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RECORDS IN A PARTIALLY ORDERED SET

BY CHARLES M. GOLDIE AND SIDNEY RESNICK!

University of Sussex and Cornell University

We consider independent identically distributed observations taking val-
ues in a general partially ordered set. Under no more than a necessary
measurability condition we develop a theory of record values analogous to
parts of the well-known theory of real records, and discuss its application to
many partially ordered topological spaces. In the particular case of R? under
a componentwise partial order, assuming the underlying distribution of the
observations to be in the domain of attraction of an extremal law, we give a
criterion for there to be infinitely many records.

1. Introduction. Let S be a set equipped with a strict partial order <,
that is, {(x, y): x <y} is a subset of S X S such that the properties of

antisymmetry: x<x fornox €S,
transitivity: ifx<yand y <z,thenx <z

hold in S. We shall set up a sequence of ii.d. (independent identically dis-
tributed) S-valued random elements X, X,, ... and say that

(1.1) X,isarecord iff X, < X,, k=1,...,n-1.

To motivate and inform what follows, consider the case of i.i.d. random
vectors X, = (X{V, X) in R The following notions are all plausible:

() X, is a “record” iff X > V221XV and X? > V721X,
(i) X, is a “record” iff X" > V221X and X? > V721X and at least
one of these inequalities is strict;
(ili) X, is a “record” iff XV > V221X or X@ > VIZ1X2;
(iv) X, is a “record” iff X, falls outside the convex hull of X,,..., X,_;;
(v) X, is a “record” iff | X,| > V?Z1|X,l,

where | - | in (v) denotes Euclidean (or supremum, or some other) norm. Defini-
tion (iii) may be the most natural from the statistical point of view while (iv)
perhaps has the most intrinsic mathematical depth. However, these two are not
reconcilable with (1.1) for any partial order on R?2, and we shall not deal with
them here. We shall, though, cover (i) and (ii) as part of our general framework,
and obtain some nice probabilistic structure which is absent from (iii) and (iv). A
fortiori, our results will apply to (v), but there much more is known because (v)
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RECORDS IN A PARTIALLY ORDERED SET 679

determines the “records” by the total order on the real-valued attribute | - |, and
most of the well-known theory of records of real i.i.d. observations carries over
[Deken (1976) and Goldie and Rogers (1984)]. In what follows we find analogues
of parts of the theory of real records in the setting of (1.1).

Some notation: It is standard [Birkhoff (1967), page 1] that < determines a
weak partial order < by

x<y iffx<yorx=y,

that < has the usual properties of reflexivity (x < x V x), antisymmetry (x < y,
y < x imply x = y) and transitivity (x <y, y <z imply x < z) and that <
determines < , with correct properties, in the obvious way. Thus it is indifferent
whether we start with < or <.

We adjoin to S two points — %0, > with the properties

- <x<ow, alxes,

and write S* := S U { — o, 20 }. We need to do this whether or not S already has
a greatest or least element. We use + o« as a “cemetery” state for the record-value
sequence, in case the sequence of records in S terminates, and we use —x as a
fictitious starting state, before the records in S begin. Observe that < and <
extend to S*.

Define intervals

(x,y)={z€8x<z<y}, [xy)={x}u(xy),

and so on for (x, y],[x, y].

Let % be a o-algebra of subsets of S. We form &*, a ¢-algebra of subsets of
S*, by adjoining to . the singletons { — s}, {sc} and their unions with elements
of &. Let u be a probability measure on (S, .¥). We extend it to (S*, ¥*) by
setting u{ — o0} := 0 = u{oo}. Let (2, &, P) be the product probability space
(T1S*,I1%,*,I1u,), where the products run over n € N, and (S}, %,*, u,,) are
copies of (S*, #*, u). The generic element of Q is w = (w;, wy, ...), and for each
n € N we let X,: @ - S* be the nth coordinate projection,

X, (0) = w, we Q.

Recall that the product o-algebra [1.%,* is the smallest that makes the coordi-
nate projections measurable. Thus the X, are (canonical) i.i.d. S*-valued random
elements, each with law p supported by S.

Define the graph of < as the set

G.={(x,y) €S XxS:x<y}.

We need just one assumption connecting the partial order to the measure
structure, namely that G _ is product-measurable:

(A) G.e¥SX L.

Hence each set {w: X,,(w) < X,(w)}, for m # n, is an event (element of 7).
Clearly, we need assumption (A) to be able to define records at all.
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The x-sections of G_, {y € S: x <y}, are the intervals (x, ©) C S, and the
y-sections the intervals (— o0, y) C S. All these are in % [Halmos (1950), Section
34, Theorem A]. So all sets {X,, < x},{X, > x}, for n €N, x € S, are events.

Next, Fubini’s theorem [in the form, e.g., in Halmos (1950), Section 35,
Theorem A] says that [glg_(x, ¥) du(x) = p(— o0, y) is measurable as a func-
tion of y. We let

S,={yeS:p(-0,y)<1};

then S, € &#. This set will perform the role of the support of p as a consequence
of the following result, which was independently proved by G. O’Brien and
E. Perkins, and by W. Vervaat and an anonymous referee.

PROPOSITION 1.1. Assume (A). Then u(S,) = 1.

