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DONSKER'’S INVARIANCE PRINCIPLE FOR LIE GROUPS!

By JosepPH C. WATKINS

University of Southern California

This paper establishes a functional central limit theorem for Lie groups
under a mixing hypothesis. The main theorem generalizes results by Patrick
Billingsley for Euclidean space and the author for the general linear group.

1. Description of the theorem. In 1951, Donsker [2] stated and proved a
remarkable and valuable generalization to the central limit theorem. As he
stated it:

We consider a sequence S), S,,... of pariial sums of
independent, identically distributed random variables
X, X,, X;,... each having mean 0 and standard deviation

1.... The object of this paper is to show that if (Y} is a
family of random variables such that Y, is a function of
S, S, ..., S,, then under very weak restrictions the limiting
distribution of Y, is the same as the distribution of a related
functional on C, i.e., the limiting distribution of Y, is
independent of the distribution of the X ’s.

In this instance, C is Wiener space. The statement of the theorem predates
Prohorov’s work [8] on probability measures on function space. Thus, the main
result, as Donsker states it, is deceptively cumbersome for such an elegant
theorem. We state Donsker’s theorem in modern terminology as follows.

Let S be a complete and separable metric space with metric p and let
< D([0, 0); S) denote the set of paths in S which are right continuous and have
left limits at each point in [0, c0). Endow this space with the Skorohod topology.
Let {X,; k> 1} be an independent and identically distributed sequence of
random variables having common mean 0 and common variance 1. Define, for
each a > 1,

[at]

(11) Be(t) = — ¥ X,,
@ p=1

and let P¢ be the distribution of B* on D([0, «c); R). Now, Donsker’s theorem
reads:

THEOREM 1.1. P¢ converges weakly to Wiener measure as a = .

Received January 1988; revised August 1988.
IRj"gsearch supported in part by NSF Grant DMS-86-02029 and the Air Force Office of Scientific
Research while the author was in residence at Northwestern University.
AMS 1980 subject classifications. Primary 60B15, 60F05, 60F17, 60J30; secondary 60G10.
Key words and phrases. Functional central limit theorem, invariance principle in distribution, Lie
groups, mixing, martingale problem.
1220

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @?’ )z
The Annals of Probability. RIKOIN

WWww.jstor.org



DONSKER'’S INVARIANCE PRINCIPLE FOR LIE GROUPS 1221

Donsker called his theorem an invariance principle because the limiting
distribution exists independently of the random variables involved. This theorem
dramatically extends the method of Erd6s and Kac [3], who had calculated the
limiting distribution in several cases by choosing a distribution for the X,’s
which most simplifies computation and taking limits. In essence, Donsker’s
theorem allows us to relate asymptotic properties for the distribution of random
walks to the distribution of Brownian motion.

For processes in R?, the Lévy—Khintchine formula is a guiding pnnmple in
the study of stochastic processes having stationary and independent increments.
Due to the work of Hunt [5], this theorem has a full generalization to Lie groups.
Let G be a Lie group of dimension d having identity element e. Let g be the Lie
algebra of G, which we shall define to be the set of left invariant vector fields on
G. Hunt gave a complete classification of all processes on G which satisfy the
following axioms:

Al. Z(0) = e almost surely.
A2, limit,_, , P{Z(¢) ¢ U} = 0 where U is any neighborhood of e.
A3. Forany 0 <t <t,< --- <t, and every n € N, the random variables

Z(t)), Z(8,) ' Z(ty), ., Z(t,1) " Z(2,)
are mutually independent.

A4. The distribution of the increment Z(¢,)"'Z(¢,) for ¢, < t, depends on ¢,
and ¢, only through their difference ¢, — ¢,.

In the extension of the central limit theorem for independent and identically
distributed random variables, one may relax the hypothesis of identical distribu-
tion in the manner first described by Lindeberg [7]. In 1973, Stroock and
Varadhan [10] proved a functional central limit theorem for Lie groups contain-
ing as a hypothesis a Lindeberg condition. Because Stroock and Varadhan were
primarily concerned with continuous processes, they began their paper by
classifying all processes & satisfying axioms Al, A3 and

A2'. Z(t) is a continuous function of ¢ with probability 1.

To explain their classification, let S; be the set of all nonnegative definite d X d
matrices and define

C,'([0,0); S7) = {A € C([0,0);S7); A(0) = 0, A(t) > A(s) for ¢ > s}.

If we view £ as the set of probability measures on C([0, o0); G) satisfying Al,
A2’ and A3 and topologized by weak convergence, then the Stroock—Varadhan
classification is given via a one-to-one onto bicontinuous mapping

(1.2) Co' ([0, 0); §7) X C([0,); G) = 2.

The action of this mapping is more readily understood if we first restrict
attention to absolutely continuous functions. The derivative of an absolutely
continuous function chosen from C,' ([0, 0); S;) represents the time dependent
covariance matrix with respect to some choice of basis for the Lie algebra. A
choice from the second factor, if it is absolutely continuous, gives a curve in G
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which is the integral curve for the drift. These two functions combine to specify
an element in £ via the infinitesimal generator for a time dependent Markov
process. Stroock and Varadhan then use continuity to extend the mapping to all
of 2.

