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MAXIMIZING E max, _, ., S,;" /ES,": APROPHET INEQUALITY
FOR SUMS OF LILD. MEAN ZERO VARIATES!

BY MicHAEL J. KLASS

University of California, Berkeley

Let X, X,, X,,... be iid. mean zero random variables. Put S, =
X, + -+ +X,. We prove that for every n>1, Emax,_,.,S’ <
(2 — n"Y)ES;. This result is nearly sharp, since if

P(X=1)=P(X=-1) =1,
then E max, _,., Sy = (2 - n~'/2y;)ES;, where lim, _, v, = /7/2.

Let X, X, X,,... be iid. mean zero random variables and put S, =
X, + --+ +X,. Doob [(1953), Theorem 5.1, Chapter VII] proved that
) E max |S,| < ¢*EIS,|,
1<k<n

where c¢* < 8. This was improved to c¢* < 3 in Klass (1988). Echoing a 1987
conjecture of Harrison (private communication), we conjecture that if

Ck = sup{E max |S,|/E|S,|: EX=0 and 0 < E|X]| < oo},
(2) 1<k=<n

C* = limsupC}*,
then
C* = lim C¥,
) C* = E sup |B(t)|/E|B(1)| = /2,
0<t<l

where B(-) is a standard Brownian motion. Moreover, we conjecture that
C* = sup, ., Cr.
Unable to solve this problem, we consider a related one. Define

(4) = sup{E max S /ES: EX=0 and 0 < E|X| < oo}
1<k=<n

and ‘

(5) C*= limsupC,.

How large are C; and C*? We prove that
(6) C*=2
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and

7) 2-vn2<CH<2-n",

where y,7 is given by the simultaneous solution of (16)~(19) and
(8) lim v, = y/n/2.

Clearly (6) follows from (7) and (8), as do the facts that lim,_, , C, exists and
C*= sup, ., C, . We conjecture that the lower bound in the left-hand side of (7)
is actually an equality. Note further that since E max,_,_,|S,| <
Emax,_,_,S; + Emax,_,_,S, and ES;/= ES,, we also have C* < C; <
2—n"ltand C* < C*=2.

In a classical queueing model, the waiting time for the nth customer (between
when he arrives and when service begins) has the same distribution as the
maximum of a related partial sum process. Hence the foregoing results have
some application to queueing theory; specifically, to GI/G/1 queues with traffic
intensity p = A/p equal to 1.

Observe that ES; = sup, <1 ES,", where T, is the collection of all stopping
times ¢, which halt by time n. Therefore, C,; also represents the largest
proportional expected advantage achievable by a prophet (a prophet is one who
has exact knowledge of what the sequence S}, ..., S, will be and so can stop at
the first random time 7 < n such that S = max,_,_,S;) over a mere mortal
(a mortal is one who is constrained to the use of random times ¢, which are
stopping times which halt by time n and so do not look into the future). Hence
the results in (6) and (7) may be interpreted as so-called prophet inequalities.
Viewed from this perspective (with sup, . ES," replacing ES;"), the evaluation
of C} and C* in case EX # 0 is also of interest. When EX < 0 and E(X*)% <
00, E sup, _;, <., Sy is finite and so C;} can then be defined. Darling, Liggett and
Taylor (1972) proved that C; = e, whence C* for this case is not 2 but is in fact
at least e. Consequently, how E max,_;_.(Sy + ky)*/sup,er E(S; + ty)*
can and does vary as n and y vary is a mystery yet to be fathomed. For a list of
references on prophet inequalities, consult Hill (1986).

The principal result which we seek is:

THEOREM. Let X, X,,... be i.i.d. mean zero random variables. Let S, =
X, + - +X,. Then
9) E max S <(2-n"')ES;.
1<k<n

Let M§ =0 and M, = max,_,_,S;". Inequality (9) depends critically on
establishing that .
(10) ES} >E Y (M — M;_)I(S,=8S,).
k=1
I had originally intended to show how a careful scrutiny of previous ap-
proaches could be used to evolve (10). However, the referee has suggested a
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shorter, more elegant derivation, based on a stronger statement. I will therefore
dispense with the somewhat elaborate motivation of its discovery.