PRoOF. Write C =S/ For x € C the set (—o0,x) is p-full so
p(C N (=00, x))= pu(C). Integrate:

J (€0 (o0, 2)) dun(x) = w2(C);

that is,
L1y < =) du(y) du(x) = ().
c’c

By Fubini and change of notation,

L1 < 5} di(y) du(z) = w(C).
cUc

The sum of the last two left-hand sides is at most p%(C). So p*(C) = 0. O

We thank W. Vervaat also for the following remark: (A) is more general than
measurability of G_ . For when G_ is measurable so is G_.= G_\(G_ NG,).
But for instance when S is a nonseparable metric space with its Borel o-algebra,
G .= O is measurable while G _ is not.

As we assume no more than (A) our results are of unrestricted generality. No
lattice assumptions are needed on the partial order, no topology on S.

In particular cases, (A) needs to be checked, and the natural way to establish
the link between partial order and measure that it represents is through an
appropriate topology on S. We shall prove (A) for many partially ordered
topological spaces in Section 4. As a consequence, it will hold in particular for
the following spaces.
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() R? with x = (xD,..., x®) <y =(yD,..., yD) iff xU) <y for
Jj=1,..., d.
() R? with x <y iff x < yD for j=1,..., d. Here, x <y iff x) <
¥y for j=1,..., d, with strict inequality for some j.

(c),(d) RN ordered as in (a), respectively (b), above.

(e) C[0,1] with x < y iff x(¢) < y(¢) for all ¢ € [0,1].

(f) #(E), the space of closed sets in E, a locally quasicompact space with
countable base ({gccb). The topology on #(E) is the Fell topology (see Section
4) and the weak partial order is set-inclusion. (By “quasicompact” we mean that
every open cover has a finite subcover.)

(g) US(E), the space of usc (upper semicontinuous) [— oo, co]-valued
functions on E, which is to be some lgccb set. The topology on US(E) is the sup
vague topology of Vervaat (1966, 1988b) and the weak partial order is as in (e)
above.

(h) 2, the space of probability measures on R. The “narrow” topology is
appropriate, and the partial order can be one of a number of stochastic orderings
of interest (see Section 4).

Observe that in (e) and (g), the random function X, is a record iff X, (¢) >
V221X, () for all t € E, with strict inequality for some ¢. And in (f) the random
set X, is a record iff UFZ1X,, is a proper subset of X,,.

Our results about records, assuming (A), are in Sections 2 and 3 and may be
summarized as follows. In Section 2 we define a measure H on (S, &) called a
hazard measure. H(A) turns out to be the expected number of records that fall
in A. We prove that the number N, of records that fall in A is finite a.s. or
infinite a.s. according as H(A) is finite or infinite. In the former case we calculate
all the moments of N, and the probability law of N,. We show that the sequence
of record values that fall in A is a Markov chain and give its transition
probabilities. Finally, in Section 3, we show that for several sets A, B,... that
are totally ordered with respect to one another (A < B iff a < b for all a € 4,
b € B) the restrictions of the records process to the individual sets form
independent processes.

As remarked, in Section 4 we show that (A) is satisfied under general
topological assumptions and in specific cases.

In Section 5 we return to R? and briefly to R. In R? we apply the general
theory to the case of probability laws in the domain of attraction of a bivariate
extreme-value law and calculate hazard measure for laws with independent
components.

Finally, in Section 6 we briefly discuss another notion of “record” based on a
general partial order.

2. Records in a chosen subset. We assume (A) throughout this section.
Define hazard measure H on (S, &) by

H(4) = [ o (1/#((=012)%) } (),
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where ° denotes complement in S. So p and H are mutually absolutely continu-
ous, with Radon-Nikodym derivatives

;i—:I-(x) =u((—oo,x)°), x €S,

dH l/p((—oo,x)c), x€S,
(%) = :
dp 0, x&S,.

We now fix a set A € & and define the sequence of records that fall in A as
follows. Let L§ == 0, X§! == —c0. For n =1,2,3, ... define integer-valued r.v.’s

A if LA | = oo,
inf(m:m>L3 |, X,€A,X,,>X,,k=0,1,..., m—1} if LA < 0.

(Here, inf @ == +00.) For n=10,1,2, ... let

RA +o0 if LA = oo,
"\ X L2 < oo

When A = S we omit the superscript A from these symbols. Thus {R,}.50 s
the record-value sequence, which is nondecreasing in S*, strictly increasing in
{—o0} U S and starts at —co. It is immediate that the set of R, that fall in
A U {— 00,00} gives, after reindexing, the sequence {R4}.

Let #:={R,,n>1} NS be the set of all records, excluding those
in the cemetery states. Our first result concerns N, :=sup{n: L2 < o0} =
card(A N £), the number of records that fall in A.