A second tradition for the central limit theorem begins with a stationary
sequence of random variables. For these stationary sequences, ergodicity has not
yet served as a sufficiently strong hypothesis to insure asymptotically normal
behavior. Rosenblatt [9], in 1956, introduced a class of stationary and ergodic
sequences which he called strongly mixing. Three years later Ibragimov [6]
introduced a second class of mixing sequences which he called uniformly mixing,
and with these hypotheses, both Rosenblatt and Ibragimov were able to prove
the central limit theorem. Today, we view these two types of mixing as the
extreme points in a one parameter family of measures of mixing

(9 |#) = sup{|P(Ap¥’) — P(A)|,; A € 9}

for 1 < g < oo, for || - ||, the norm on L(P) and for two o-field ¥ and . (See
Ethier and Kurtz [4], Chapter 3.) These measures of the degree of independence
are applied, in the case of a stationary sequence {X; k € Z} to the o-fields
F,=o{X; k <n}and F"'" = 0{X,; k 2 n + m}.Set g (m) = @ (F""™F,),
which, for a stationary sequence, is independent of n. For each g, a summability
criterion on ¢,(m) is sufficient to prove Donsker’s theorem in the presence of an
appropriate moment hypothesis on {X,; 2 € Z}. The first functional central
limit theorem of this type was proved by Billingsley [1] in the uniform (g = «)
mixing case. The qualitative aspect of the limit remains unchanged. However,
the lack of independence results in a new variance parameter.

We state the main theorem of this paper as follows.

THEOREM 12. Let {F, € C®%([0,00) X [0,1); G); k € Z} be a stationary
sequence satisfying:

(i) Fy(s,0) = e with probability 1.
(i)
E[Sup053<oo SupOspsl ”D2F;)(s’ p)”2 + SUP < s < o0 SuPOspsl ||.D22.E)(S, p)"] <oo.

(iii) ED,Fys,0) = 0.
(iv) Zp_; @u(m)'/? < co.

Define, for each a > 1,

. 1 1 F 2 1 P [at] 1
(1.3) Z (t)—Fl(;,ﬁ) 2(;, ﬁ)“' [at] a ’ ‘/E
and let P° be the distribution of Z* on D([0, o), G). Then the two sequences

(1.4) o%(s) = limit;ll—E( ) D2Fk(s,0))
N n— o k=1
(15) B(s) = timit = 3 T E[D,Fy(s,0), DuF(s,0)

Jj=1k=1
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converge. P® converges weakly to P € 2 as a - oo where P is characterized by
its infinitesimal generator ;6%(s) + p(s). Here p(s) = 1EDZF(s,0) + B(s).

The memory given by the mixing along with the noncommutativity of the Lie
group results in a new source of drift B, a limit of expectations involving the Lie
bracket. We shall illustrate this in Section 2 with an example usmg a time
homogeneous diffusion on the Euclidean group.

In stating Donsker’s theorem on Lie groups, we have adopted a more geomet-
ric point of view. Thus, consider D, F,(s, p) to be a vector in the tangent space
above the F,(s, p). Then D,F,(s,0) is in the tangent space above the identity.
This generates an invariant vector field, which we shall regard as an element of
the Lie algebra Because ED,F;(s,0) = 0, ED2F,(s,0) is a derivation and, thus,
we may view EDjF,(s,0) as an invariant vector field. In addition, we have
endowed the fibers in the tangent space with a norm || - |, giving these vector
spaces the structure of a finite dimensional Banach space. Because all norms on
this space are equivalent, the specific choice of norm is unimportant. Note that
the possible limiting probability measures will be the image of C! functions
under the Stroock-Varadhan classification mapping.

2. Outline of the proof. The Stroock—Varadhan classification theorem
shows us that it is sufficient to verify the tightness of {P% a > 1}, show that
each possible limit process satisfies A1, A2’ and A3 and show that each process
has the characteristics 6%(s) and p(s). The technical aspects of the proof tend to
obscure these basic ingredients. In particular, the tightness proof also gives A2’,
the continuity of the sample paths. In order to deal with the possibility of
explosions, we have chosen to work directly with a martingale problem. We first
write a difference as a telescoping sum of intervals of length 8 in hopes of
creating a Riemann sum for the integral in the martingale. In essence, the proof
* that the limit process has property A3, the independence of the increments, is
accomplished by setting this telescoping sum and by discarding some elements in
the product to create a weaker dependence between terms in the sum. The total
number of elements tends to infinity with a, but the limit is not altered because
the total length of time that these products operate tends to zero as @ — 0. The
bulk of the proof is a Taylor series expansion. In taking limits on § and a we find
both the integral in the martingale problem and consequently, the characteristics
u(s) and o(s).

To outline the proof of Theorem 1. 2 first note that the functions F, and, as
we shall see, the sample paths of the limit process, are continuous. Thus, all of
the distributions {P% a > 1} are supported on paths in the connected compo-
nent of the identity. Thus, we can assume that G is a connected Lie group. Let
G be endowed with a left invariant metric p compatible with the norm || - ||.
Then p(gp g2) = P(ggp ggz) fOl‘ all 8, gl’ g2 < G' Thusy the palr (Gy P) iS a
complete and separable metric space.

We begin the proof by localizing the process. For s > 0, define

I e IR
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and let P? denote the distribution of Z%(s, t) on D([s, ), G). Let U be a convex
open neighborhood of e,diamU < o0, chosen so that G can be represented as a
subgroup of GL(N,R). For a path {(s, ) € D([s, ), G), define the stopping
time 7(s,U) = inf{t > s: {(s,t) € U} and let P2 be the law of the process
Z%(s, +) stopped at time 7(s,U) — 1/a. The proof of a limit theorem for the
measures {P2 a > 1} has three basic parts. In the first part, we show that this
collection is relatively compact. This requires an understanding of the compact
subsets of D([0, o), G). The characterization of the compact sets is similar to the
statement of the Arzela—Ascoli theorem. However, the equicontinuity property
used in this theorem must be replaced by a new form of the modulus of
continuity compatible with the Skorohod topology. Thus, for { € D([0, ), G),
we define
(22) w(6,8,7)= inf  maxsup{p(s(¢), {(#)) b, ¢ € [4,_,, ),
(t;yeINT, &) i
where II(T, §) is the set of all partitions of [0, T'] chosen so that no two points of
the partition ware within & of each other. Letting Z%s, -) denote the stopped
processes as defined on the original probability space and using { ;a>1}
relatively compact and {Z “s, ); a = 1} relatively compact 1nterchangeably, we
quote the following theorem from Ethier and Kurtz [4], page 128.

