THE INFINITE SELF-AVOIDING WALK IN HIGH DIMENSIONS¹

By Gregory F. Lawler

Duke University

A measure on infinite self-avoiding walks is defined which is the natural limit of the uniform measure on finite self-avoiding walks. This limit is shown to exist in sufficiently large dimensions using the methods of Slade and Brydges and Spencer.

1. Introduction. A self-avoiding walk (SAW) of length T in \mathbb{Z}^d is an ordered sequence of points $[\omega(0),\ldots,\omega(T)]$ in \mathbb{Z}^d with $\omega(0)=0$; $|\omega(i)-\omega(i-1)|=1,\ 0< i\leq T;$ and $\omega(i)\neq\omega(j),\ 0\leq i< j\leq T.$ Let Ω_T denote the set of SAWs of length T and c_T the cardinality of Ω_T . The study of SAWs first arose in chemical physics as a model of polymer chains; in this model, the uniform measure on Ω_T was considered, that is, the measure $P_T(\omega)=1/c_T,$ $\omega\in\Omega_T$. Many questions about P_T are still open, in particular how does the mean-square displacement $E_{P_T}(|\omega(T)|^2)$ behave as $T\to\infty$, and what is the limiting distribution of $[E_{P_T}(|\omega(T)|^2)]^{-1/2}\omega(T)$? Recently, Slade [4,5], using the ideas of Brydges and Spencer [1] on a related model, proved that there is a d_0 such that for $d\geq d_0$,

$$(1.1) E_{P_T}(|\omega(T)|^2) \sim DT$$

and the limiting distribution is Gaussian. This result is expected to be true for all $d \ge 5$. For d = 4, logarithmic corrections are expected in (1.1) and for d < 4 a different power of T is expected.

As stated, the SAW problem is really a combinatorial rather than a probabilistic problem. In particular, the measures $\{P_T\}$ do not form a consistent family. [We call measures $\{\mu_T\}$ on Ω_T consistent if for every R < T and $\omega \in \Omega_R$,

$$\mu_{R}(\omega) = \sum_{\substack{\xi \in \Omega_{T} \\ \xi > \omega}} \mu_{T}(\xi),$$

where $\xi > \omega$ means $\xi(i) = \omega(i)$ for $0 \le i \le R$.] To see that $\{P_T\}$ are not consistent is not difficult; indeed one can find R and walks $\omega \in \Omega_R$ which are "trapped," that is, such that

$$\sum_{\substack{\xi \in \Omega_T \\ \xi > \omega}} P_T(\xi) = 0$$

for T sufficiently large. An example with d=2, R=8 is pictured in Figure 1.

Received March-1988; revised July 1988.

¹Research supported by NSF Grant DMS-87-02879 and an Alfred P. Sloan Research Fellowship. *AMS* 1980 *subject classifications*. 60J15, 82A51.

Key words and phrases. Self-avoiding random walk, consistent measures, kinetically growing walks.

Given any consistent family of measures $\{\mu_T\}$ on Ω_T , we get a measure μ on Ω_{∞} , the set of infinite self-avoiding walks in the usual way. If $A \subset \Omega_T$ we define the cylinder set

$$B_A = \{\omega \in \Omega_{\infty} : [\omega(0), \ldots, \omega(T)] \in A\}.$$

We then define $\mu(B_A) = \mu_T(A)$ and extend μ to the σ -algebra generated by the cylinder sets.

Recently a number of consistent measures have been given on SAWs. In the physics literature consistent measures are sometimes called kinetically growing walks. One which has been analyzed rigorously is the loop-erased or Laplacian self-avoiding random walk introduced by the author [2]. There are a couple of equivalent definitions for the loop-erased walk. One is to define it as the process with transition probability for $\xi > \omega$,

$$(1.2) \qquad \frac{\hat{P}_{T+1}(\xi)}{\hat{P}_{T}(\omega)} = \frac{P_{\xi(T+1)}\{S(j) \neq \omega(i), 0 \leq i \leq T, 0 \leq j < \infty\}}{2dP_{\omega(T)}\{S(j) \neq \omega(i), 0 \leq i \leq T, 0 < j < \infty\}}.$$