THEOREM 2.1. Let A € . Then P(N, < ) = 10or P(N, = ) = 1 accord-
ing as H(A) < o0 or H(A) = .
Proor. Set
A,=[X,eAn2]=[X,>X,,k=1,...,n—1, X, € A].
For m > n,
A, C[X,>X;, j=n+1,...,m—-1, X, €A]

and the latter event has the same probability as A,,_, and is independent of A,,.
Hence P(A, N A,) < P(A,)P(A,,_,), which is the condition of the
Kochen-Stone extension of the Borel-Cantelli lemma [cf. Chow and Teicher
(1978), page 101]. Thus P(A, i.0) = 0iff ZP(A,) < oo.
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Since [N, = 0] =[A4,, i.0.] and

¥ P(4) = 5[40, x) dux)
i/ p* (—o0,x)dp(x) (from Proposition 1.1)
ANS,

n=1

B dp(x)
B '/;1054“}1«((— 0, x)°)

we get P(N, = ) =0 iff H(A) < co. The rest follows since by the
Hewitt—Savage zero—one law P(A, i.0) =0or 1. O

The last calculation also shows that H(A) is the expected number of records
in A. Some explicit calculations of H in case S is R or R? are in Section 5. Here
we note only that when A is a singleton, N, is a 0- or 1-valued r.v., so H{x} is
the probability that there is a record at x,

H{x} =P(x2R), «x€8.

One should think of H(dx) as the “probability that there is a record at dx.”
We now calculate all the moments of N,. We need the set of strictly ordered
n-tuples of elements of A,

AM™ = {(x),..., x,): %, <Xy < -++ <2x,,all x; € A},
this being a subset of the set of all n-tuples of elements of A,
A" = {(x,...,x,):all x; € A}.

THEOREM 2.2. If H(A) < oo then, for k =1,2,...,
E(N}) = H(A) + cPHy(A) + -+ +cfPH,(A) > oo,

where
(2.1) Hy(4) = fA | dH(x,) -+ dH(x;)
and
. k .7
(2.2) el = ; (—)"'(é)i”=j!s(k,j), j=1,..., k,

S(k, j) being a Stirling number of the second kind, in the notation of Riordan
(1978).

Proor. Let I,=1[X, € A N Z]. We have
(2.3) Ni=(I,+ L+ )
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The I, are idempotent: I2 = I .. Hence on expanding the product,
(24) Nf=XL+cRPYYLIL + -+ Y¥ LI, -1,
n

ny<ny n<ny< - <n

where ¢’ is the number of ways of choosing one term from each sum in (2.3),
such that the set of terms so obtained is {I,..., I;}. Thus c§” is the number of
ways of putting & different objects into j different cells, with no cell empty. Its
identification with j!S(k, j) is given by Riordan (1978), Chapter 5, Section 5,
and the formula (2.2) by Riordan (1978), Chapter 5, Problem 1.

In (2.4) the first term on the right-hand side is N,, with expectation H(A).
We calculate

B LT 5,1

<”'<nj

LY [ (o0 m) di(a)w (=0, ;) du(x,)

X Xphmh T (= o0, x5) dp(x))

oo

[, T Wm0, m) du(m) B wmH (=00, 52) dis(x,)

(W2}
Jml- my=1

XX X w00, %) di(x))

m,l

(using Fubini’s theorem, and taking new summation indices m, == n,, m, =
n2 - nl,..., mj = nj_ nj_l)
T du(z,)
anl — p(—o0, x,) 1-p(-o0,x;)’

which is H;(A), whence the conclusion. O
COROLLARY 2.3. If H(A) < o, then var N, = H(A)(1 — H(A)) + 2H,(A).

Further results all depend on the quantity
Q(A) =P(N,;=0)=P(L{ =0), A€,
which we now calculate. Let
AY=AnN(x,y), x,yE&F* x<y, AcCS*.
The result below uses the functions H; defined in (2.1). Note H, = H.
THEOREM 24. Let A€ %. If H A) = «, then Q(A)=0. If HA) < =,
then
(2.5) Q(A) =1- H(A) + Hy(A) - Hy(A) + --- .
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Equicalently, when H(A) < =, Q(A) is giten by
(2.6) Q(4) =1- [ Qax,)dH(x),

where f(x) = Q(A* ..) is the unique bounded measurable solution f: A = R of
the integral equation

(2.7) () =1-[ ix)dHx), yea.

=

REMARK. When S is totally ordered, but not in general, (2.5) and (2.7)
reduce to standard formulae for product integrals (the Peano series and Volterra
integral equation, respectively). See Gill and Johansen (1987).

Proor. If H(A) = x it follows from Theorem 2.1 that @(A) = 0. So now
assume H(A) < s. We first show that @ satisfies (2.6). Let E(x) := Q and for
n=12... let .

E(x)=N[X €(-%,x)\ (Zn A% )].
i=1
Then the event [ L% = n] is simply E,_(X,) N [X, € A]. So

1-Q(a)= T [P(E, (x))du(x)

lsn<x A

Y [P(E, (0)u((-=,x)) dH(x)

lsn<x A

Y [ P(E,a(x) 0 [X, € (=%, x)]) dH(x)

lsn<x "4

[since X, independent of E,,_(x)]

/ > P(E,_ l.x)ﬁ[X e ( x,x)c])dH(x).
ANS1<n<x
Let o, 1nf{n X, € (—x,x)}.Then E,_,(x) N [X, € (— =, x)]is the event
o, = n] NNt [X g RN A* ). For x € §,, o, is as. finite, so the probability
of the union of these events is Q(A* ). Thus the last integral above equals
- [4Q(A*T ) dH(x), whence (2.6).