THEOREM 2.1. {Z%Gs,-); a > 1} is relatively compact if and only if the
following two conditions hold:
(i) For every e > 0 and t > s, there exists a compact set I, , C G such that

(23) liminf P{Z%(s,t) € T, ,} > 1 —&.

(ii) For every ¢ > 0 and T > 0, there exists § > 0 such that
(2.4) limsupP{w’(Z“(s, ),8,T) > e} <e.

q — 00
Both of these conditions are established using the following estimate.

LEMMA 2.2. For Fi(s,q) € ;U, let F‘k(s q) € GL(N,R) denote its matrix
group representation. Otherwise, let F\(s, q) = I, the identity matrix. Let || - llo
denote the operator norm for a matrix in GL(N,R). Then for any s > 0, and

p €[0,1],

(2.5) E| sup log|Fy(s,q)llo| < p?C, where C = 3E| sup ||DZEy(s, p)llo|-

O0<g<p O<p<1

The proof of this lemma is essentially the same as the proof of Lemma 2.5 in
[12] and so we omit it. The proof uses a Taylor series expansion having a first
order term with zero expectation.
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THEOREM 2.3. {Z%s, -); a > 1} is relatively compact.

By Lemma 2.2, the one dimensional process log 1Z%Gs, t)||o is dominated by a
process which satisfies the hypotheses of Theorem 1.3 and this can be used to
verify the hypotheses of Theorem 2.1. The proof actually shows that condition
(ii) of Theorem 2.1 is satisfied for the modulus of continuity

26)  w(s,8,T) =sup{p(§(r), {(u)); t,u < T, |t — ul <8}

Because w(¢{, 8, T) = w'($, 8, T), this is sufficient. As a bonus, this immediately
implies

THEOREM 24. All limit points for {Z“(s, *); @ > 1} have a version with
continuous sample paths.

The second part of the proof involves showing that {f’s"; a > 1} has exactly
one limit point P, and giving a sufficient description to identify P,. We begin
with

THEOREM 2.5. The limits in the definitions of 6%(s) in (1.4) and B(s) in (1.5)
exist.

The proof of the limit for ¢%(s) is essentially the same as in Billingsley [1],
Lemma 3, page 172. By using the stationarity of {F,; £ € Z}, Billingsley also
shows that we may write

@7) o¥s)= Y EDF(s,0)D,Fy(s,0) = Y ED,Fys,0)D,Fy(s,0).

k=—o00 k=—oc0

Similarly, the limit defining the bracket term B(s) exists and may be rewritten

[oe]
(2'8) B(S) = Z E[DZ‘E)(S’O)’D2FI¢(S’O)]‘
k=1
The Stroock-Varadhan classification theorem states that the limit law P is
determined by its infinitesimal generator 1o%(s) + u(s). In stating this result,
they refer to a fixed basis for the Lie algebra. In the development we have chosen
here, the generator is more naturally stated without introducing a basis.

LEMMA 2.6. There exist continuous functions o;:[0,00) = g for i=
1,2,..., m < d which are linearly independent and satisfy

m
(2.9) Y of(s) = o%(s).
. i=1
If the operator o2 is nondegenerate, the mapping 0% — (o0y,0y,...,0,) is

analytic. Now Lemma 2.6 follows by approximation. Next, we consider the
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Stratonovich differential equation
m

(2.10) dZ(u) = X o(u)Z(u)°dB,(u) + p(u)Z(u) du,  Z(s) =g,

i=1
where B,, ..., B,, are independent scalar Brownian motions. This equation has a
unique strong solution up to a possible explosion time. This implies by a theorem
of Yamada and Watanabe [13] the uniqueness of the following martingale
problem ./Z(s, g) until the exit time (s, gU):

(2.11) P, [(5:8(s,8) =g} =1.
For f € C*(G; R) with compact support

(212)  ((5(s,0)) = [(o*(w) + p(@)I(S(s,w) &5, s,

isa f’s’ gmartingale.

Stroock and Varadhan continue by showing that the explosion cannot take
place. This argument applies here. Thus the major task involves proving the
following.

THEOREM 2.7. Let P® be a limit point for {P% a > 1}. Then P® is a
solution to the martingale problem (s, e) until the exit time 7(s,U).

Until the exit time 7(s, gU) the martingale problem .#(s, g) is also well
posed. Its unique solution is
(2.18) P, (A)=P, {$:87%(s,-) € A}

Thus the conditions of Theorem 6.6.1 in Stroock and Varadhan [11] are satisfied
and we can patch together the local solutions. Therefore, the martingale problem
(0, e) is well posed on [0, c0). but this is just a restatement of Theorem 1.2.

3. An extension of the theorem and an example. Let H be a closed
subgroup of G. Then there exists a natural analytic structure on the left coset
space N = G/H converting it into an analytic manifold. The manifold N, called
a homogeneous space, is included in Hunt’s theorem. We can also include this
extension in the central limit theorem.