Notice that if (10) holds for all mean zero X-distributions, one might well
conjecture that it holds for the random variables themselves—without expecta-
tions. Thus, it should hold for real numbers. The next lemma (due to the referee)
verifies that this is indeed the case.

LEMMA. Let x,,...,x, be any real numbers. Put s, =0, s, =x, + -+ X,
and mj = max,_;_;S; Then
n
(11) sy 2 % (my —mi_,)I(s, 2 s;)-
k=1

PROOF. Let 7=last0 <k <n:s,=mj <s,. Then

n
S (mif —mi (s, > 8) = X (mf = mi_1)I(s, = mi =sx)

L=1

M= 705

(mi - mi_)I(r = k)

_
I
—

Ir=1) ¥ (mf - mi_y)
k=1

< s (by construction). O

REMARK. Observe that equality obtains in (11) if each x; is an integer not
exceeding 1 (i.e., if each x; € {1,0, -1, —2,... .

In Chung (1974), page 287 it is shown that (regardless of whether EX = 0 or
not)

k ES?

(12) EM}= Y —-.

j=1 J
Therefore, combining (11) and (12),

n +
(13) ES; > ¥ — Pl

k=1

where
(14) Pr=P(S;>20), P =1

Note that (13) is an equality if X takes values in {1,0, -1, —2,... }. If we had to
approximate P;_, we would have reached an impasse. However, if we replace X
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by —X and put P,_, = P(—S,_, = 0), then (13) also gives

k E(-S;)"
(15 B(-8)"z ¥ 2 p
j=1
Since ES; = E(—S,)" for all mean zero variables, the coefficients of P, and
P, _, are identical. Adding (13) and (15),

n ES;
2ES; = X % (P + BPry)
k=1
- ES; + ‘Z«’ ES; [since B}, + P, =1+ P(S,_, =0),
T n oy k which is 2if n — & = 0]

+

ES;
-— + EM}  [by(12)].

Consequently (9) holds.
We now show by example that (9) is best possible asymptotically (in the sense
that C*= 2). To do so, we establish the left-hand side of (7) together with (8).

ExXAMPLE. Let

-1 wp 3.
Then
1 =0) = T~ (7 ask - oo
(16) P(Syu=0) = (3 )22~ (ak) ™2 ask
and
[(k-1)/2] .
(17) ESf=21'+21 ¥ P(S,;=0)~ (k/27)"* ask > co.
Jj=1

[To verify the equality in (17), note that
ES;} = E(S,_, + X,)I(S,_, = 1) + EX;I(S,_, = 0)
= ES;}_, + 27'P(S,_, = 0).]
Combining (13) and (15) we also obtain

n +

S
2ES} = ¥ —=*
k=1 k

(1 + P(Sn—k = 0))

ES+Y Ur=D/2] ES' ,.
= EM* + — + P(S,; = 0)——
n n jgl ( 2j ) n— 2]
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and so
[(n-1)/2] p(s —O)E

-2J
ES;.
(n—2j)ES;

(18) EM =(2-n""t) - .

Inserting the formulas in (16) and (17) into (18), an explicit formula for y,/ can
be obtained, where
(19) EM; = (2 — n~'/2y})ES; .
We will not record it here. Instead, we will content ourselves with proving that
Y, — ym/2, whence (8) and the left-hand side of (7) hold. Notice that

[(n-1)/2] p(s2 .= 0)ES;" ; [(rn-1)/2]

-2 -\ —1/2 -\ —1/2
yr~n2 % L~ Y (m) A(n-2))
" ) (n—2j)ES;} )
Kn—-1)/2 L-1/2 . —1/2
_ o ’”(W_f) ( _2)
=n 1
) n n

72 dy (by the definition of the Riemann
integral, together with its

(20) -~ fx/z
o yx(l—2x) existence in this case)

— (97) "2 1 dy
(2m) /t)Vy(l—y)
(PR 7
= @m0 =\/;
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