We may replace A here by AY _; hence Q(A?Y ) satisfies (2.7). Let us
substitute this equation repeatedly into (2.6). By induction we obtain that for
each n,

Q(A) =1-H|(A) + Hy(A) — -+ +(=)""H,_,(A)

+(=)"[ @(A%.)dH(x,) - dH(x,).
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So for (2.5) we need the last term to tend to 0. In absolute value it is at most
J, . @H(x,) - dH(x,)
Am

= (l/n!)f dH(x,) -+ dH(x,)

AN {(xy,..., Xp)i Xy, e.n, x, are totally ordered}
< (1/nt) [ dH(x,)--- dH(x,) = (H(4))"/n! =0,

establishing (2.5).
Finally, we show the solution to (2.7) is unique. Let f be any bounded
measurable solution. Then, iterating as above,

() =1- H(A2,) + Hy(A2,) + -+ +(=)""'H,_,(A2,,)
H()"[ ) dH () - dH ).

The last term tends to 0, as in the calculation above. So
f(y) =1- HI(A{oo) + H2(A}—’oo) - H3(A{oo) + .-

and is thus unique. O

We remark that while @(A) = 0 is forced by H(A) = o0, it can occur even
though H(A) > . For instance, @(S) = 0 whatever the value of H(S), as the
first observation is always a record.

For one class of sets @ has a simple formula. The set A C S is called a lower
set if | A = A, where

lA:={y€S: y<xforsomex € A},
COROLLARY 2.5. If A is a lower set, then Q(A) = p(A°).

Proor. Immediate, because N, > 0 iff X, € A. It also follows from (2.6),
since A*,_ = (—o0,x)when x € A. O

We use @ to characterize {R,} as a Markov chain. We also have a little to say
about the times between records in A,

e TA
Al %0 if L), | = o0,

n = A A : A
Ln+1_Ln lan+1<OO,

n=0,1,2,....

For n =1,2,... let #Z2 = 0(X,, i < L?), thatis, o/ is the s-algebra of all
events E such that EN[LA = k] € o(X,,..., X,) for all k=1,2,.... Let
A = {2, Q). Recall that the deterministic behaviour of { R4}, _ .. is that it
has initial state — o0, is strictly increasing until it reaches the absorbing state
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+ o0, and whether or not it reaches that state is determined by finiteness or not
of H(A).

THEOREM 2.6. {R%, %), is @ Markov chain with stationary transi-
tion laws

(28)  P(Rj edyRA, =x) =1[y e AT]Q(A) dH(y), ye€S,

(29) P(R4=oR:, =x) = Q(A®), x€8*,n=12,....

Given the random set #N A, the A% are conditionally independent, with
conditional laws

(2.10) P(A‘?‘ = k2N A) = P(A“rlt = klR‘r?’ Rﬁ+l) = gl‘z‘l(R‘:, R‘:+1) a.s.,
n=0,12,..., k=0,1,2,..., oo,
where, for allk € N,

9i'(x, y)/Q(A?), x<y,y€8,

(211) g%, ¥) =
* 01 other (xy y) € (S*)z,

and, for —c0o <x<y<ow, kEN,
qf(x, y) = P(X, is the first observation in (— o, y)°, and none of

Xyyooy X, yisin R0 A2).

NoTE. In (2.11) the denominator Q(A?) is positive where it appears, because
it is at least the probability that the first observation in (— oo, x)° is also in
(— 00, ¥)°, that is, at least p((— o0, ¥))/u((— o0, x)°)> 0.

PROOF. The idea is a form of spatial Markov property. Let LA =
o(X,, i < L#). We have that

the set (A4, j > n, R4, j> n} is conditionally independent

(2.12) Al A
of &7, given R}.

For when L% = m < oo, we necessarily have x; < Rj for all j<m, and no
further information about X,,..., X, _, is needed to determine the set of r.v.’s
mentioned in (2.12).

From (2.12) the Markov property of {R4} follows, and, furthermore, the
conditional independence of the A% and the left-hand equality in (2.10). It
remains to evaluate the various conditional laws.
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We first prove that, for m,n >0, k>1, y €S,
(2.13) P(&% =k, RY, | € dy|X,,) = 1[y € A% |qf(X,,, ¥) dH()
as.on [L4 = m].
For take any B,C € ¥* and let B’ € (%*)™ be such that
[(X,,..., X,,) €B] =[LA=m, X,, € B].
Then, conditioning on X, = x,,..., X,, = x,,, X,n11 =¥
P(X,€B,Lt=m, M=k, R4, €C)

=[]/ P| X, € ((-o, )\ 4)
B’V CNAZ NS,

UlAY N\ ((xm,oo) N mH—l(Xj,oo))), i=1,..., k— 1)

m+1

Xdu(y) dp(x,) - -+ du(x,,)

=ff PXm+iE((_°°7y)\A)
B/cnaz NS,
m+i—1
U(A’iw\ (Xm0) N N (X ))) i=1,..., k-1,
m+1

X1 € (o0, y)c) dH(y) dp(x,) -+ dp(x,,)

= [ Jaly € Az 0t (xn, ) dH(y) du(x) -+ dp(x,)
and this establishes (2.13). From (2.13), immediately,
(2.14) P(&} =k, Ri,, € dy|RE) = 1]y € A%u]q(RE, y) dH(y) as.

We claim that

o0

(2.15) Y gi(x,y) = Q(A) ifyeSs,.