THEOREM 3.1. Let {F, € C*%[0,0) X [0,1]; N); k € Z} be a stationary
sequence. Then Theorem 1.2 holds with (ii) replaced by

(i)’ For some 8 > 0,

E| sup sup |DFy(s, p)I**®+ sup sup {|DFFy(s, p)ll| < oo,

0<s<oo 0O<p<l 0<s<oo 02p<l
and (iv) replaced either by
(V) Tinmy @u(m)/®+% < o0
or by
(iv)" £2_, @, (m)*/*® < oo, where g = (2 + 8)/(1 + 9).
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We have also included cases with slower mixing rates and higher moments.
The proofs are substantially the same, differing only by the use of Hoélder
inequality for mixing sequences (see Ethier and Kurtz [4], Chapter 7).

We conclude with an example on E(2), the Euclidean group on R?. Recall that
for the time homogeneous independent case,

(3.1) o? = EF/(0)* and p= 1EFy(0).

For the two-dependent case,

(3.2) o2 = EF/(0)Fy(0) — EFy(0)* + EF/(0)F,(0)
and

(3.3) p = $EF,"(0) + E[F;(0), F{(0)].

Let R:[—1,1] » E@2) and T,:[—1,1] —» E(2) be defined as follows: R(p) is
rotation by an angle p and T,(p) is translation by p in the x-direction. Set

7. = T(0) and p = R(0); then set [p, 7,] = 7, where 7, is the vector field for

translation in the y-direction. Let {G,; # € Z} be an i.i.d. sequence where each
G,(p) takes on each of the four values R(p), R(—p), T.,(p) and T (—p) with
probability i. For each M,, M, € E(2), define p(M,, M,) = M;M, and F(p) =
q)(G2 (D) Gop i 1(P)). The F, are bounded and independent. So the moment and
mixing assumptions are easily satisfied. F(0) = Gi(0)G,(0) =e-e=e and
EFy(0) = E[G(0)G{(0) + G{(0)G(0)] = 0. Thus Theorem 1.2 applies and

z7(t) =F(71_;)F(71a__) Ff“ﬂ(v‘la‘)

converges weakly to the process Z(t), a diffusion with

(3.4) o2=p*+12 and p= —1,

The product R(p)T.(p)R(—p), T{—p) = exp(— pz'ry) for p near zero. To im-
prove the chance for appearance of this product, we define

T.(p)M,, if M, = R(p),

T-p)M,, if M;=R(-p),

R(-p)M,, if M, =T/(p),

R(p)M,, it M, =T(-p)

(35) qS(Ml’MZ) =

and set F’k(p) = $(Gi(p), G (D). Then {F,; k € Z} and {Fk; k € Z} have
the same one-dimensional distributions. {F; k € Z} is stationary and two-
dependent, and thus theorem 1.2 applies:

" 1)1 . (1
Z4t) =F| = |Fl —= |+ Fion|l —
02 |7 )+ Rl 7
con\;erges weakly to a diffusion Z(¢) on E(2). Because G, is independent of the

other three factors
(3.6) EF;(0)Fy(0) = EF/(0)F;(0) = 0.
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Also,
(3) E[F{(©0), F0)] = [p,7.] = -1,
Thus
(3.8) o= p%+ sz and p= =T, = T,

4. The details of the proof. We begin with a technical lemma intended to
make the proof of Theorem 2.3 more readable.

LEMMaA 4.1.
1 fael 1 d| ad] + k
limit — sup sup var| ) —— k(s + ‘[1 I ,r) -1
-0 0 p<y<d0<s<ow k=1 \/(; dr a olr—o
(4.1) r=
[ax] 1 4

ﬁk(s+ £jf:—(s],r) -1

) “o
r=0

PrOOF. Note that E[d/dr||Fy(s, r) — I||ol,=0] = 0. Thus by expanding the
variance of the sum and using the Hélder inequality for mixing we find that

1 [g][glcov(% [jZS]»’) ~ 15( N [jad] + k )

— s+ ——— r| -1
ad ;= 1o a

iSiVa dr

0

d

)

r=0

§

F‘k(s +

df [ [Jad]+!1
E;"IQ(S + ———7;———‘,7) -1

0

r=0 0

d| - [jad]
_EIIE(S+ ,r)—l

a

0

r=0 0

F\s+

k=1 1=1 a

2 [%E] [§] P ; 1/2E d
< ad ‘poo(l - |) ;

-( [ja8]+k’r)_1

Olr=0

21/2
r-O)

L8] ) ,

d

F‘k(s + [jzs],r) -1

62 oo L)

0|

2kl
- —|F]s+
0lr=0 dr 0

271/2
r-O) }

2 (ef) ko 1/2 1/2
s =22 X ek - 1) + abe,(0)

k=1 1l=1

2
) ];|s—s’| 58}
r=0

d o ’
=0 ;"E)(s ' T) - 1"0

d . .
xsup| E|( 5. 11,

< 2(2 i o (k)% + 1)

k=1

2
) ];IS—S’I 58},
r=0

which tends to zero as § — 0 by the dominated convergence theorem. O

d, . d .
xaup| B 1A r) = 1, = 51t ) - 1,
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PROOF OF THEOREM 2.3. Take I, ,= U. Then for all a,
(4.3) P{Zs,t) e U} =1,
satisfying condition (i) of Theorem 2.1. For condition (ii), if g;, g, € U, then for

some constant K,
o(81, 82) < K&, — &allo

where g, is the matrix representative for g, i = 1,2:
w(Z%(s,-),8,T) ‘
= sup{p(Z“(s, t), Z%s, t2));s <t t, <T+s, |t — b < 8}
<K sup{||Z“(s, t) —Z%s, ty) | s <t t, < T+s,|t; — £ < 8}

