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MULTIPLE POINTS OF LEVY PROCESSES

By JEAN-FRANGOIS LE GALL, JAY S. ROSEN' AND NARN-RUEIH SHIEH?
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Louisiana State University

We prove a conjecture of Hendricks and Taylor that a Lévy process in R
with 1-potential kernel u(x) will have k-multiple points if

f|x|51(u(x))k dx < 0

and u(0) > 0.

1. Introduction. In this paper we provide a simple condition which will
insure that a Lévy process has k-multiple points, a condition essentially conjec-
tured by Hendricks and Taylor (1975). Let X, be a Lévy process in R%. A point x
is a k-multiple for X if x = X, =X, = --- = X, for distinct ¢,..., ¢,. It is
assumed that X, has a density. We state our theorem in terms of the density
Pi(x) of X,.

THEOREM 1. If, for some ¢, T > 0,

k

T
(4) [ (jo p,(x)dt) dx < oo
and

T
(B) [ p(0) dt >0,

0

then X has k-multiple points, a.s.

This implies that the following conditions, in terms of the potential kernel

u(x) = fo “e~tp(x) dt,

guarantee that X has k-multiple points a.s.:

(A f (u(x))* dx < o

x| <e
and
(B) u(0) > 0.
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Hendricks and Taylor (1975) have conjectured that (A’) together with the
obvious requirement that no projection of X be a subordinator are necessary and
sufficient conditions for the existence of k-multiple points. (B’) is our substitute
for this latter requirement.

We note that for a symmetric process, ie., p,(x) = p(—x), condition (B) is
automatically satisfied since

p0) = f(pt/z(x))2 dx > 0.

Work on multiple points of Lévy processes has a long history, beginning with
the study of Brownian motion by Dvoretzky, Erdos and Kakutani (1950, 1954)
and Dvoretzky, Erdos, Kakutani and Taylor (1957). Stable processes were
investigated by Taylor (1966, 1967) and stable components by Hendricks (1979).
More general work includes Hendricks and Taylor (1975), Orey (1967), Hawkes
(1978), Takeuchi (1964), Evans (1987a) and Dynkin (1981). In the latter two
works we find proofs that (A) is sufficient in the symmetric case. Evans (1987b)
improves on our result by removing the assumption that X, has a density.

Our method of proof is closely related to the local time techniques which were
used in particular by Geman, Horowitz and Rosen (1984) in order to study
intersections of independent Brownian paths. The basic idea is to construct a
nontrivial measure supported by the k-tuples (¢,,..., ¢;) of distinct times such
that X, = --- = X,. Of course the existence of such a measure implies the
nonemptiness of the set of k-multiple points. Some of our arguments are also
inspired by Hawkes’ work (1978). However, in contrast with the latter paper and
Evans (1987a, b) we do not use any potential-theoretic tools.

When X has k-multiple points we would like to know how many. Several of
the above references investigate the Hausdorff dimension of the set of k-multiple
points. We let

E,= {(tv“"tk)|Xt,= =Xt,,}a

be the set of k-multiple times.
Recall the definition of the lower index 8” of Blumenthal and Getoor (1961):

B” = sup{a > 0; [y| “rey(y) > 0 as|y| > 0},
where
E(eiy~X,) = e WO,

We prove

THEOREM 2. If u(0) >0 and k — (k—1)d/B” >0, then dimE, > k —
(k — 1)d/B".

REMARK. The existence of k-multiple points under the conditions of Theo-
rem 2 was first conjectured by Orey (1967). Note that the Fourier transform of u
is in L*/*~D; hence u itself is in L*, so the existence of k-multiple points
follows from Theorem 1.
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See also Le Gall (1987) for further results on the Hausdorff measure of
multiple points for Lévy processes.

The paper is organized as follows. In Section 2 we establish some preliminary
results concerning intersections of independent Lévy processes. These results
play a key role in the proof of Theorem 1 which is developed in Section 3.
Theorem 2 is established in Section 4.

2. Intersections of independent Lévy processes. Throughout this work
we shall assume that the semigroup (p,, t > 0) associated with X is strong
Feller. According to Hawkes (1979), this assumption is equivalent to the absolute
continuity of the transition kernels with respect to Lebesgue measure. Moreover,
the strong Feller assumption implies the existence of a (unique) family { p,, ¢t > 0}
of probability densities of R¢ such that:

1. (¢, x) = p,(x) is jointly measurable.
2. For any t > 0, x — p,(x) is lower semicontinuous.
3. p.* p, = p,,, everywhere.
4. Pf(x) = /f(y)p,(y — x) dy, for any measurable f: R > R,.