For if y,(( — 00, y)c) > 0, then there certainly will be a first observation in
(— o0, ¥)¢, and the left-hand side is the probability that no prior observation is in
2 N A}, hence is the probability that N A = @

Now sum £ in (2.15). Then

P(R2,, € dy|tf) = 1[)’ € A?g]Q(Aﬁﬁ) dH(y) as.,
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because dH(y) = 0 if y ¢ S, and otherwise (2.14) applies. Thus we have proved
(2.8). From (2.6)

QAT) =1- fA Q4 dH(y);

N(x,
then (2.9) follows.
Lastly, the second equality in (2.10) follows from (2.14) and (2.8). O

The above result retrieves a small fraction of the rich structure of records in a
totally ordered set—say R. In R the Markov chain {R,} is the sequence of
points of a completely random point process [Shorrock (1972, 1974) and Goldie
and Rogers (1984)], specializing to a Poisson process if p is continuous. And the
conditionally independent interrecord times A, have conditional laws (2.10)
which depend only on R, not also on R, ,, and are in fact geometric distribu-
tions.

COROLLARY 2.7.. If H(A) < oo, then the law of N, is P(N, = 0) = Q(A),

P(NA =j)
(216) = [ Q(ar.)@(4z) - @(4y )Q(4z)dH(x,) -+ dH(x)),
J=12,....
Also
P(Ny =)
(217) = [ ,Q(42)Q(4z) - @(Ay. ) dH(x) -+ dH(x)),
J=12,....

And N, has an entire characteristic function (moment generating function finite
everywhere).

PROOF. P(N, =j)=P(R# € A, R}, = ), and (2.16) follows by condi-
tioning successively on /#, /#,,..., & and employing (2.8) and (2.9). Simi-
larly for P(N, > j) = P(R{ € A). .

Finally, P(N, =j) < [a0» dH(x,) - -+ dH(x;) < (H(A))’/j! as noted in the
proof of Theorem 2.5. So Ee*4 < oo for all real A. O

Again, when S = R, N, has a Poisson law if p is continuous. Here, for general
S, we have only a Poisson bound: As the last calculation above shows, for each j,
P(N, =) < e®p,, where { p;} is the Poisson law of parameter H(A).

3. Records in several subsets. We assume (A) throughout this section. We
investigate the relationships between the restrictions of the record-value process
to several subsets of S.
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THEOREM 3.1. Let A,BC S. If HLA U B) < 0, then

cov(N,, Ng) = H(A n B) — H(A)H(B) + fAan(x x)dl-I(y) dH(x)

+ fB fA oy GH() dH ().

Proor.

N,Ng= Y 1[X,€An2] Y 1[X,€e Bn %]
m=1 n=1
=Nynpt+ LY1UX,€ANR, X, €BNR]

m<n

+YY1[X,€AnR, X, € BnZx].

n<m

The first term on the right has expectation H(A N B). The second has expecta-
tion

E LLﬁ(x w)ﬂ"‘""l(_w’ y) d#(y)#m—l(_oo, x) da“‘(x)

m<n

ffB BN (=00, ¥) du(y) Z p™ (= o0, x) du(x)

N(x, °°)l 1 m=1

= [  dH(y)dH(x).
AYBN(x, )
Similarly for the third term. The result follows. O

It is clear from this result that in general we lose the property of complete
randomness of the record-value process in R: That N,, for disjoint A, are
independent r.v.’s. But we can rescue it partially by spe01ahzmg to sets A, that
are totally ordered with respect to each other. For subsets A, B of S* we wnte

A<B whena<bforallaec A, be B.

Note that if A < B, then cov(N,, Ng) = 0. In fact more is true.

THEOREM 3.2. Let {A(i)};.; be a collection of measurable subsets of S,
indexed by some finite or infinite set of integers I that are totally ordered with
respect to one another,

A(i) < A(j) wheneveri < j, iel, jel.
Then the processes { R4}, _. . i € I, are independent.
Proor. It suffices to consider finite I. Since H(A) = EN,, we have H(A) = 0

iff N, =0 as., and we may remove any A(i) that fall in this trivial class. We
consider only the case I = {1,2}, because the case of general finite I is a
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straightforward elaboration. Pick A, B €% with A < B. It suffices to check
that for k, [ € N, and measurable subsets E C A®), F ¢ B, the events

(3.1) U=[(Rt,..., R}) €E], V=(RP..., RP)eF|

are independent. For then the similar statements involving some of the Rj‘, Rf
infinite follow by complementations.

The first event U belongs to the pre-L{ field #2. In (3.1) V will be
independent of U provided V belongs to the post-L# field o(X,, i > L%). [For
the independence of the pre- and post-o fields, for any stopping time o, see, e.g.,
Chung (1974), Exercise 10, Section 8.2.]

Now when L{ =m < « we have X; < X, € A for i < m, so for any X,,_,,
n > 1, that falls in B we automatically have X; < X, _, for all { < m. Thus to
check whether X, . € % we need look only at the rv’s X, _,,..., X

m-+n m-n*

Hence V indeed belongs to the post-L# field. O

COROLLARY 3.3. For {A(i)} as in Theorem 3.2, the r.c’s N,
independent.

oy L €1, are

COROLLARY 3.4. Suppose I is finite or countable and that the points {x,},
are totally ordered in S. Then the events [x, € #] are independent.