L)1 [ i-1
F}(;,ﬁ)-I Z(s, . )
sstl,t25T+s,|t1—t21<8}
<(J
Fl=,r|-1
(o7

sStl,t2$T+s,lt1—t2| <8}

[at,]

_<_Ksup{ Y

j=lan]+1

b

0

0

[aztz] 1 d
J=lat;]+1 ‘/E dr

.
b

0 r=0

< K(K diamU + l)sup{

dr;

0

[at,] al 1 d?
. (4'4) +sup{ Z 1/‘/_(—‘/:1—— - r) e

2
j=lat]+170 dr

s
Aer) -

sstl,t25T+s,]tl—t2]<8}

< K(K diamU + 1)
1 [ed]

=l

d
><dr

X

2 sup sup
0<j<T/8 | O<u<é

. [jad] + &
F[(s+j8)a]+k(s + - a ’”) -1

i

0

1 [at,]
+sup{— Y sup  sup ||D§F}(u, p)"o;

2a j=lat;]+1 0<p<10<u<oo

s<t,t,<T+s,|t,— ty <8}).
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Choose 6 sufficiently small so that

T
— sup |P{2K(KdiamU + 1)
6 0<j<T/é
1 lawl gy [jad] + &
X sup |——= ), —||F|s+ ————,r| - >
OSMI;S Va kgl dr k( a ) 0 )
(4.5) r=0

—P{ZK(K diamU + 1)

1 [l g ad
X  sup -——Z—Fk(s+——-[] ],r)—I >el|l<e
o<u<s|Va goy dr a 0lr=0
and
1 [at,]
limit P{ K(K diamU + 1)sup{ — Y. sup sup | DZF(u, p)lo;
a— oo a Jj=[at;]+1 0<p<10<u<$
(4.6)

sstl,t23T+s,|t1—t2|<8} >£} =0.

Inequality (4.5) follows from Lemma 4.1. Inequality (4.6) follows from the
ergodic theorem if

8 < e/K(K diamU + 1)E| sup sup ||D§E,(u,p)uo].
0<p<l0<u<oo

Therefore, if ||| - |llo = 8UPo < » <15UPo < u <aoll * llos

(4.7) Plw(Z%s,-),s,T) > e}
< P{K(K diamU + 1)

1 [au] d

=L

[jad] + &
F[(s+j8)a]+k(s L — ") -1

a

O<u#+é

X2 sup {

)

sstl,t2sT+s,|t1—t2|<8} >s}

0lr=0

[at,]
+P{K(K diamU + l)sup{—a Y ID3Elo;

J=[at;]+1
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<

T
— sup (P{K(KdiamU + 1)
6 0</<T/d

1 [ael g

=l @

~ ad
X2 sup { Fk(s+ Lje ],r) -1
a

O<u<é

}>£_ + &

Olr=0

1 [atzl
P{K(K diamU + 1)sup{ 50 Y I D3F o5

J=[ay;]+1

s<t,t,<T+s,|t; — ¢ <8} >e}.

Note that E[(d/dr|Fyu, r) = I|ll,-0)’] < E[||D,Fll§] < o and that
E[d/dr||F(u, r) — Ijol,-0) = 0. Thus for 0 < j < T/8,

1Ml gy 1 [jas]
— ¥ —|Afs+ ==, r| -1
Va kgl dr k(s B ’r)

converge weakly as a — oo to a mean 0 Wiener process on the interval [0, 8] (see
[3], page 175). Because the variance parameter is bounded by E[|||D,F,|||2],

(4.8)

Olpr=0

T
limit limit — sup P{K(K diamU + 1)

-0 a— é 0<j<T/8

(4.9)
1 e g, [ jas]
X2 sup |—= Y. —|F,|s+ ,r|—1 >eg) =0.
o<u<s|Va =, d a olyo

Therefore by (4.6), (4.7) and (4.9),
(4.10) ﬁmsupP{w(Z“(s, ),8,T) > s} <e,

a—> 0
satisfying condition (ii) of Theorem 2.1 and thus completing the proof of
Theorem 2.3. O

PROOF OF THEOREM 2.7. For t>s, set A= o{{(s, u);s <u<t} and
define

¥, () = ¥(8(s, 51), 8(s, 8),..., §(s, 54)),

where ¥: G* - [0, 1] is a measurable mapping and s < s, < -++ < s, < t. Then
¥, is A.' measurable. Choose a subsequence of {P“, a > 1} with weak limit

8,

P°° Let E® denote P°°-expectat10n and E¢ denote P“-expectatlon Writing 7 for
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7(U, s), we must show, for any s < ¢ < u and for any choice of ¥, ;» that

B[ 15,0 A ) = 155, 20 7))
(4.11)
- [ (0%(0) + () (85, ) o, (6)] =0

Choose a sequence § which tends to zero in such a way that f’;"{'r = i8;i e
N} =0, let a tend to infinity along the sequence described above and set
T, = inf{t > s5: Z%s, t) & U}. Then, because P is supported on the continuous
paths,

ES[(f(3(s,u A 1)) = f(5(s, t A 7)Y, (3)]

e [ [5]  [3)) (ool 5] 5} o)

[u/8]1-1
= limit imitE2[ Y (f(¥(s, 8(i + 1)))
820 a— oo i=[t/8]
(4.12) —f(f(s,6i))I(T>s(i+1>})‘I'3,t(s°)}
[u/8]1-1
= limit imitE| Y. (f(Z%s,8i)2%(8i,8(i + 1))
-0 a—> i=[t/8]

—f(Z“(s, Si))I{Ta > 8(i+ 1)))‘1'3, t(Za)}

[u/8]-1
= limit imitE| Y. (f(Z2%Ss, 8 — I(a))Z%(8i, 8(i + 1)))
800 a—> 0 l=[t/8]