Consider % independenﬁ Lévy processes X 1. .., X* with the same semigroup
as X. We assume that X' starts from x'. We prove that, under the assumptions
(A) and (B) and if x%,..., x* are close enough to each other, then the paths of

XU..., Xk have a common point with positive probability. For any s < ¢ we
denote by X(s, t) the path of X* on the time interval [s, ¢],

Xi(s,t) = {X5s<ux<t}.
THEOREM 3. Suppose that assumptions (A) and (B) hold for some ¢, T > 0.

Then there exist s > 0 and a neighborhood U of 0 in R? such that p(0) > 0
and, whenever x', ..., x* belong to U, for any r > 0,

(1) P[XY0,8) N --- nX*0,s) # ¢; X: € B(0,r),i=1,...,k] > 0.
Here B(0, r) denotes the ball of radius r centered at 0.

Proor. By assumption (B), we have

/ " ds [ T p0)p,_(0) dt = [ "p,(0) dt A “pi(0) ds > 0,

where s A T denotes inf(s, T'). Thus we may choose s > 0 such that

sAT
_/(; " pt(O)ps—t(O) dt > 0.

By the lower semicontinuity of x — p,(x), for any ¢ with p,(0)p,_,(0) > 0, we
can find a neighborhood U’ of 0 such that

p(x)p,_,(—x) >0, forxe U
Hence,

p,(0) = fdxpt(x)ps—t(_x) > 0.
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Using Fatou’s lemma and again the lower semicontinuity of x — p,(x), we can
choose a neighborhood V of 0 such that, for any x, y € V,

sAT
fo pr(x)p,_(y)dt>0.

We may assume that V is contained in the ball B(0, ¢/2d). We take U so small
that, forany x, ye U, x —y € V.

For any integer n > 1,and p = (p,,..., py) € Z% such that —2"/2d < p; <
e2"/2d — 1, let C{™ denote the cube

CP = {x=(x...,%4) ERY, p27" < x; < (p; + 1)27"}.
Set
I=[0,sAT]"

We fix r > 0 and we consider the random measure «, on I defined by

2 a,(B) = (1_[13(0 r) ) f ds, - ( (nlc""( )))
Here B is any Borel subset of I and the constant c,, is defined by

—(k—-1 _
c, = (vol Clﬁ”)) ) = gdn(k-D),

When it is necessary to emphasize the dependence of measures such as a,(B)
on w we write a,(w, B).

LEMMA 4. There exist a positive constant C and a monotonically decreasing
continuous function ¢: (0,0) = (1, 0) with ¢$(0 + ) = oo, such that for any n
large enough,

®3) Ela(I)] 2 C,

k
(4) E[fflxlan(dsl o dsp)a,(dy - dtk)il:[1¢(lti —-sl)| <C.

We first assume the lemma and complete the proof of Theorem 3. Note that,
since ¢ > 1, condition (4) implies that, for n large,

(5) E[«,(I)] < C.

We use the following elementary inequality: For any 0 < A < 1,

©)  Pla(I) 2 AE[a(D]] = (1 = N (E[a(D])/E[a(1)].

It follows from (3) and (5) that we may find v, 8 > 0 such that for n large
P[y_1 <a,(l)< y] > 8.
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For any n, set

k
An = {Y_l < an(I) < f/ an(ds)an(dt) n¢(|t1 - sil) < Y}’
IxI i=1
where we use the notation s = (s;,..., s,) and t = (¢,,..., t,). Changing y and §
if necessary and using (4) it follows that for n large,
P[A,]=8>0.

Set A, = limsupA,, so that P[A_] > 4. Since I is a compact set, for any
w € A, we may find a subsequence (a,(w,+)) which converges weakly to a
measure o(w, +) such that

yl<a(I)<y
and

k
(7) [], at@s)a(@n [Tt - si) <.

In order to deduce (7) we simply apply the definition of weak convergence to the
bounded continuous function

k
i=1_[1(¢(|ti - s]) AN),

where a A b = inf(a, b) and let N go to infinity. Observe that A, C {X} e
B, r),i=1,...,k}.
The next step of the proof is to show that for w € A, a(w, -) is supported by

T = ((s1ererss) € I X¥(s;2) = XN (s,_y £),i=2,..., k).