In the above, S(j) denotes a simple random walk and P_x denotes probabilities starting at $x \in \mathbb{Z}^d$. We note that to give any consistent family of measures, we need only give the transition probabilities as in (1.2). In [2] it was suggested that a consistent family of measures which would correspond to the usual SAW problem could be defined as follows: If R < T, let $P_{R,T}$ be the measure on Ω_R ,

$$P_{R-T}(\omega) = (c_T)^{-1} |\{ \eta \in \Omega_T : \eta > \omega \}|$$

and

(1.3)
$$\tilde{P}_{R}(\omega) = \lim_{T \to \infty} P_{R,T}(\omega).$$

This would correspond to the transitions

$$\frac{\tilde{P}_{T+1}(\xi)}{\tilde{P}_{T}(\omega)} = \lim_{k \to \infty} \frac{\left|\left\{\eta \in \Omega_k : \eta(i) = \xi(i), 0 \le i \le T+1\right\}\right|}{\left|\left\{\eta \in \Omega_k : \eta(i) = \omega(i), 0 \le i \le T\right\}\right|}.$$

The problem comes in showing that the limit in (1.3) exists. In fact, it is nontrivial even to prove that

$$\liminf_{T\to\infty} P_{R,T}(\omega) > 0$$

if ω is not "trapped." (Madras [3] has given a proof of this for all $d \geq 2$.)

In this article, we use the methods of Slade to show that for sufficiently large d, the limit exists, that is,

Theorem 1. There exists a d_0 such that for $d \ge d_0$, $\omega \in \Omega_R$,

$$\lim_{T\to\infty} P_{R,T}(\omega) = \tilde{P}_R(\omega)$$

exists.

The d_0 is the same d_0 as in [4]. Our method is to develop an expansion for the characteristic function of $P_{R,T}$. While this expansion differs somewhat from that in [4], when absolute values are taken the same expression is gotten, so that results of [4] may be quoted here.

It is easy to check that \tilde{P}_R gives a consistent family of measures; hence we have \tilde{P}_{∞} which we define as the *infinite self-avoiding walk*. We expect Theorem 1 to hold for all dimensions; however, our methods will not be applicable to low dimensions.

Section 2 of this article develops the expansion, Lemma 3. The section is self-contained although it uses the methods of [1, 4 and 5]. The third section proves the theorem and is not self-contained; it relies heavily on the estimates derived in [4]. Any reader who wishes to follow this argument will need to read [4] along with this article.

2. Expansion for the characteristic function. Let S(n) denote a simple random walk starting at the origin in \mathbb{Z}^d and let P and E denote probabilities and expectations with respect to this walk. If $R \leq T$, $\omega \in \Omega_R$, $\tau > 0$, let

$$N_{\tau}(\omega, R, T) = P\{[S(0), ..., S(R)] = \omega, S(i) \neq S(j) \text{ for } 0 \le i, j \le T, 1 \le |j - i| \le \tau\}.$$

The Fourier transform is defined for $k \in [-\pi, \pi]^{Rd}$ by

$$\varphi_{\tau}(k,R,T) = \sum_{\omega \in \Omega_R} e^{ik \cdot (S(1), \dots, S(R))} N_{\tau}(\omega,R,T).$$

Note that

$$\begin{split} \varphi_{\tau}(0,\,R,\,T\,) &= \sum_{\omega \in \Omega_R} N_{\tau}(\,\omega,\,R\,,\,T\,) \\ &= P\{S(i) \neq S(\,j) \text{ for } 0 \leq i,\,j \leq T,\,1 \leq |i-j| \leq \tau\}\,. \end{split}$$

Let

$$\overline{\varphi}_{\tau}(k,R,T) = \left[\varphi_{\tau}(0,R,T)\right]^{-1} \left[\varphi_{\tau}(k,R,T)\right].$$

Then the characteristic function of $P_{R,T}$ as defined in Section 1 considered as a measure on \mathbb{Z}^{dR} is $\overline{\varphi}_T(k,R,T)$. In order to prove Theorem 1 it suffices to show that there exists a neighborhood U_R about 0 in $[-\pi,\pi]^{Rd}$ and a function

 $\overline{\varphi}(k,R)$ such that for $k\in U_R$,

(2.1)
$$\lim_{T\to\infty} \overline{\varphi}_T(k,R,T) = \overline{\varphi}(k,R).$$

[Since the sequence of measures $P_{R,T}$ is supported on a finite subset of \mathbb{Z}^{dR} , the sequence is tight and hence it suffices to prove (2.1) for $k \in U_R$.]

