotheses of Theorem 4 (resp. Theorem 5). The proof of the other
statements in our theorems is identical by straightforward formal replacements
and will be therefore omitted. In the sequel, we shall consider only A7.

Because of the involved form of E,(e), it is convenient to replace it by Er(¢).
The justification for this replacement is given in the following lemma.

LEMMA 5. (4.2) holds if and only if, for any € > 0,

(4.15) Jlim P(E;(e)) =1 and Jim P(E;(-¢)) =o.
— 00 — 00
Likewise, (4.5) holds if and only if, for any ¢ > 0,
(4.16) P(E;(e)i.0.)=1 and P(Ej(—¢)i.0.) =0.

ProoF. Making use of (3.16) with » = 0and A = 1 + 2¢,0r A = § + ¢/2, we
see that, for all T large enough and & > 0 fixed, we have

(4.17) E;(e/2) c E7(e) C Ef(2¢) and Er(—2¢) € E7(—¢) C Ep(—¢/2).
The proof of Lemma 5 follows from (4.17), jointly with (4.13) and (4.14). O

Note that A7 is integer, and hence that E7()) coincides with the event

1 1
(4.18) EL(A) = {A; > [KT(a;(§ ; x) + ;)]}
In general, if 0 < T, < T < T,, we always have
(4.19) E"(Ty,K;,\) € Erz(A) c E"(Ty, K, M),
where

(420)  E"(u, Kp,\) = {A‘(u,KT) > [KT(a;(% + x) + %)]}

Recall that A~(u, h) = inf,_,_,_,{N(t + h) — N(t)} for 0 < A < u. In or-
der to avoid restrictions on the validity of (4.19) and (4.20), we define A~ (u, k)
for 0 < u < h by A™(u, h) = N(h) — N(0).

We will now concentrate on «(T, A) = Kr(az(3 + A) + 1/p).

LEMMA 6. Under the assumptions of Theorem 5, if 0 < R, R’, R” < o0 and
A, N, N are fixed, then, as T — oo,
k(R"T,\) — k(R'T,\) = O(K/logT),
(4.21) k(RT,\") — k(RT,N) = (1 + o(1))opn=32(N" = \")
x(2K7  logT) ™" loglog T.
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Proor. Set k(T) = (T, M). By (3.21), k(-) is increasing in the upper tail
and such that 2'(T')/k(T) = O(T log T) ') as T — oo. It follows that (k(R"'T) —
R(R'T))/k(T) = 01/logT) as T — oo. Since (3.15) implies that k(T) ~ p 'K,
as T — oo, we have evidently k(R"T) — k(R'T)= O(Ky/logT) as T — oo,
which proves the first statement in (4.21). The second statement follows from
(3.16), used jointly with (3.15) and the observation that Kz ~ Ky as T — o0. O

We are now ready for the application of our duality argument. Define
b, = b (A, R) by

(4.22) b, = [KT(a;(% +>\) + i)] +1=[k(T,A\)] +1 for T = Rn.

LEMMA 7. Let b, = b (A, R) be as in (4.22). Then (4.5) holds if:
(1°) For some R = R’ < p, we have, for any A = ¢ > 0,

(4.23) P(U*(n,b,) < Kg,i.0.)=1.
(2°) For some R = R” > p, we have, forany A = —¢ <0,
(4.24) P(U*(n,b,) < Kg,i.0.)=0.

Proor. We will make use of the fact that, for u > K and T > 0,
{U*(N(u) +1,m) < K;} c {A (u, K;) = m)}
c {U*(N(u), m) < K;}.

The proof of (4.25) is achieved in two steps. (1) Suppose that A~ (u, K;) < m.
Then N(v+ K;) — N(v) <m for some 0 <v<u-—K;. Set N(s— )=
lim, ,N(s — ). Since N(s) is constant for Sy, x,) < 0 + K7 < 8 < Sy(er k)1
we have N(Sy,:k,)+1 —) — N(Snw+kp+1 — Kr —) < m, which implies that
Sn(o+Kpy+1 — SN+ kp+1-m > Kr and hence that U*(N(u) + 1, m) > K.
(2) Suppose now that U*(N(u), m) > K. Then S; , — S, > K, for some
0 <i< N(u) —m. Choose t such that S;+ K;<t+ K;<38S;,,. Then
N(t + K;) — N(t) < m — 1 and hence A~ (u, K;) < m. This suffices for (4.25).