REMARK. The reasoning of Theorem 3.2 may be applied to other orderings.
For example, in R? consider ordering convex hulls in the following manner: Let
%(x,,..., x,) denote the convex hull of the points x,,..., x, € R% For two
polygons C,, C, in R? say C, < G, if C, is contained in the region enclosed by C,
and the vertices of C, are disjoint from those of C,. Let X, X,,... be ii.d.
random vectors in R2 Define record times recursively as follows: Let €, :=
¢(X,,..., X,) and set L(1) := 3 and

L(n+1)=inf{k>L(n): 6, > €.}

The set of record values is £ := {%},)},>1, L(n)<<- Lhen, for instance, there is a
result like the last corollary above: If C; < C, are convex polygons we have

[C, € 2] and [C, € #] independent.
The proof is like that for Theorem 3.2: Set o, := inf{L(k): €., = C,} so that

P(o,<x,0,<x)= Y Plo,=m,
lsm<x

m + inf{n: €(X,,_1,.., Xpp_n) = Co} < )
= Y P(o,=m)P(o,<x)=P(C,eR)P(C, € R).

l<m<x

4. Topology. Our aim here is to show that assumption (A), and hence the
theorems of Sections 2 and 3, hold for familiar topological spaces possessing a
partial order, including those listed as (a)-(h) in Section 1.
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PROPOSITION 4.1. Let S be a topological space having a countable base for
its topology. Give S X S the product topology. Suppose S has a closed order, that
is, a partial order such that the graph G _ is closed in S X S. The (A) holds.

Proor. Existence of the countable base makes the Borel ¢-algebra in S X S
coincide with the product o-algebra X = #(S) X #(S) [cf. Dellacherie and
Meyer (1978), 1.8(c)], so that closed sets in S X S are product-measurable. Thus
G _ is measurable, hence so is G as remarked after Proposition 1.1. O

The closed-order assumption is also known as “order-Hausdorff” and implies
that S is Hausdorff [Nachbin (1965), Proposition 1].

COROLLARY 4.2. Let S be a Hausdorff space having a countable base and
suppose that S is also a topological semilattice, that is, a lattice such that the
meet operation (x, y) = x A y is continuous from S X S into S. Then (A) holds.

Proor. The Hausdorff property and meet-continuity imply that S has
closed order [Gierz, Hofmann, Keimel, Lawson, Mislove and Scott (1980), VI,
Proposition 1.14]. O

DEFINITION. Let S be a set of real-valued functions on a set E. The usual
weak order on R induces a partial order on S, the induced weak order < , by

x<y iffx(e) <y(e), alle€E.

This is the partial order employed in examples (b), (d), (e) and (g) in Section 1.
Of these, (b) (R? with induced weak order) satisfies assumption (A) trivially, as
does (d) (RN with product topology and induced weak order) by Proposition 4.1.
In case (e) (C[0, 1] with the topology of uniform convergence and induced weak
order) it is easy to check G_ is closed, so Proposition 4.1 applies. The same holds
for C(E) where E is compact Hausdorff with a countable base, and for C[0, o0]
with the topology of locally uniform convergence. Two final easy examples are
(a) and (c) (R4 and RN with induced strict order) where we have (A) at once
because G . is open and so product-measurable.

An interesting extension of (b) results from defining x < y tomean x — y € C,
where C is a fixed measurable set in R? with the properties

Cn(-C)= {0},
C+C={x+y:x€C,yeC}cC.

For instance, in R?, C could be a cone {(x, y): |y| < 6x} where 8 > 0. Example
(b) is the special case when C is the nonnegative orthant. Other orthants can
equally be used.

For more general examples a framework may be built from continuous lattices
[Gierz et al. (1980)], but with the order reversed, as in Gerritse (1985). Suppose
(S, <) is a complete lattice. A subset B of S is filtered if every finite subset of B
has a lower bound in B. The element x € S is way above y € S, in symbols
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x >y, if for each filtered B C S, with inf B < y, there exists z € B such that
z < x. The complete lattice S is upper-continuous if x = inf{y € S: y > x} for
all x € S. Supposing S to be an upper-continuous lattice, its upper Lawson
topology is that with sub-base the sets

{y€S: x>y}, {(ye8:y<x}°

forall x € S.

PROPOSITION 4.3. Let S be an upper-continuous lattice with its upper Law-
son topology; suppose this has countable base. Then (A) holds.

ProoF. G_ has closed order [Gerritse (1985), Theorem 6.6], so Proposition
4.1 applies. O

Consider now US(E), the space of usc functions on E [example (g) in Section
1]. Under the induced weak order US(E) is an upper-continuous lattice if E is
locally quasicompact [Gerritse (1985), Theorem 8.4]. Its upper Lawson topology
turns out [Vervaat (1988b), Section 3.9] to be the sup vague topology, with
sub-base consisting of all sets

{fe US(E): sup f(t) <x}, {fe US(E): supf(t)>x}

teK teG .
for K quasicompact in E, G open in E and x € [— o0, ]. If E has also a
countable base, then it suffices to let G and K run over countable collections of
sets [Gerritse (1985), Theorem 5.5; this is obvious for G but not for K]. So
US(E) then has countable base, and we obtain the following corollary.

COROLLARY 4.4. Let E be lgceb and let S = US(E) with the induced weak
order and sup vague topology. Then (A) holds.