We define the generating function

(2.2)
$$Z_{\tau}(z, k, R) = \sum_{T=R}^{\infty} z^{T} \varphi_{\tau}(k, R, T)$$

$$= \sum_{T=R}^{\infty} z^{T} E\left(\exp\left\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \right\rangle \psi_{\tau}[0, T]\right)$$

[we write $k=(k_1,\ldots,k_R),\ k_j\in[-\pi,\pi]^d$], where $\psi_\tau[a,b]$ is the indicator function of the event $\{S(i)\neq S(j):\ a\leq i,\ j\leq b,\ 1\leq |i-j|\leq \tau\}$, that is,

$$\psi_{\tau}[a,b] = \prod_{\substack{a \leq i < j \leq b \\ |i-j| \leq \tau}} (1 - \delta(S(i) - S(j))).$$

Let r_{τ} be the radius of convergence of $Z_{\tau}(z,0) = Z_{\tau}(z,0,0)$, that is, of

$$\sum_{T=0}^{\infty} z^T E(\psi_{\tau}[0,T]).$$

Clearly r_{τ} is nondecreasing in τ .

LEMMA 2. For each R, there exists a neighborhood U_R of 0 such that for every $\tau > 0$, $k \in U_R$, the radius of convergence of $Z_{\tau}(z, k, R)$ is r_{τ} .

PROOF. By symmetry, $E(\exp\{i\sum_{j=1}^R k_j \cdot S(j)\}\psi_{\tau}[0,T])$ is real. Hence it suffices to show for $k \in U_R$,

$$\frac{1}{2}E\big(\psi_{\tau}\big[0,T\big]\big) \leq E\bigg(\exp\bigg\langle i\sum_{j=1}^R k_j \cdot S(j)\bigg\rangle\psi_{\tau}\big[0,T\big]\bigg) \leq E\big(\psi_{\tau}\big[0,T\big]\big).$$

But a simple calculation, using $|S(j)| \le R$, shows that the k-derivatives of the middle expression are bounded by $RE(\psi_{\tau}[0,T])$ which allows us to make the estimate.

Given an interval [0,T], and τ , let G_T be the graph whose vertices are $\{0,1,\ldots,T\}$ and whose edges are $\{s,t\}$, $1\leq |t-s|\leq \tau$. We will use graph to mean a subgraph of G_T and we let \mathscr{G}_{τ} be the collection of all subgraphs. If $\Gamma\in\mathscr{G}_{\tau}$, we write $st\in\Gamma$ to mean that $\{s,t\}$ is an edge of Γ .

A time $\sigma > 0$ is a cut-point for Γ if there do not exist $s < \sigma < t$ with $st \in \Gamma$. We call 0 a cut-point for Γ if $0t \notin \Gamma$ for each t > 0. Every graph Γ has a minimum cut-point, $s(\Gamma)$,

$$s(\Gamma) = \inf\{\sigma \colon \sigma \text{ cut-point of } \Gamma\}.$$

We call a graph Γ is connected if $s(\Gamma) = T$. If we let

$$U_{st} = \left\{ egin{array}{ll} 0, & S(s)
eq S(t), \ -1, & S(s) = S(t), \end{array}
ight.$$

then

$$\begin{split} \psi_{\tau} \big[0, T \big] &= \prod_{st \in G_{\tau}} \big(1 + U_{st} \big) \\ &= \sum_{\Gamma \in \mathscr{G}_{\tau}} \prod_{st \in \Gamma} U_{st} \\ &= \sum_{\sigma = 0}^{T} \sum_{\substack{\Gamma \in \mathscr{G}_{\tau} \\ st \in \Gamma}} \prod_{st \in \Gamma} U_{st}. \end{split}$$

By resumming it is easy to see that

$$\sum_{\substack{\Gamma \in \mathscr{G}_{\tau} \\ s(\Gamma) = 0}} \prod_{st \in \Gamma} U_{st} = \psi_{\tau} [1, T].$$

Define

$$\bar{\psi}_{\tau} \big[0, T \, \big] = \sum_{\substack{\Gamma \in \mathscr{G}_{\tau} \\ s(\Gamma) = T}} \prod_{st \in \Gamma} U_{st}.$$

Then for $\sigma > 0$, again by resumming we get

$$\sum_{\substack{\Gamma \in \mathscr{G}_{\tau} \\ s(\Gamma) = \sigma}} \prod_{st \in \Gamma} U_{st} = \overline{\psi}_{\tau} [0, \sigma] \psi_{\tau} [\sigma, T].$$

Note that $\overline{\psi}_{\tau}[0,\sigma]$ and $\psi_{\tau}[\sigma,T]$ are independent random variables. We then get

(2.3)
$$\psi_{\tau}[0,T] = \psi_{\tau}[1,T] + \sum_{s=1}^{T} \overline{\psi}_{\tau}[0,s] \psi_{\tau}[s,t].$$