By (4.16), (4.5) is equivalent to the fact that P(E;(A)i.0.) = 1 (resp. 0) for all
A =& > 0 (resp. < 0). Moreover, we have, by the law of large numbers,

(4.26) lim u7!N(u) = 1/p as.

(4.25)

In view of (4.19), for T, < T, we have E"(T,, Ky, \) D Ef(\). Taking in
(4.20) and (4.25) u =T, and m = [Kp(ar (3 + A) + 1/p)] + 1, it follows evi-
dently that {U*(N(T)), m) < K1} D Ez(\). This, jointly with (4.26) and (4.22)
taken with R = R” > p shows that

P(U*(n,b,) < Kg,i0.) =0 forallA <0

= P(E{(A)io0.) =0 forall A <O0.
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A similar argument can be used to show that (4.23) implies that P(E;())
i.0.) = 1 for all A = ¢ > 0. We omit the details. O

For the proof of Theorem 5, we will need the following theorem, due to
Deheuvels and Steinebach (1987), which we reformulate, using a different nota-
tion.

THEOREM A. Let {b,, n > 1} be a nondecreasing integer sequence such that
1<b,<n, b/logn - x and b,/log” n — 0 for some p > 1. Assume further
that there exists a real-valued sequence {b,, n > 1} such that

(iii) b,— b,=0(b,/logn) asn - x
and
(iv) b,., — b,=0(b,/(nlogn)) asn - x.
Let o, be defined as the unique negatice solution of the equation in 8,
v —1
(4.27) b, 'log(nb; ') = s1:p {s 8+ % — log qb(s)}.
Then, for U; = U"(n, b,),
(4.28) ]imsup(zl—ogn)i( - — b oz‘+l _1)=§ a.s
noo 0bY2loglogn| " S R 2
and
(4.29) ummfm—ogn)i(w —b e+ l\)_l) _ 2 s
n—-x oby/?loglogn| " e 2

Note that the formal change of X, X,,... into —X,, — X,,... in Theorem A
enables one to obtain similar result for U . This, in turn, will provide the results
needed for A7. In the sequel, we shall make use only of (4.29), noting that similar
arguments as those we use will yield the proof of (4.4) via (4.28).

LEMMA 8. Let A=¢ and R > 0 be fixed and set b, = [Kr(ap(3 + \) +
1/u)] + 1 for T = Rn. Then

(4.30) P(U (n,b,) < Kg,i.0.)=1o0r0,

according as € > 0 or e < 0.

Proor. First, we see that b, given as above fulfills the conditions of Theo-
rem A. This follows from Lemma 3 and our assumptions on K,. A direct
consequence is that (4.29) holds.

Let a,(A) and ar(\) be defined, respectively, by (3.22) and (3.14). Set
throughout T = Rn. By Lemmas 2 and 4, we see that (4.29) can be written
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equivalently as

lim inf (2logn)1/2 Ur-blar-(A 1\7!
(4.31) o ob?loglogn | " | @ ( )+;
1
=35 A as.(all A).
This result follows from (3.23) and (3.16) via the relations
(21log n)1/2 -1

1\t
“ )

- (a;(?\) + =

bn((a;(O) ‘2

ob/%loglogn

(2log T)"?

3/2171/2 — — = —
Uloglog.T ® KT/ (aT(A) aT(O)) - A’

as T = Rn - . .
Now set A = ; + & We see that (4.31) and (4.22) jointly imply that, for
T = Rn,

P(U*(n, b,) < b(Kz/b,)i.0.) = 1or0,

according as ¢ > 0 or ¢ < 0, thus proving (4.30). O

ProOF oF THEOREM 5. We may now collect the pieces of our puzzle. By
Lemma 7, for the proof of (4.5), it suffices to prove that, for some R = R’ < p,
P(U"(n, b,) < Kg, i.0) =1 for all A = ¢ > 0, and that, for some R = R” > y,
P(U*(n, b,) < Kg, i0)=0for all A = —¢ < 0. But this is precisely the state-
ment of Lemma 8. We have therefore proved (4.5). The proof of (4.4) is similar,
and the result follows. O

ProOF OF THEOREM 4. The proof is achieved by similar arguments as above
(we omit the details), based on the following theorem, due to Deheuvels and
Steinebach (1987), which we reformulate, using the notation of Theorem A. O

THEOREM B. Let {b,, n > 1} be an integer sequence such that1 < b, < n,
b,/logn —» o and, for some p>1, b,/log?n—0 as n — . Let a, be
defined as in (4.27). Then

(2log n)"? (

1
———— U - b|a; + -
o ob/%loglogn| " "(a”

N

) =3 in probability.

