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KOLMOGOROV’S EARLY WORK ON CONVERGENCE THEORY
AND FOUNDATIONS

By J. L. DooB
University of Illinois, Urbana-Champaign

1. Probability before Kolmogorov. When Kolmogorov was starting his
mathematical career, nonmathematical probability was, as it still is, the study of
various not very precisely defined real contexts. Some of these contexts gave rise
to mathematical problems, in combinatorics for example, but it was not clear
what an overall mathematical probability context would be or indeed whether
one was possible. Poincaré had written in 1912 [13] “On ne peut donner une
définition satisfaisante de la probabilité.” It was typical of the writing of that
time, and in fact of considerably more recent times, that the reader could not be
certain whether the writer was thinking of probability as a nonmathematical or
a mathematical subject in his statement. von Mises in 1919 [15] was clearer in
what he deplored but was just as pessimistic, although more professorily ponder-
ous: “In der Tat kann man den gegenwiirtigen Zustand kaum anders als dahin
kennzeichnen, dass die Wahrscheinlichkeitsrechnung heute ein mathematische
Disciplin nicht ist.” von Mises attempted to create his desired mathematical
discipline but his theory of “collectives” was a confused although suggestive
mixture of mathematical and nonmathematical contexts. In view of Kolmogorov’s
high opinion of von Mises a few explanatory remarks are appropriate here.
Consider a sequence obtained by sampling a sequence of independent trials with
a common distribution. (Note that sampling an infinite sequence is an unrealistic
element of this analysis.) There are typical properties associated with such a
sequence, as indicated for example by the law of large numbers. von Mises
attempted to construct a basis for mathematical as well as nonmathematical
probability by a formalization of these typical properties, by constructing an
individual sequence with enough of these properties to be a model for a trial
sequence. His original definition of such an individual sequence (a “collective”)
[15], was insightful of what seems to happen in sampling, but was either vacuous
or meaningless when applied to an individual sequence, depending on the
reader’sinterpretation of von Mises’ words. His later definition [16] had too few
properties to be useful. In any event such a construction, even if successful,
would obviously be too awkward and too limited to be considered seriously as a
useful basis for the extraordinary scope of modern probabilistic mathematical
analysis. On the other hand, the formalization of such a sequence is an appealing
conceptual problem which Kolmogorov discussed .on several occasions, most
recently in 1983 [K462].!
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Although it was not clear when Kolmogorov was starting his research what
the mathematical context of probabilistic analysis was, the existing fund of
technical mathematical results was by no means negligible. For example, versions
of the law of large numbers and sophisticated versions of the central limit
theorem had been proved. Although most theoretical investigations were con-
cerned only with repeated independent trials, that is, with sequences of indepen-
dent random variables with a common distribution, Markov defined and
discussed what are now called Markov chains in 1906 [12]. Borel, in an influen-
tial 1909 paper [3], called attention to almost sure properties of infinite se-
quences of trials and proved his half of the Borel-Cantelli theorem; Cantelli
proved the second half in 1917 [4]. In Borel’s 1909 paper he stated the strong law
of large numbers for symmetric Bernoulli trials and linked it to a property of
dyadic expansions of numbers in the interval (0,1), but his proof was hardly
acceptable in that it was based on evaluations using the central limit theorem for
Bernoulli trials with the remarkable simplifying addition that the approximation
error was taken to be zero! In 1910, Faber [7] gave what seems to be the first
valid proof of this case of the strong law of large numbers. He obtained the result
as a property of dyadic expansions and refers to Borel’s paper for the connection
with probability. Apparently Hausdorff’s 1914 set theory book [9] contained the
first rigorous simple proof of this law and was the first of papers by several
authors culminating in versions of the iterated logarithm law, of which
Khintchine’s in 1924 [11] was the first. Hausdorff explicitly identified probability
with measure in his context, again that of dyadic expansions of numbers in (0, 1).
Writers in this period were sometimes chary to identify mathematical probabil-
ity with measure because there were certain ideas commonly held in nonmathe-
matical probability discussions, such as probability 0 means impossibility, that
are incompatible with the measure approach.