—f(Z“(s, di — l(a)))I{Ta> a(i+1)})‘l's, t(Za)],

where /(a) — 0 as @ = 0. To explain this, note that the absolute value for the
difference in corresponding terms in each of the last two sums is bounded by

(4.13) 201 Df 1B [p(Z%(s, 8i = U(a)), Z°(s, 8i)) A diam U]
and the term inside the expectation tends to zero in probability as a — oo

because the oscillation of Z%s, -) tends to zero in probability. ||Df||,, is the
maximum value of the derivative of f,

EX[(f(8(s,u A ) = (s, t A7), (3)]
[u/é6]—1

(414) pidio i=§/8]-(f(za(s’8i_l(a))Za(Si,S(i+1)))

—f(Za(s, di — l(a)))I(Ta>si—z(a)})‘I's, (Z2)|.
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This equality holds because the difference of this sum and the last sum has only
two nonzero terms, which are bounded in absolute value by

(4.15) E[||Df||l.qw(Z%(s, ), 8, u — 8) A 2||fl]

which by (4.10) is unlformly bounded in a and tends to zero as § — 0. Choose a
term from the sum in (4.14) and define

8
G(py---» P[as]) = f| Z%(s, 8i — l(a))F[aSi]+1(¢’ Pl)
(4.16) ,
8(i+1)
X oo XF[as(i+1)]([a_(l;_—], p[as])).
Then
f(Z%(s, 8i — l(a))Z2(8i, 8(i + 1)) — f(Z%(s, i - I(a)))
. 1 1
F== ﬁ)
(4.17) = G,0,...,0 [gkanO
[ad] [ad] \a
+J§1 kglj(; /‘/—(% _p)(ajakGi)(p""’p) dp'

For these three terms we have

(4.18) G0, ...,0) =0,

(4.19) (0,G,)(0,...,0) = (D2F[a8i]+j(w,o f)(Z“(s,&' - l(a)))
and
(ajakGi)(p"“’ p) = (akajGi)(p,-“v, p)
o1 i 81 k
= (DzF[aai]ﬁ(Bl—la]l,P) 2 [a8i]+k(%—’p)f)
(420) (Za(s’ Si__ l(a))F[asi]H(%, P)

[ad(i + 1)] ,p))

: XF[aS(i+l)]( a
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if j # k. The diagonal terms in the sum

(ajajGi)(p’“'!p) =

[adi]+F \°
D2F[a8i]+j( —a ’ P)

+D2?F[a8i]+j(

[a8i] +,-’p)f)

a
(4.21) (Za(s, 8i — I(a)Fiasiy 41

[ad(i + 1)] ’p)))'

a

([a8j3+1’p)

X XF[s(iH)](

Therefore,
EX[(f(S(s,u A7) = f(§(s, t A T)Y, ($)]
[u/8]1-1 1 [a8]

Z 7_—' Z (DQF[aBi]+X

i=[t/8] Y@ j=1

= limit limit E

8§20 a0

([aSia] +J

0)1) (25, i - 1)

[a8] 2

1 [adi] +J
1/\a
[ At 1222
=1
[adi] +J
+D221'1[a8i]+j( a ,P))
[ad] j-1

[adi] + ) [adi] + &
+2 Z Z (D2F[a8i]+j(_a—r P)sz[am]:fk(__, P))

j=1k=1 a

. [adi] + 1
x1{ 2(5, 8 = @) Frasiy s ——— )
[ad(i + 1)] a
X oo XF'[aB(i+l)](———T——’p)) dp I{Ta>8i—l(a))\1,s,t(z ) .

If l(a) is chosen in such a way that al(a) tends to infinity with a, then the first
line in this double limit vanishes in the limit on a. To see this, note that the
Holder inequality for uniformly mixing sequences implies that

e £ 2222

Jj=1
1 (e8] [adi] +J
‘/_ Z D2 [adi)+) —a__’o

x(Z%(s,8i - l(a)))I(Ta>si—1(a))‘I's, (Z%)

(4.23)
< 2de,(al(a))’E

| pe—

2
}Ilfllw
0

]+ 0(3))Ilfllw

[ad]
< 2de.(al(a))?| E H\/_ SEDF(& 0)
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by a computation similar to the proof of Lemma 4.1. The expectation is bounded
in a by the central limit theorem for the uniformly mixing sequence in R?. Now
let @ — oo to substantiate the claim. For the second line in this double limit note
that

Br| [ 3B BA(0.0°  DER(o.0)] (505, 0) o, ()]

(u/8]-1 1
= limit imitEZ| Y —E[D,Fy(5i,0)° + DiFy(8i,0)]
8§20 a— i=[t/5] 2

Xf($(s, 8 — U @) 8L, - 5i_yay)¥s, t(f)]

(u/8]-1 &
= limit imitEZ[ Y, = E[D,Fy(8i,0)* + DiFy(5i,0)]|
850 a— o l=[t/8] 2
Xf({(s, 8i — l(a)))81(7>Si—l(a))\I,s,t(g)j
[u/8]1-1 )
= limit kimit| Y —E[D,Fy(8i,0)* + DFy(5i,0)]
8§50 a— oo i=[t/5] 2