5. Erdos-Rényi and small-size increments. We start this section by
considering the case where K = Clog T for some 0 < C < 0. Let ¢, and ¢, be
as in (3.6). The following results have been obtained by Bacro, Deheuvels and
Steinebach (1987).



INCREMENTS OF RENEWAL PROCESSES 717

THEOREM C. For any ¢; < C < oo, let A € (1/p, Ay) and s** <0 be the
solutions of the equations

(5.1) 1/C = sup{s — Alog ¢(s)} = s** — Alog ¢(s**).

<0

Then, for K; = ClogT,

—log ¢(s**) 1
2 i ———— (A7 —AK;)| = 7 a.s.
(5.2) lerrlsgp( Toglog T (A7 r)| =5 as
and
. [ ~loge(s*) | 1
(5.3) thllgf('—lggl—og—T—(AT —AKT) = —E a.s.

THEOREM D. For any ¢, < C < o0, let B € (By,1/p) and s* > 0 be the
solutions of the equations

(5.4) 1/C = sup{s — Blog ¢(s)} = s* — Blog ¢(s*).

>0

Then, for K, = ClogT,

) —log(s*) 1
(5.5) h;fl_,sgp(l_og_lﬁ_(AT - BKT) = E a.s.
and

o —log (s*) , 1
(5.6) lﬁlgf(l_og_lﬁ—(AT - BKT) = — E a.s.

In the above theorems, the existence of B, s* and s** is justified by the
arguments of Section 2. A, and B, are as in (3.1). A comparison of Theorems C
and D with Theorem 5 motivates a reformulation of these results in a unified
way. This results in the following corollary.

COROLLARY 2. Assume that {K )., satisfies the assumptions of either of
the Theorems 5, C or D. Denote by C{ and {; (resp. C; and {7 ) the solutions
of the equations in y and ¢ (whenever such solutions exist) with {7 <0 < {1
and C; <0 < Cf,

(5.7) Kp'logT = sup{s - (y + —)logqb(s)} ={- log ().

1
n

1
Y+ —

N
Then

1
limsup(loglogT)’l(—{AjT: - KT(CTi + —)}1og¢(§,.i) + logKT)
(58) T— o0 12

3
=35 @S
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and

-

liminf(loglogT)”(—{A% - K,

c 1
i+_
T

}log ¢(§'TZ) + log K1
(5.9)

1
= — a.s.
2

PRoOF. Notice that Flog ¢({7*) > 0. Moreover, it is clear that (5.8) and (5.9)
coincide with (5.2) and (5.3) when K;= ClogT. On the other hand, when
K1/logT - « as T — o, we have by (3.10) and (3.12)

(5.10) logo(¢7) = F(1 + o(1))o w?2K72(210g T)"? asT - oc.

Let af(A) be as in (3.14). Obviously, C/# = af((log K;)/(loglog T')), so that
by (3.16) and using the fact that (log K;)/(loglog T) = O(1), we obtain

log $({7) ..
—loglogT KT(CT - aT) =

—log K,

(5.11) +0(l) asT - . O

loglog T

In view of (5.10) and (5.11), it is now clear that the statement of Theorem 5 is
equivalent to that of Corollary 2 in the range covered by this theorem.

REMARK 5. In view of Remark 1, page 375 of Deheuvels and Steinebach
(1987), it is straightforward that the liminf in (5.9) is also a limit in probability.
Moreover, by Remark 6, page 382 of the just cited article, the arguments used in
our proofs jointly with that of Bacro, Deheuvels and Steinebach (1987) extend
the validity of Theorems C, D and Corollary 2 to the case where K /log n — C,
assuming that {K;}; . , satisfies (a)-(d). We omit the details.