The notation X¥(s; + )= X"")(s;; + ) means that either X¥s,) =
X Us;y), XUs;—)=X"s;_y), X¥(s)=X"Ys;_;,—) or Xi(s;—) =
X=Y(s;_, — ). For any & > 0, define

B, = {(sl,...,sk) € I; forsome i € {2,..., k},
inf(|Xi($i) = XN sl 1X (s =) — X (sl
1X¥(s:) = X7 M85m0 =), 1X (s =) = X (502, —)1) > ¢
Note that B, is open and that
*=I- UB.
e>0
The definition of «, implies that, for n large, a,(B,) = 0, so that, for w € 4,
a(B,) < liminf a,(B,) = 0.
We conclude that a(I — J*) = 0.
We will now prove that a is actually supported on

J= {(Sl,..., sk); Xl(st) = X':_l(si_l), i = 2,..., k}.
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It is clear enough to prove that, for w € A,
a({(s1,---, 81); X'(5;) # XX(s, -)}) =o.

Since X! has only a countable number of discontinuities, it suffices to verify
that, almost surely for any a € [0; T'],

a({(sy,...,84); 8, =a}) =0.

But the latter statement follows at once from condition (7) and the fact that
¢(0+) = o0.

In order to complete the proof we simply note that, for w € A, a(w, ) is a
nontrivial measure supported by J and thus

P(J+ @,Xie€B(0,r),i=1,...,k) > P[A,] > 0.

Proor oF LEMMA 4. We first prove (3):

k
Ela,(I)] =c,[ds, --- ds, L [1 (f dydzp,(y = x:)Py—s (2 = y))
1 p i=1\"CMxBO,r)
k sAT
=, X|IT[" at dydzp,(y — %)p,-i(2 = ¥)
p \i=170 C{M X B0, r)

k

3 AT ’ ’

> [ dy ﬂmf{f & [ dtp(y ~ x)pe_ iz~ ¥);
ucim i=1 B, r) 0

by =yl < d2_"}-

Observe that U c U, C{™ for n large. By Fatou’s lemma and the lower
semicontinuity of x — p(x) we obtain

L. k sAT
hglolng[an(I)] > fudy l:[l(fB(O r)dzfo "atp(y - x)p,_ (2 —y)) >0,

by our choice of U.
We now consider (4). Our first task is to choose a suitable function ¢. We first
note that for any positive decreasing function ¢, writing T = s A T, we have

J. se( JRIGLIE) dt)k d

- fIdt(iliwi)) /

x| <e

k
dx il:[lpt,(x)

k
< fldt¢(t*) fmssdx [1p.(x),

i=1
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where t* = inf{t; i = ., k}. Assumption (A) 1mphes that

)y fdtl(z M <2n "'“)/ dx ].—.[pt(x) < .
m=1

Jl <e

Thus we may find an increasing sequence of positive numbers (a,; m=12,...)
such that lim a,, = + 00 and

m/dt1(2_"‘<t*<2 '"“)f dx I—[Pt(x) < 0o.

m=1 |x| <e i=

We take ¢ such that ¢(27™) = al/* for m large. We then extend ¢ to be a
decreasing continuous function ¢: (O o0) = [1,00], with ¢(0+) = 0. By the
above

-{x|55('[()7pt(x)¢(t) dt)kdx < 00.
Then

E[ILXIan(dS)an(dt)ﬁ¢(|ti - $i|)]

k
<c? dsdt t,—s; dz]1P; (3,2
C"E,ffm L I)fc("))k e @Y zn (% 20),
where

Pi (y 2) — ps(y - xi)pt—s(z _y), if s < t,
ve Pt(z—xi)Ps_t(y—z), if t <s.

Next we use Fubini’s theorem to change the order of integration and for fixed
P, q we apply the generalized Holder inequality with respect to the measure
dydz on (C{M)* x (C{)*. It follows that

E [foza”(ds)a"(dt)g¢(lti - sil)]
k
<Y 11 [ / dy dz
(Clsn))kx(cén))k

p,qgi=1
o 1/k
T (T
([ dsc e o, 1) t<y,,z>)}

Z lf[{fc(n)xcm (f f dsdto(|t — s|)[ P (, )] )}w.
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Once again we apply the generalized Hoélder inequality in the form

j2 1/k
|Za1,ia2,i eyl < l—,[ (Zlaj,ilk)
14 13

J=1
to bound the above by

o k 1/k
dydz( /OT/OTdsdw(u— s|)P;',t(y,z)) ] :

Then, using the fact that UC;”) C B(0, ¢/2), we have for any i = 1,..., &,

P

f(n) (n)
p,a " GVXG

T (T k
T T ;
p,q./;vlgn,XCén)dde(j(;Ldsdt¢(|t—s|)}';’t(y’z))