XE:[ f(3(s, 81 - l(a)))I('r>8i—l(a))‘I's, t(f)]jl

[u/8]-1 1 [a8] [a8z] 4 2
o ey ye__s 1
= limit limit E E f/ﬁ<7= —P) > (-D2F'[a8i]+j(—_—’p)
80 a— i=[2/8] 0 a j=1 a
(4.24) . .
R [adi] +J
+ Dy F 501+ — P dp
XE[ f(Z°(s, 8i - l(a)))I(T“>Si—z(a))‘l’s,t(za)]
[u/8]-1 1 [ad] [asl] 47 2
o ey ye s 1/\/a J
= limit limit E (—— ) (DFai -(—-——, )
e a_n}i) i=§/8] /(; Ja D ng 24 [adi]+j a b
[adi] +j
+D22Fv[a8i]+j(—'a__’p)) dp

Xf(Z%(s, 81 — 1(a))) Igas g yap¥e, 1(Z°)

[u/8]-1 1 [a8] [a81] +7 2
e el e 1//a J
= limit limit £ (—— —p) (DFa,- -(————,p)
850 a— oo t=[zt/8]/(; \/E ng ! 8.]+j a
[adi] +j
+D22F[a8i]+j(—'_—a ,P)) dp

] [adr] - .
xi( 225,81 = ) Ry~ p)
[ad(i+ 1)]
a

b

’ p)) dp)I(Ta > 8i—l(a))\ps, t(Za)

Xoeee XF[a&(iﬂ)](
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which is exactly this second and third lines. However, the last three inequalities

require a justification. For the first of these three, subtract the expression from
the one above and take the absolute value. We then find the bound

[u/8] 1 [ad] [aSi] +j 2 [a&,] +j
1//a
o e R )

i=[t/3]-1 i=1
“(DzF[asi]+j(3i»0)2 + D22f[a8i]+j(8i70))) ]“f“oo
0

J
J

[u/8] | [ad]
— E
< Y -~ j; sup

adi] +j
D2F}( [adi] +J
i=[t/8]-1 1 0<p<l/ya

2
. ,p) - D, F;(8i,0)

(4.25) [asi] +J

a

+E sup Dgi}( , p) — D}F;(8i,0)

0<p<l/ya

u-t
<— sup{E[ sup ||D2E)(°2»P)2—DzE)(U1v0)2||0]
0<p<l/ya

+E[ sup _||DSFy(vp, P) — D22E)(Dl’0)”0]; Uusov <0 <tv -0 < 8}”’“00,
O<p<l/ya
which tends to zero as @ - o and § — oo. Again, || ||, denotes the operator
norm and || - ||, the supremum norm. For the next equality we again turn to the
Hélder inequality for uniform mixing. The absolute value of the difference here
is bounded for each term in the sum on i by

0]

1/ya [ad] 8i .2
”f”w(pw(al(a))E ‘/(;/‘/_(—‘/],.7 _p) Z (D2F[a8i]+j(w, p)
5 ,
< E”f”oo(poo(al(a))E[ sup sup (||D,Fy(v, p)II2 + ||D22F0(v,p)||0)]_

Jj=1

[adi] +)
(4’26) _D22F[a8i]+j(T’p) dp

a
0<p<10=<v<o0

Now let a — 0. For the last equality, again subtract and take the absolute
value. we then find the bound

[u/8] 1 [ad] adi]+j \*
wm 5 TE| e |np(tH )
i=[t/8]—12a j=1 |0<p<i/ya a
[adi] +)
—D;"F}(———a—,p) 1 Df Il
0

Xp

Fl( [a8i] ,p) F[GS](M,},)&) A diamU

a
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u-—t

< sup E

sup
2 icis<u

0<p<l/ya

([a8ia] +j,p)2

DJF,
1 Df lloo

adi| +J
+D§F}([—al—],p)
0 -

adi] +j '
X sup p(Fl(u_],p) oo
0<p<l//a a

( [adi] +j

[a8] ,p),e) A diamU |.

The first line in the expectation is bounded uniformly in L' and the second
converges to zero in probability uniformly in a and i as § — 0 [see (4.8)].
Taking stock of the situation at this juncture, we find that

7| 1o, u 8 1) = 18G5, A7)

_j;:t’%E[Dz,E)(u,O)“’ + DiFy(0,0)] f(¢(s, ) dv)‘I's,t(r)]

[u/8]-1 ( [a8] j—-1

L (x L [0

i=[t/8] \ j=1 k=1
[adi] +j
2 » P

= limit limit2E

§-0 a—-

X D,F. . (
(4.28) 27 Labides

[abi] +k,p))

XD2F[a8i]+k( a

xf(Z%(s, 8i — l(a)))
adi]| +1

XF[aai]+1(([_a]_‘_, P) Xoeee

[ad(i + 1)]

XD2F[a8(i+1)]( )dp)I{T > si—i(ay¥s, (2 )}

In a line of argument similar to (4.24), we have

(4.29) E?[ “N it~ ¥, 12-: E[D,Fy(v,0)D,Fy(v,0)] f(§(s,0)) do'¥, ,(:)]

tAT n—>© nj_l k=1

[u/8]-1 1 [a8] j—1
= limitlimit| Y E|— Y ) D,F;(8i,0)D,F,(8i,0)
80 a=~oo| jz8] | @ j=1k=1

XE?[ f({(s, i - l(a)))l(ws;'-t(a))‘l’s,t(f)]]
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[u/8]-1 [ad]
limit imit[ Y. E[—= Y DyFju514;(8i,0) Dy Fosiy, 4(8,0)
8-0 a—> o i=[t/8] j=1

Xf(Z2%(s, 8 = U(a))) e 5i—yap¥s, t(Za)]

[u/8]-1 1
= limit imitE®| Y. 2E fl/ﬁ(——p)
850 a— o0 i=[t/8] 0 \/E
(ad -1 [adi] +j
Xy X D2F|:a8i]+j(T»p)
j=1k=1