REMARK 6. We reconsider the case of the inverse Gaussian distribution
(4.10) for increments of the form K; = ClogT for 0 < C < «. By (4.11), we see
that Cf= + K7'/%(2log T')/? and log ¢({#) = T K;%2log T)/2. Thus, Corol-
lary 2, together with straightforward expansions, shows that (4.2), (4.4) and (4.5)
remain valid for such increments. This phenomenon is naturally explained by the
fact that, starting from a standard Wiener process {W(¢), ¢ > 0}, we may define
the nth partial sum S, of an i.i.d. sequence of inverse Gaussian random variables
by S, = inf{t > 0: at + bW(t) > nc}, for positive a, b and c. Therefore, the
renewal process associated to S, is always very close to the original process
at + bW(¢). An interesting problem would be to characterize all possible K,’s
for which (4.2), (4.4) and (4.5) hold in this case. This gives a motivation for the
study of A% for K; = o(logT) as T — .

REMARK 7. It is obvious that our duality argument can be extended to cover
the situation for which K, = o(log T), as long as one knows the corresponding
behavior of U *(n, b,) for sequences b, = o(log n) as n - oo. Unfortunately,
very few results are available at present on this problem. Recently, Mason (1989)
has achieved remarkable progress in this field, by obtaining conditions depending
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both on the moment generating function ¢ and the behavior of the sample
maximum, which ensure that U,* /d, — 1 ass. for a suitable sequence d,. As an
example of what may be achieved in this direction, we present, in the following
proposition, a simple consequence of his main theorem.

PROPOSITION 1. Assume, in addition to (A)-(C) that
(D) 0<w =essinfX < w"=esssup X < o0.

Then, for all {Ky}y . such that K; — oo and K;/logT - 0 as T — oo, we
have

(5.12) T]jm At/{Kp/wF} =1 a.s.

ProoF. Consider the case of Az = A™(T, K;). By (4.25), we have
{UT(N(T) +1,m) <Ky} c{A(T,K;) >2m} c {U*(N(T), m) < Kr}.

By (4.26), for T sufficiently large, [R,T] < N(T) < N(T) + 1 < [R,T], where
0 <R, <1/p< R, < oo are arbitrary (but fixed) constants. Hence, it is enough
to show that, forall 0 <e < 1,

P(U*(n,b,) < bw*(l —¢)io.) =0,
where n = [R\T], b, = [K;{w*(1 —¢)}] + 1, and
P(U*(n,b,) > bw*(1 +¢)io.) =0,

where n = [R,T], b, = [Kr{w™(1 + €)}].

The latter relations, however, are immediate by Mason’s (1989) theorem
which ensures that for all b, such that b, > 1 and b,/logn — 0 as n = oo, one
has

(5.13) lim U*(n,b,)/{bw*} =1 as. O

The case of A} can be treated likewise by an obvious modification.

Note that an alternative proof of Proposition 1 may be obtained through the
classical theory of runs [see, e.g., Deheuvels (1985)]. This follows from the fact
that the length of the largest run of successive observations among X,..., X,
which fall in the interval [w*™— ¢, w*] will with probability 1 always exceed
r log n for all n large enough (for any £ > 0 and some r > 0). By letting ¢ > 0 be

arbitrarily small, we obtain (5.13) for all b, = o(log n).

6. Extensions. It is very natural to extend the results of the preceding
sections to the case where the random variables X, X,,... are possibly negative
(note that assumptions (A)-(C) cover the case where P(X; = 0) > 0). The first
difficulty consists in finding the right definition for the renewal process, since S,
need not be nondecreasing any more. Following Heyde (1967), we consider
M, = max,_;_,S; and m, =min,, .S, for n=0,1,..., and define the two
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nondecreasing processes { N(¢), ¢ > 0} and {Ny(¢), ¢ > 0}, by

(6.1) N(¢) = max{n>0: M, <t} = —1 + min{n >0: S, > ¢}

and

(6.2) Ny(t) =max{n >0:S, <t} = -1+ min{n > 0: m, > t}.
Obviously, N,(f) < Ny(t) with equality when the X,’s are nonnegative. In the

following result, we give an upper bound for Ny(¢) — N(t).

THEOREM 6. Assume that (A)—(C) hold, jointly with
(E) s, = inf{s: ¢(s) = E(exp(sX,)) < 0} < 0.

In addition, assume that there exists an s, € (s,,0) such that ¢'(s,) = 0.
Then

(6.3) Th’_r}:o (logT)™' sup (Ny(t) — Ny(t)) = —1/logé(s,) a.s.