Bachelier, in papers from 1900 [1] on, derived properties of the Brownian
motion process from asymptotic Bernoulli trial properties. His Brownian motion
process was necessarily not precisely defined, but his application of the André
reflection principle becomes valid for the Brownian motion process as an applica-
tion of the strong Markov property. His valuable results were repeatedly redis-
covered by later researchers. Wiener, in a 1923 paper [17], applied the Daniell
integral to give a rigorous treatment of the Brownian motion process, now
accordingly sometimes called the Wiener process, but this work, like his pioneer-
ing work in potential theory, went unnoticed and unused for years.

2. Kolmogorov’s classical work on sums of independent random vari-
ables. After a treatment of convergence of infinite series of discretely dis-
tributed independent random variables in his part of a 1925 joint paper [K10]
with Khintchine, Kolmogorov, in a 1928 paper [K18, K23], dropped the hypothe-
sis of discretely distributed summands and proved that an infinite series of
independent mean 0 random variables converges almost surely if the series of
summand variances converges. Furthermore he proved his famous Three Series
Theorem, giving necessary and sufficient conditions for the almost sure conver-
gence of infinite series of independent random variables. A fundamental tool was
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his inequality, now called Kolmogorov’s inequality, for maxima of partial sums
of mean 0 independent random variables. This inequality generalizes Chebyshev’s
inequality, was later extended by Bernstein [2] to what are now called martin-
gales and is now classified as an application of a submartingale inequality.
Although the context of the inequality has widened, Kolmogorov’s proof is
trivially adaptable to the newer context. In [K18, K23] Kolmogorov defined
equivalence of sequences of random variables: Two sequences x,, x,,... and
Y15 Yo5 ... of random variables are defined as equivalent if ¥ P[x, # y,] < c.
This condition implies that, for almost every sample sequence, x, =y, for
sufficiently large n. Using the idea of replacing a sequence of random variables
by an equivalent sequence of suitably bounded random variables, Kolmogorov in
[K18, K23] proved his Three Series Theorem, which reduces a series convergence
problem to one involving mean 0 and bounded summands, and reduced various
laws of large numbers to corresponding laws formulated in terms of L' and L?
limits for equivalent random variable sequences. As an application he proved
that if o, is the average of the first n random variables of a sequence of
independent random variables with a common distribution function F, then
there is a sequence c. of constants for which o, — ¢, — 0 in probability if and
only if

(%) lim nP[|o,| > n] =0.
n— oo
He noted later, in [K40], that the constants can be chosen equal to each other,
¢, = ¢y = --+ = c if and only if, besides (*), the symmetric integral
) b
lim | adF(a)
b—-owo’—p

exists, and then c¢ can be chosen as the value of this integral.

In 1929 [K21] Kolmogorov proved a version of the iterated logarithm law for
sums of independent mean 0 bounded random variables. In this version, if B, is
the variance of the nth partial sum s, and if m, is a bound for the absolute
value of the nth summand, then the conditions B, - o0 and m, =
¢(B,/Inln B,)"/? imply that

limsups,(2B,Inln B,) " "? =1

n— oo

almost surely. The first of the two conditions implies the second if the summands
are uniformly bounded. This theorem makes it possible to apply random variable
sequence equivalence to prove delicate iterated logarithm results for unbounded
summands, by truncation. The best previous result was Khintchine’s proof of the
theorem [11] for Bernoulli trials.

dn 1930 [K24] Kolmogorov proved one of his best known theorems, that if
Xy, X4, ... is a sequence of independent mean 0 random variables with variances
by, by,... and if ¥,b,n"% < oo, then (x, + -+ +x,)/n — 0 almost surely and
the variance condition cannot be weakened.
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3. Kolmogorov’s 1933 monograph [K40]. This influential monograph
transformed the character of the calculus of probabilities, moving it into mathe-
matics from its previous state as a collection of calculations inspired by a vague
nonmathematical context, a context thought to justify the use of half-defined
pseudomathematical concepts.