LEMMA 3. For Z_{τ} as defined in (2.2),

$$\begin{split} Z_{\tau}(z,k,R) &= zD(k)Z_{\tau}(z,\overline{k}_{1},R-1) \\ &+ \sum_{s=1}^{R-1} z^{s}Z_{\tau}(z,\overline{k}_{s},R-s)E\left(\exp\left\langle i\sum_{j=1}^{R}k_{j}\cdot S(j\wedge s)\right\rangle \overline{\psi}_{\tau}[0,s]\right) \\ &+ Z_{\tau}(z,0)H_{\tau}(z,k,R), \end{split}$$

where

$$k = (k_1, \dots, k_R), \quad k_j \in [-\pi, \pi]^d; \quad k_j = (k_j^1, \dots, k_j^d);$$

$$D(k) = \frac{1}{d} \sum_{m=1}^d \cos \left(\sum_{j=1}^R k_j^m\right); \quad \overline{k}_s = (k_{s+1}, \dots, k_R)$$

and

$$H_{\tau}(z, k, R) = \sum_{s=R}^{\infty} z^{s} E \left(\exp \left\{ i \sum_{j=1}^{R} k_{j} \cdot S(j) \right\} \overline{\psi}_{\tau}[0, s] \right).$$

Proof. By (2.3)

$$\begin{split} Z_{\tau}(z,k,R) &= \sum_{T=R}^{\infty} z^{T} E \Biggl| \exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \Biggl\langle \psi_{\tau}[1,T] + \sum_{s=1}^{T} \bar{\psi}_{\tau}[0,s] \psi_{\tau}[s,T] \Biggr) \Biggr\rangle \\ &= \sum_{T=R}^{\infty} z^{T} E \Biggl| \exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \psi_{\tau}[1,T] \Biggr\rangle \\ &= z E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(1) \Biggr\rangle \Biggr) \\ &\times \sum_{T=R}^{\infty} z^{T-1} E \Biggl\langle \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot (S(j) - S(1)) \Biggr\rangle \psi_{\tau}[1,T] \Biggr\rangle \\ &= z D(k) Z_{\tau}(z,\bar{k}_{1},R-1). \\ &\sum_{T=R}^{\infty} z^{T} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \sum_{s=1}^{R-1} \bar{\psi}_{\tau}[0,s] \psi_{\tau}[s,t] \Biggr) \\ &= \sum_{T=R}^{\infty} z^{T} \sum_{s=1}^{R-1} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j \wedge s) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr) \\ &\times E \Biggl(\exp \Biggl\langle i \sum_{j=s+1}^{R} k_{j} \cdot (S(j) - S(s)) \Biggr\rangle \psi_{\tau}[s,T] \Biggr) \\ &= \sum_{s=1}^{R-1} z^{s} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j \wedge s) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr) \\ &\times \sum_{T=R}^{\infty} z^{T-s} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j \wedge s) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr) Z_{\tau}(z,\bar{k}_{s},R-s). \\ &\sum_{T=R}^{\infty} z^{T} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j \wedge s) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr\rangle Z_{\tau}(z,\bar{k}_{s},R-s). \\ &\sum_{T=R}^{\infty} z^{T} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggl\rangle \sum_{T=s}^{\infty} z^{T-s} E \Biggl(\psi_{\tau}[s,T] \Biggr) \\ &= \sum_{s=R}^{\infty} z^{s} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr\rangle \sum_{T=s}^{\infty} z^{T-s} E \Biggl(\psi_{\tau}[s,T] \Biggr) \\ &= Z_{\tau}(z,0) \sum_{s=R}^{\infty} z^{s} E \Biggl(\exp \Biggl\langle i \sum_{j=1}^{R} k_{j} \cdot S(j) \Biggr\rangle \bar{\psi}_{\tau}[0,s] \Biggr\rangle \sum_{T=s}^{\infty} z^{T-s} E \Biggl(\psi_{\tau}[s,T] \Biggr) \\ &= Z_{\tau}(z,0) H_{\tau}(z,k,R). \end{aligned}$$

By adding up the contributions above we get the lemma. \Box

If we define $F_{\tau}(z, k, R)$ by

$$Z_{\tau}(z, k, R) = F_{\tau}(z, k, R)Z_{\tau}(z, 0),$$

Lemma 3 becomes

$$F_{\tau}(z, k, R) = zD(k)F_{\tau}(z, \overline{k}_1, R-1)$$

$$(2.4) + \sum_{s=1}^{R-1} z^s F_{\tau}(z, \overline{k}_s, R-s) E\left(\exp\left\{i \sum_{j=1}^{R} k_j \cdot S(j \wedge s)\right\} \overline{\psi}_{\tau}[0, s]\right) + H_{\tau}(z, k, R).$$