0<t<T

PROOF. Let V, = min ;. ,_pmax, . ; (R/j)S;,; — S;), where k =
[clogn]. Let ¢>0and 0 < a < lim, ,{p — m(s)}, where m(s) = ¢'(s)/(s),
be related via the equation

(6.4) exp(—1/c) = irslf {¢(s)e s},

Since m(-) is increasing on (s,, s,) and m(s,) = 0, the specific choice of a = p
is possible in (6.4). For this choice, ¢ = —1/log ¢(s,).

In general, Theorems 3 and 4 in Deheuvels and Devroye (1987) [see also
Theorem 2 in Csorgd and Steinebach (1981)], show that, for £ = [clog n],

(6.5) lim (clogn)™'V, = lim (clogn) 'W,=p—a as.,
n—oo n— oo

where W/;z = minlsisn—knﬁnlsjsk(siﬂ‘ - Si + (k —j)ll»).

In the first place, choose a = p + & for some small ¢ > 0 and observe that, as
€| 0, the corresponding c increases to —1/log ¢(s,). Moreover, (6.5) implies that,
for any c less than —1/log ¢(s,), Vn is ultimately negative with probability 1.
This, in turn, jointly with (4.26) and the fact that log(T/u) ~ log T as T — oo,
implies that

(6.6) li;ninf(lolc.g:T)"1 sup (Ny(¢) — N,(t)) = —1/log ¢(s,) as.
- 0<t<T

Next, we see that, if for some ¢ > 0, the event

logT
{o‘;‘?;‘T<N2(“ ~ () >~ T }
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occurs for an unbounded set of T’s, then we must have {W, <0 io.} for
k = [c¢’'log n], and for some ¢’ > —log ¢(s). But this is impossible with probabil-
ity 1 by (6.5). This, jointly with (6.6), suffices for (6.3). O

REMARK 8. A consequence of Theorem 6 is that, up to the rate of O(log T'),
we can replace N(¢) by Ny(t) in the interval [0, T'] without loss of generality and
conversely. Note that the most often encountered definitions [see, for instance,
Csorg6, Horvath and Steinebach (1987), (1.1), and Steinebach (1986), Section 1]
are N(t) = Ny(¢) and N(t) = N(¢t) + 1.

Since the invariance principles in Csérg6, Horvath and Steinebach (1987) and
Mason and van Zwet (1987) do not make any restriction concerning the nonnega-
tivity of the X’s, it follows that the validity of Theorems 1, 2 and 3 can be
extended to this case for N(¢) = Ny(¢) or N(t) = Ny(¢), under the assumptions
(A)—(C) and (E).

In view of the results of Steinebach (1986), which give the same centering
constants as in Theorems 4, 5, C and D, it appears as a likely conjecture that
these theorems remain valid under (A)—(C) and (E) without any sign condition.
However, it may be seen that the duality argument used in Section 4 [based
mainly on (4.25)] does not generalize itself easily for possibly negative r.v.’s. In
fact, one would need results concerning the limiting behavior of
(6.7) Ur=U*(n,b) =+ max (+(My,, —M,)),

O0<k<n-—b,

similar to those obtained for U *(n, b,) in Theorems A and B. Such results
would enable one to cover the case of N(-) [and likewise with m replacing M,
the case of Ny(-)]. It can be seen that (4.25) holds for N = N, and U™ replacing
U™*. Moreover, we have almost surely for large n the inequalities

(6.8) U-(n,b,) < U~ (n, b,) < U*(n, b,) < U*(n, b,).

Hence, the arguments we have used provide one-sided bounds based on (6.7),
(6.8) and the modified version of (4.25). In order to complete the extension of our
theorems to arbitraryX,’s, we need complete the description of U * by investi-
gating the corresponding inner bounds. If Theorems A and B, jointly with the
corresponding statements for b, = O(log n), hold with U,* replacing U,*, then
our proofs can be repeated verbatim to cover the general situation discussed
above. Since no result of this kind is yet available, we leave this point as an open
problem.

Even though further investigations are needed to treat generalized renewal
processes, our methods have the advantage of providing a simple analysis of the
behavior of A% as T — oo in the classical case. Such techniques have been
currently used in the past to obtain limit theorems for N(¢) knowing similar
results for S,.
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