When Khintchine and Kolmogorov studied the convergence of infinite series
of independent random variables in their 1925 paper [K10], they did not mention
explicitly their hypothesis of summand independence, a hypothesis which proba-
bly seemed so natural at the time that the explicit statement was lost in the
writing. They reduced their problem to one of summation of certain Lebesgue
measurable functions on the unit interval (0, 1) under Lebesgue measure on the
interval. More precisely, using their hypothesis that their random variable
summands were discretely distributed, they were able to construct, correspond-
ing to each random variable sequence, a sequence of Lebesgue measurable
functions on the unit interval with the same joint distributions in terms of
Lebesgue measure as the given summand random variable joint probability
distributions. Since almost sure convergence is defined in terms of these joint
distributions, in the same way in the two contexts, they could solve their
problem in the standard context of Lebesgue measure theory. Thus they solved a
well defined mathematical problem, even though their statement of the original
problem was not in properly defined mathematical terminology. When
Kolmogorov studied the same convergence problem (without the discrete distri-
bution hypothesis) in his 1928 paper [K18, K23], the independence hypothesis
was in the title of the paper. Expectations were integrals of random variables
and expectations with respect to an event B were integrals over the set B. But
in this paper there was no explanation of the identification of events with sets of
a measure space or of the random variables with measurable functions on the
space. The omission was customary at the time, as was the fact that the omission

“was not mentioned. It was not until the 1933 monograph that the standard
manipulations of probabilities and expectations were fully justified.

By the 1930’s it was understood that the basic manipulations of mathematical
probability were the same as those of measure theory, but the relation between
the two had not been given a usable formulation. In such a formulation:

(A) The probabilistic context must be identified with a probability measure
space, that is, a measure space for which the measure of the space itself is 1.

(B) Random variables and their expectations must be identified with measurable
functions on the probability space and their integrals.

(C) Conditional probabilities and integrals must be defined.

Once a probability measure has been chosen, as suggested:-by a given nonmathe-
" matical or mathematical context, it costs nothing—except perhaps the annoy-
ance of nonprobabilists—to call measurable functions on the space “random
variables” and to call their integrals with respect to the chosen measure “expec-
tations”. Thus (B) becomes trivial. However there was a startling innovation in
Kolmogorov’s solution of (C) in that he unexpectedly defined conditional proba-
bilities and expectations as random variables, whose existence he proved by an
application of the Radon-Nikodym theorem.



CONVERGENCE THEORY AND FOUNDATIONS 819

A treatment of (A), (B) and (C) does not provide a useful basis for mathemati-
cal probability until it is shown how the treatment can be adapted to standard
probability contexts. The natural mathematical space corresponding to a non-
mathematical probabilistic context producing some sort of outcome is the space
of all possible outcomes, called by Kolmogorov the space of elementary events.
A probability measure is to be defined on some ¢ algebra of subsets of this space
with values suggested by the context. This space is frequently a product space.
For example, in a common nonmathematical probability context at each point of
a parameter set T, usually identified with a set of values of time, the probability
process produces a real number. In this context, the space of elementary events is
the product space RT, the class of functions from T into the reals. The
mathematical problem (A) becomes that of defining a probability measure on
this product space, adapted to the given context.

In 1913 Radon [14] treated measures of Borel sets in finite dimensional
Euclidean space; there remained the problem of defining measures on R for T
infinite. Kolmogorov did this in [K40]. For T countably infinite, Daniell, in 1919,
had already defined product probability measures on R (corresponding to the
probability context of independent trials, not necessarily with a common distri-
bution [5]) and in [6] Daniell defined (in an awkward formulation) general
probability measures on R, but his papers were not probabilistically oriented
and were apparently unknown to Kolmogorov. As Kolmogorov’s treatment for
arbitrary T shows, the decisive case is for T countably infinite, in which case
Daniell’s work yields Kolmogorov’s measure, but is awkwardly formulated ex-
cept in the product measure case. Kolmogorov’s approach is suggested by a
rephrasing of the nonmathematical context described above. In this context to
each point of the arbitrary set T there corresponds a real valued random
variable, and every finite set of these random variables has a joint distribution
prescribed by the context. A probability measure space is to be constructed on
which a family {x(¢), ¢ € T'} of measurable functions is to be defined with the
same finite dimensional joint distributions as the given random variables. For ¢
in T and f in RT let x(¢) be the ¢th coordinate function on R7, that is, x(¢) is
the function from R7 into the reals whose value at f is f(¢). The coordinate
functions are to be the mathematical counterparts of the nonmathematical
random variables. Kolmogorov showed that there is a probability measure
defined on the smallest o algebra of subsets of R” making every coordinate
function measurable, assigning the prescribed joint distributions to the finite sets
of coordinate functions. He did this without recourse to a nonmathematical
context, that is, for arbitrary T and an arbitrary assignment of mutually
consistent distributions of finite sets of coordinate functions, Kolmogorov de-
fined a probability measure on his choice of o algebra of subsets of RT, with the
assigned finite dimensional distributions.