IA

gh+1 /B(O’B)XB(O’ e)dde(f:dsps(y _ xi))k(LTdt¢(t)ptF2))k

=c< ®
by the choice of ¢. This completes the proof of the lemma. O

REMARK. It is not hard to extend the result of Theorem 3 to the case of
independent Lévy processes with different semigroups. Suppose that X?,..., X*
are independent Lévy processes in R? such that, for any i=1,..., &, the
semigroup (P}, t > 0) associated with X' is strong Feller. Assume that for
i=1,..., k the canonical transition densities ( p}) satisfy conditions (A) and (B)
of Theorem 1. Then the conclusion of Theorem 3 still holds. In fact the same
proof goes through without change. It would even be possible to weaken
significantly the above assumptions on the pi’s. We shall leave this extension to
the reader since we are mainly interested in multiple points for the single
process.

3. Proof of Theorem 1. It has been noted for a long time [see, e.g., Hawkes
(1978)] that the existence of k-multiple points for a single Lévy process X can
often be reduced to the study of the intersection of the ranges of 2 independent
copies of X. However, a simple example will show that this reduction needs some
rigorous justification in our general context. Suppose that X is a stable subordi-
nator of index a > ;. Then of course X has no double points, but it is not hard
to see that two independent copies of X, starting from arbitrary points, will
intersect with probability 1. Note that, under the assumptions of Theorem 1, no
projection of X on a line can be a subordinator and thus the above situation
cannot occur.

To complete the proof of Theorem 1, we will show that, with the choice of s
given by Theorem 3, we have

(8) P[(kth(2is,(2i ; 1)3)) + g} > 0.

i=0
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Note that the stationarity of increments implies, for any m > 1,
k-1
P[( N X((2mk + 2i)s,(2mk + 2i + 1)s) | # Q}
i=0
‘0 ]

Thus, once we have established (8), Theorem 1 will follow through an application
of Borel-Cantelli lemma, using the independence of the increments of X. It
reamins to prove (8). Without loss of generality we assume X, = 0.

Our process (X, 0 <t < (2k — 1)s) is defined by a measure P on
D[0, (2% — 1)s], the set of paths which are right continuous and have left limits.
We may assume that P is complete.

Via the map

- P[(kth(%s, (2i + 1)s)

i=0

X - (X,..., X”), with X¢ = Xi(X)
defined by
Xti = X(2i—2)s+t - X(2i—2)s’

P induces a measure P* on D*[0, s]. Since under P, X has stationary and
independent increments, P* equals the k-fold product measure of P,y ,; when
restricted to the product o-algebra. Actually, it is easy to see that P* is complete
since P is.

The set A’ c [0, s]* X D*[0, s] given by

A= {(tl"“’ Ly Wiy e ey wk)|(w1(t1) = = wk(tk)}

is measurable with respect to the product o-algebra. If = denotes the projection
on D*[0, s],

A=a(A) = {(wy,...,w)A(t,..., ) € [0, 5] withwy(#) = -+ = wy(t,))

will be measurable with respect to P* because of the above mentioned properties
of P* [Dellacherie and Meyer (1978), pages 43 and 58]. We let E, E* denote
expectations with respect to P, P*. With the notation

h(xy, .., xp; wy, .o wy) = Lu(x, + wy, ..., x, + wy),

Theorem 3 can be restated as

k
E*( ﬂlB(O:r)(xi + w(8))h(xy, .., xp; Wy, ..., wy) | >0
i
for all x,,...,x, € U and r > 0. Equivalently
k
f l_IllB(O,r)(xi + yi)E*(h(xl" cey Xpy Wyyeney wk)lwi(s) = yi,v l)
i

9 .
X i=l_[1ps(y,~) dy; > 0.
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Returning to X we see that
(0, Xog -y Xoh1yes XVevnr X¥)
is the characteristic function of the set B which appears in (8),
B = {X|3¢t; € [2(i — 1)s,(2i — 1)s] with X(¢,) --- = X(¢,)}-
If Z! = X,,, — X;_1)s» by independence,
P(B) = E(h(0, X,,, ..., Xpp-1yss X',..., X))