For example (f), the class #(E) of closed subsets of E, the sup vague
topology of Gerritse (1985), Section 3, is the “Fell” topology [Norberg (1986)]
which has sub-base

(F:FnK=0)}, {F:FNnG+o)

for all quasicompact K, open G. This is the topology used by Matheron (1975);
see Vervaat (1988a) for further connections. When E is compact Hausdorff this
topology is metrised by Hausdorff distance. Now the map F — 1, embeds #(E)
as a closed subset of US(E) [Vervaat (1988b), Theorem 4.1]; also #(E) as a
latttice embeds into the lattice US(E). We obtain the following corollary.

COROLLARY 4.5. Let E be lgcch. Let S = #(E) be partially ordered by
set-inclusion and have the Fell topology. Then (A) holds.

Finally, consider example (h), the space & of probability measures on R.
Under the topology of narrow (“weak”) convergence, every evaluation map
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i — u(B), where B is a Borel set in R, is measurable. Hence, on & X 2, every
evaluation map (p, ») = (p X v)(B), where B is a Borel set in R2, is product-
measurable. Now one partial order on &£ is: p <, » iff

(41) (pxv){(x,y):a<x<b,x<y}

' >(pxr){(x,y):a<y<b, y<ax)
for all real a > b. Zijlstra and de Kroon (1981) show this is indeed a partial order
and give applications. In (4.1) it suffices to let a and b run through the rationals.
So this partial order is defined by a countable infinity of inequalities on
evaluation maps, hence its graph G _ is measurable in # X 2.

For other partial orderings of probability laws (stochastic orderings of r.v.’s)
see, for example, Kamae, Krengel and O’Brien (1977), Stoyan and Stoyan (1980)

and Ahmed, Alzaid, Bartoszewicz and Kochar (1986). Similar considerations will
establish the measurability of G _ .

5. More in R and R2. In Shorrock (1970), Theorem 1.2, it is shown that in
R there are finitely many strict records, a.s., if @ has an atom at the supremum
x, of its support, and infinitely many, a.s., when p has no atom at x,. (When
x,= oo, the latter must occur.) That this follows from Theorem 2.2 is a
consequence of the following analytical lemma.

LEmMMA 5.1 [Shanbhag (1979), Theorem 2]. H(R) < oo if and only if
wix,) > 0.

We turn to R2. Let
otk

¢ 1 du
o(t) = Z’F=~[olog( )—, 0<t<l.

b1 l1—u/ u

PROPOSITION 5.2. If u on R? is a product measure with continuous compo-
nents, then

H(—OO,X] =¢("‘(_°°’x])’ x € R%.

PrOOF. Write p(—00,x] = F(xV)G(x®) where F,G are continuous d.f.’s
(distribution functions) on R. Then

D L5 dG(U) dF(u)
Hoexd = [ T Raot)
dF(u)
F(u)

- [~ 1081 - Fw)G()))

1 dt
= fF("( )){—log(l - tG(x(z)))}7
0

= ¢(F(x®)G(x®)). =



RECORDS IN A PARTIALLY ORDERED SET 695

We remark that when p on R? is a product measure, under the strict order (a)
the event that X, = (X{",..., X{%) is a record is simply the intersection of the
independent events [ X{/) is a record among X/, ..., X{/]. Various one-dimen-
sional results may then be applied. For instance, the probability of each of the
latter events is 1/n; hence

P(X,€ %) =1/n9,

and the total number of records is a.s. finite for all d > 1.

We now present a class of examples in R2, which includes the bivariate
Cauchy law, where P(N = o) = 1. Suppose that the bivariate d.f. F(x):=
p(— 00, x] is continuous and in the domain of attraction of a bivariate extreme-
value d.f. G. Give R? the strict partial order of (4.1). The number of records in
(XM, XP), n > 1} is the same as in {(U;(X("), Up( X)), n > 1} provided
the functions U;: R — R are strictly increasing. Therefore there is no loss of
generality in supposing the marginal d.f’s of G are each equal to exp{ —x '}, for
x > 0, and that the marginal distributions of F are tail equivalent so that
P(XY > x) ~ P(X® > x) as x —» 0. Assuming F is in the domain of attrac-
tion of G leads to F' having a tail 1 — F(x) which is regularly varying at co with
limit measure ». This means » concentrates on the punctured compact set
[0, 0] \ {0}, topologized so that compact sets are closed sets bounded away
from 0, and for x € [0, o0) \ {0},

tlin:o (1 - F(tx))/(1 — F(e1)) = »([0,x]°).
There exists a finite measure S on %([0, 7,/2]) such that
v{x: x| >r, 8(x) € (6, 8,1} = r=8(6,, 6,1,

where (||x||, 8(x)) are the polar coordinates of x and 0 < 6, < 6, < /2. Note G
is a product measure iff S concentrates on {0, 7/2} [cf. de Haan and Resnick
(1977) and Resnick (1987)].