[adi] + &
XDy Frosiyopel ™, p| dp

a

Xf(Z%(s, 8i - (@) Ires 5i-yay¥s, t(Za)]

[u/8]-1 1
=limjtlimitE§°[ y 2Ef1/‘/5( )

- — P
8§50 a— o0 i=[t/5] 0 \/E
(ad] -1 [adi] +J
Xy X D2Fi:a8i]+j(—-a ,P)
j=1k=1

[adi] + &
XDy F 5014k Y P dp

X f(Z%(s, 81— (@) Li7es 5i—yap¥s, t(Za)]
[u/8]-1 [ad] j-1
= limit limit[

850 a— o0

2, L E (7 )

i=[t/8] Jj=1k=1

XDy Fysi1+

[adi] + &
XDzF[asi]m(T‘, P)

([a8i] + l’p)

( [adi] +j,p)

X[(Z%(s,8i — U(a))) Fi 450141
[ad(i + 1)]

X XF[aS(H-l)]( a

’ p) d}’ I{T:, > Si—l(a))‘I,s, t(Za)] .

Some words of explanation are necessary to justify this sequence of equalities.
The limit on n exists for nearly the same reason that the limits defining 62(v)
and B(v) exist. This limit may be combined with the limit on a by a standard
theorem on weak convergence. We justify the last three equalities in each
instance, by first subtracting and then taking absolute values. For the first of
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these three we start with the bound

[u/8]1-1 4 [a8] /-1 [a&] +j [adi] + &
[DzF —_— p)Dsz(———a ,p)

~X X sw

1=[¢/8]1 ¢ j=1 k=10<p=<1/ya

-D,F,

1 1loo
0 -

u—t [ad] j—1
B p e £ EX DRI

Jj=1k=1 0<p<l/Ja

—D,F;(v,0) D, Fy(v,0)] || s u < v < t}||i||°° + o(s))

u— [ad] j-1
<— ( sup {Z Y s (IE[DE(v, p)(DoFi(v, P) = DyFi(v,0)] llg
u<vo<t| j=1k=10<p<l/ya
(4.30) +IE[(DyFy(o, p) = DF(0,0)) D Fi(0,0)]lo); 2 < v < t} 11l + o(a))
u-—t [ad] /-1 1 B
< —| s {Z Y sw  —IE[DiR(v, P)]lo
usvst | j=1 k= 10<p<i/ja @
1/2

+2dg (j—k)* sup  E[IDFy(v, p)IE]
O<p<l/ya

E[I1D,Fy(v, P) - D2F5(0,0)||3]1/2} 1 lles + 0(8))

X  sup
O<p<l/ya
d(u—1t) at . 1/2
<= sup< s E[IDEFo(v, P)lo] + X 0a()”  swp _E[ID:Fo(v, p)I]
usv<t\O<p<l/ya Jj=1 O<p<l/ya
o(9)

X sup E[uDzFo(o,p)—DzFo(v,O)u%]}ufnm+ S

0<p<l/ya

Now let @ — oo and 8§ — 0. The next equality uses the Holder inequality in
much the same manner as in (4.27). For the last inequality use the bound

[ad] j—1 j k
Z Z Dsz(”"‘ Z:p)D2fk(U+ ;ap)

j=1 k=1

u-—1

sup sup
2ad t<v<u 0<v<l/ya

( (Z“(s u—l(a))F[av]+1(v+ l,p)

(4.31) )
X v+ XFigsan(v +8, p)) - f(Z"(s,v)))

XIig, > si-1(an¥s A )]l
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Now,
. . u-—t
lim sup lim sup
8§—-0 a— oo 2a8
[a8] j—1 j k
X sup sup JE|Y Y D2F}-(v + —,p)DQFk(U + —,p) < ®
t<v<u O0<v<l/\a Jj=1k=1 a a

by the arguments in (4.30). Also

. 1
' ,( f(Z“(s, v - l(a))F[au+1](U + 2’ p) F[a(u+8)](v +9, P))

(4-32) —f(Z"(s, v)))I(T">8i—l(a)}\Ps, t(Za)I

1
= ”Df”oo(p(F[av]+l(U + E! p) F[a(o+8)](v + 8, p): e) A dlamU)

and for any £ > 0,

1
limsup limsup sup P{(p(F[aO]H(v + —,p)
a

8§—-0 a—>o0 s<vLu

(4.33)
X oo X Frgpray(v+ 8,p)),e) > 5} =0.

So, the last equality holds by (4.31), (4.32) and (4.33). Summarizing, we find that

B7|( /¢, u A 1)) = (5Cs, 22 7)

Wy [ HEDF(,07 + DIR(0.0)] 15, o)) do 0, ()

2
AT
n Jj-1

=E? [ftumlimitl Y ¥ ED,F;(v,0)D,F(v,0)f($(s,v)) do ¥, ($)]

At nooo gy pg
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Therefore

0=E? [( fE(s,unt))—f((s, tAT))

n J-1

1
— [*"" timit Z ED,Fy(v,00° + = Y Y ED,F;(v,0)D,F(v,0)
tAT n—o oo niik=1

‘I's,t(f)]

(4.35) +§Dm(v,o>)f(;(s,v>>do
- Ew[( [(5(s,u A ™)) = [(3(5,8 A T))
- [2 limit — 2By, D, (0,00 + limit — f i E[ D,F(0,0), D,Fy(v,0)]

j=1 j=1
‘I's,t(f)]

-z 15 un ) - 16 n ) = [ 36700+ w0) 1566, 00 01,0

+ %sz'b(v,o)] [(¢(s, 0)) dv

establishing (4.11), and hence Donsker’s invariance principle for Lie groups. O
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