Thus Kolmogorov necessarily had to treat measure theory on abstract spaces.
Although Fréchet had noted- in 1915 [8] that the concepts associated with
Lebesgue measure on the line extend to measure on abstract spaces, these ideas
had evidently not been fully absorbed by the time [K40] appeared. At any rate,
Kolmogorov, paying his tribute to cultural lag, considered it advisable to define
measurability of a function, to define the integral of a measurable function, to
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prove that the limit of a convergent sequence of measurable functions is measur-
able and so on, in the context of an abstract measure space. It is surprising that
in a discussion involving going to the limit under the expectation symbol,
Kolmogorov did not appeal to the Lebesgue dominated convergence theorem.

In view of the seemingly noncontroversial nature of Kolmogorov’s approach to
mathematical probability, it may seem surprising that it was not universally
accepted at once. Perhaps one reason for the delay was the mistaken idea that he
was limiting the scope of mathematical probability by making the subject purely
mathematical instead of keeping it a combination of mathematical and non-
mathematical contexts. To give the flavor of the theory’s reception, note that
one research probabilist asserted to the writer in the 1940’s that Kolmogorov’s
approach was not applicable to a game between two players in which the winner
had to win two out of three plays, because there was not a fixed number of plays
to a game! A second objection was offered by some classical analysts: They
asserted that measure theory deprived probability theory of its charm, that
measure theory was tedious and boring and that they doubted that it would
prove fruitful as applied to probability. History has refuted these doubters,
although they would have felt even more doubtful if they could have imagined
the refined delicate set theoretic analysis that has invaded present day probabil-
ity theory. Kolmogorov himself stated in [K40] that what distinguishes probabil-
ity from the usual measure theory are such conditions as independence and
“weakened analogous conditions,” for example the Markov property.

Kolmogorov’s new definition of conditional probabilities made it possible to
define the Markov property precisely: If x,, x,,... is a sequence of random
variables, his definition covers conditional probabilities relative to (x,,..., x,,)
for all n. In fact, however, it was many years before precise definitions became
standard in the literature. Kolmogorov himself, who in his early work used the
somewhat deceptive descriptive term ‘“stochastically definite” instead of
“Markov,” stated the defining Markov property imprecisely even after he had
stated it quite precisely, at least for discretely distributed random variables, in
[K40].

There is one way in which Kolmogorov’s measure conventions differ from the
present ones. The present convention is that a random variable is defined as a
measurable function from a specified probability measure space into a specified
measurable space, and concepts like random variable distributions, random
variable mutual independence, conditional expectations given a random variable
and so on, depend on the specified classes of measurable sets of the range spaces
of the random variables in question. Kolmogorov adopted a different convention
in his definitions, essentially the following. For each function x from a probabil-
ity measure space into a space, Kolmogorov made the range space of x measur-
able by defining its class of measurable sets as the smallest class making x
measurable. His convention may lead to unexpected contradictions with present
definitions. It may happen, for example (see [10]), that two real random vari-
ables, that is, two functions from a probability measure space into the reals, are
independent random variables in the modern sense, in which the range space of
the random variables has been made measurable by the assignment of the Borel
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sets, even though these random variables are not independent under
Kolmogorov’s definition, which may be more demanding.

In [K40] Kolmogorov stated the best strong law of large numbers for a
sequence X, X,,... of independent random variables with a common distribu-
tion: (x, + -+ +x,)/n has an almost everywhere finite limit when n — oo if
and only if E[|x,|] < oo, and if so, the limit is E[x,]. Finally, Kolmogorov’s
precise definitions made it possible for him to prove in [K40] the following 0-1
law: If y,, ¥,,... is a sequence of real random variables and if f is a Baire
function of this sequence, with the property that

PLf=0y,..., %] =P[f=0] as.

for all n, then the right side of the equality must be either 0 or 1. (The set where
f = 0 would now be described as a set in the o algebra generated by y,, ¥;,... .)
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