First assume S does not concentrate on {0, 7/2}. For such a distribution we
show H(R?) = oo. We have that for ¢t > 0, M > 1,

2) 5 F(dx)
HR®) > ff{sz: t<ixli< ey F((— 00, %))

- //;XZOZ 1<|IXI|5M}F((— 0, tx)c)

v(dx)
- ff{xzo: 1<|lxnsM):([0’—x)c)
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as t = oo. Now this last integral exceeds

j‘j‘ v(dx)
(x>0: 1<x<m} P {y = 0: [ly|| > x® A 2@}

_ f/ v(dx)
(x20: 1<|xl| <M, 6@ <[0, 7/4)) »{¥ = 0: |ly]| > x®}

(x>0: 1<|x||< M, 6x)€[n/4, 7,21} ¥{y = 0: |ly|| > x P}

= /j; (x—@))_,,(dx)

<|xll=M, 6(x) €[0, 7/4)3[0, 77/2)

+//1 Ln)a,,(dx)

<Ixll<M, Ox)e[n/4, 7/21S [0, 7/2)

= S0, w/2)er“ar“"‘1dr{f"/4(sin 6)°S(d6) + fﬂﬂ(cos 0)aS(d0)>
1 0 /4

= 510, 7r/2)alogM{f *(sin8) s(d0)+f ®(cos §) S(d0)>

Since M is at our disposal, we may let M — oo0. Provided the term in the
braces is positive, this shows H(R?) = co. The term in the braces is 0 iff S
concentrates on {0, 7/2}, so this case must be excluded. Concentration on
{0, 7/2} corresponds to the limiting extreme-value distribution being a product
measure.

In fact, when S concentrates on {0, 7/2} we may show H(R?) < oo as follows.
Write, for ¢ > 0,

‘/‘[I‘l2 B '/‘/;x: xWva® <t} * '['/;x: D va@>¢) =I+IL

The integrand is {1/F((— o0, x)°)}F(dx). Now with 1 = (1,1),
I < F((—o0,t1])/F((— o0, #1)°) < o0

For II we write

n-fJ /) /]
(x: 2®W>¢, x®P <) (x: 2V <t, xP>¢) {(x: xMAx®> )

= ITIa + IIb + Ilc.
For Ilc we have

Tc = ff(l’wle(th)/F((—oo, tx)°)
N ff v(dx)/v ([0,%)°) =
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since » concentrates on the coordinate axes through 0. For I1a we get

= F P(XxX® o)) @
Ia fjl: W<1, x®@>1] (tdx)/ (X1 > tx or Xl > Ix )
F P(xX® ) @
= /~/I;x(1)sl’x(2)>1] (tdx)/ (X1 =>tor Xl > tx )

2
- /‘éx“’sl, x(2)>1]V(dx)/,, [o, (1,x ))

and since » has no mass on (0, ), the denominator equals S{0} + S{=/2}/x®
and therefore

00 S{'ﬂ'/2} d( —y‘l)

et < J Sy + (a2l
= 8{m/2} "log(1 + S{m/2} /S{0})
< 00.

We may handle IIb similarly and we see that for some ¢ sufficiently large,
II < oo.
We summarize this discussion.

THEOREM 5.3. Suppose F is continuous and in the domain of attraction of
the bivariate extreme-value distribution G. Then

P(N<w)=1 or P(N=ow)=1

according as G is or is not a product measure.

REMARK 1. It is known that the bivariate normal distribution with correla-
tion p # 1 is in the domain of attraction of a bivariate extreme-value distribu-
tion which is a product measure [Sibuya (1960)]. Thus we get the surprising
result that unless p = 1, the bivariate normal yields a finite number of records.

REMARK 2. Associated with G is a planar Poisson process #; that has
points at {j,},cn, say, such that G(x) = P(max, j, < x). As above, we may
assume the marginal d.f’s of G are each exp(—x~1) for x > 0; the measure »
featured above is then the mean measure of 2. The probability that #; has a
greatest point is

Pk withj, > j,V1+k) = /ze"‘(‘”")cv(dx).
R

This is 0 iff » places no mass in the interior of the support rectangle [cf. Resnick
(1987), page 260], which is equivalent to G being a product measure. Thus
P(N = o0) =1 or 0 according as there is positive or zero probability of £,
having a greatest point.

We thank L. F. M. de Haan for this remark.
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6. Postscript. G. O’Brien suggested to us that the set % of record values be
alternatively defined by

(6.1) X, €% iff X, 2 X,, k=1,...,n—1.

This makes sense for any partial order and allows more observations to count as
records than does (1.1). It is instructive to observe that our first main result,
Theorem 2.1, extends to this definition. Thus we redefine H by

dp(x)

dH(x) = SR

Proposition 1.1 need no longer hold, and H can even be non o-finite. (Consider a
nonatomic probability law in R? that is concentrated on the line x + y = 0. So
every X, is a record.) But we still have EN, = H(A), and in the proof of
Theorem 2.1 the same idea as was used there will establish the Kochen-Stone
condition: For m > n, X,, € A N # implies X,, is a record among X, ,..., X,,.
Hence Theorem 2.1 holds. )

Most of our further results do not extend to definition (6.1) because there is no
“spatial Markov property” (Theorems 2.2 and 2.6) and we do not have the
property [y, 00)¢ N [x, 00)¢ =[x, )¢ when x € [y, )¢, as would be needed for
formulae (2.5) and (2.7).

Acknowledgment. We thank John Haigh for identifying the Stirling num-
bers in (2.2), and G. O’Brien, E. Perkins, W. Vervaat and a referee for Proposi-
tion 1.1.
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