k—1
= E(h(O, X +ZL..., ¥ (Xi+ZY); X‘,...,X”))
i=1

k-1
= fE(h(O, X4z, 2 (X4 2); Xl,...,Xk)
i=1

k—1

[ p.(2) =
k-1 k—1

= fE*(h(O’wl(s) + Zlseeey Z (wi(s) + zi); wl,"-:wk) ].—.[ps(zi) dzi
i=1 i=1

- e

X i_l_.[lps( yt) dyijl:{ps(zj) dz

k-1
h(O’ N + 21sreeey E (yl + zi); wl’“-’wk)lwi(s) = yiyv l)
i=1

= ffE*(h(O, Xpyennr Xpo 13 Wyyeeo, Wy)|lwi(8) =,V )
k k-1
X I-.[lps(yi) dyil—[lps(xj_xj—1 _J’j) dx;, %0=0
i= Jj=
j2
2 f/ 1_[113(0, r)(xi—l +yi)E*(h(0!x1’°“’xk—l;wl’””wk)lwi(s) =9,V i)
i

k k-1
X l_.[lps(yi) dy; ]._.[lps(xj —X;_1— y]) dx;.
i= Jj=

Since py0) > 0, if we take the x,’s and r sufficiently small, the factor
Lpg, n(*;—1 + ¥;) also forces the y;’s to be small, so that the factor

k-1
l_]:lps(xj - xj_l - y]) > 0.
J=

By (9), our last integral, and hence P(B) is > 0. This completes the proof of
Theorem 1.



MULTIPLE POINTS OF LEVY PROCESSES 513

4. Proof of Theorem 2. The condition u(0) > 0 implies that for some a > 0

fa(1+1/2k)pt(0) dt> 0.
Let g(x) = e ™'/2/(27e)?/2, x € RY and let
(10) L(B) = [a(X,-X,) - a(X, - X, )at.
We will show that if 8 > (& — 1)d/k, then for some y > 0,
(11) IL(B) — L,(B') < c,|(e, B) - (¢, B')"

for all rectangles B, B’ c D = I[1% [ai, ai(1 + 1/2k)], where if B =
IT%_,[a; b;), by (¢, B) we mean (¢, a,, by, @, by, ..., a,, b,). (11) will show the
existence of L(B) = lim,_, ,L(B), with

(12) IL(B) - L(B')| < c,|(B) - (B)",

so that L(-) defines a measure on D with no hyperplane mass. Let B, be defined
as in the proof of Lemma 4. We note that L(B;) < ¢ N %/2 - 0 as e - 0, so
that L(B;) = 0. The argument in the proof of Theorem 3 concerning the support
of a now shows that L(-) is supported on E, = {(¢,,..., X, = - =X, }.

In addition to (11) we will show that for any 8 < 8”,

(13) L(B) < |B|*~t-Dd/gk

for all dyadic hypercubes B in D of sufficiently small edge length, where |B|
denotes the Lebesgue measure of B.

We postpone for the moment the proof of (11) and (13). The proof will also
show that L(B) converges in L? for all p.

We have

E(L(D))

lim E(L,(D))

yﬂ)Lqu,(xz = %) g% — X, y)
X [ PPy (52 = 2) Py (54— 3) dtdx

= /;)pt2—tl(0)pt3—t2(0) T ptk—tk_l(o) dt

a
il
by our choice of D. Note that p,(x) is continuous in x and ¢, ¢ > 0, since 8” > 0.

A standard argument [see, e.g., Adler (1981)] then shows that
dmE,ND>k—-d(k—-1)/B"
on {L(D) > 0}, which by the last inequality has positive probability. We can
replace D with

\%

k-1
fa(1+1/2k)pt 0) dt) -0

k 1
D, = I1|amk + ai, amk + ai|1 + —
i=0 2k
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and a Borel-Cantelli argument then gives
dmE,>k—-d(k—-1)/B" as.

The proof of (11) is similar to the proof in Rosen [(1986), Section 2.4], only
replace the bound

‘/(;le“"2 dt <

1+ 0?
of that paper by
L (o) dt < ¢ £ "
[le Nt < fss forB <87,
and verify that [see Rosen (1986), (4.10)]
1
—dv < 0.
/ T

This is true if 8 > (kB — 1)d/k.

The proof of (13) also follows from the same article, since [Rosen (1986),
(4.16)], for B8 < B”,
(14) E(L(B))" < c(m)|B|"®~*~d/88

for any m, and B C D, uniformly in ¢ > 0, hence also for ¢ = 0.
_ Let By, B,,... be an enumeration of the dyadic cubes in D and choose any
B < B < B”. Then from (14), for ¢ = 0,

S P(L(B,) = B~k
i

IA

c(m)ZlBilm(k—l)d/k(l/ﬁ—l/ﬁ)
i
w —

c(m) Z 2nk2—mnk(k—l)d/k(l/ﬁ—l/ﬁ) < o0
n=1

for m large. The Borel-Cantelli lemma now proves (13), which completes the
proof of Theorem 2.

IA
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