3. Proof of Theorem 1. The proof of Theorem 1 follows [4] and we omit a large amount of the hard analysis which is done in that article. The function $H_{\tau}(z, k, R)$ defined in Lemma 3 is analogous to $\Pi_{\tau}(k, z)$ in [4]; in our notation the latter is defined by

$$\Pi_{ au}(k,z) = \sum_{T=1}^{\infty} z^T E(e^{ik\cdot S(T)} \overline{\psi}_{ au}[0,T]), \qquad k \in [-\pi,\pi]^d.$$

One can see that the functions differ only in the form of the complex exponential term (and the fact that H_{ϵ} has fewer terms).

We will show that a number of the results for $\Pi_{\tau}(k,z)$ also hold for $H_{\tau}(z,k,R)$ with similar if not identical proofs. We first refer to the derivation of (2.11) and (2.12) of [4]. In the proof of (2.11), the complex exponential term is just estimated by one, so the same proof works verbatim for H_{τ} . We are only interested in (2.12) for z-derivatives of H_{τ} . To get (2.12) for the z-derivatives of Π_{τ} , the exponential term must be separated into independent exponentials, that is, for $0 = T_0 < T_1 < T_2 < \cdots < T_n = T$ we can write

$$\exp\{ik\cdot S(T)\} = \prod_{m=1}^{n} \exp\{ik\cdot \left(S(T_m) - S(T_{m-1})\right)\}.$$

After differentiation by z, these terms are again estimated by one. The exponential term for H_{τ} can be split similarly,

$$\exp\left\{i\sum_{j=1}^{R}k_{j}\cdot S(j)\right\} = \prod_{m=1}^{n}Y_{m},$$

where $Y_m = 1$ if $T_{m-1} \ge R$ and otherwise

$$Y_m = \exp \left\{ i \sum_{j=T_{m-1}}^R k_j \cdot \left(S(j \wedge T_m) - S(T_{m-1}) \right) \right\}.$$

With this splitting of the exponential into independent parts we can then follow

the proof exactly. Hence we get that

$$|H_{\tau}(z, k, R)| \le \text{RHS of } (2.11),$$

 $|\partial_z H_{\tau}(z, k, R)| \le \text{RHS of } (2.12).$

Similarly (2.14) holds for H_{τ} for those estimates which do not involve derivatives in k.

Lemma 4 (Theorem 4.3 of [4]). For $d \geq d_0$, $k \in U_R$, $H_{\tau}(z,k,R)$ and $\partial_z H_{\tau}(z,k,R)$ are analytic in $D_{\tau}(\frac{1}{2}) = \{z: |z| \leq r_{\tau}(1+\frac{1}{2}(\log \tau/\tau))\}$ and $|H_{\tau}(z,k,R)|, |\partial_z H_{\tau}(z,k,R)| \leq c/d$, where c is a constant independent of z,R,τ .

PROOF. Refer to the proof of Theorem 4.3 in [4]. The proof uses (2.12) and estimates for the RHS—since (2.12) holds in our case the identical proof holds.

The generating function $Z_{\tau}(z, k, R)$ is analogous to $N_{\tau}(k, z)$ of [4]; in fact

$$Z_{\tau}(z,0) = N_{\tau}(0,z),$$

 $Z_{\tau}(z,0,R) = N_{\tau}(0,z) - \rho_{\tau}(z,R),$

where $\rho_{\tau}(z, R)$ is the polynomial

$$ho_{ au}(z,R) = \sum_{T=0}^{R-1} z^T Eig(\psi_{ au}ig[0,Tig]ig).$$

Our r_{τ} is the same as $r_{\tau} = r_{\tau}(0)$ of [4] and

(3.1)
$$\operatorname{Res}_{z=r} Z_{\tau}(z,0,R) = \operatorname{Res}_{z=r} N_{\tau}(0,z).$$

By (5.11) of [4],

$$|N_{z}(0,z)| \le c|z-r_{z}|^{-1}$$
.

Since $Z_{\tau}(z,0,R) = N_{\tau}(0,z) - \rho_{\tau}(z,R)$ this clearly implies

(3.2)
$$Z_{\tau}(z,0,R) \leq c_R |z-r_{\tau}|^{-1}$$
.

In fact, we could prove the above estimate with a constant independent of R but we will not need to do so. Since (2.14) holds for H_{τ} , the estimates above (5.15) of [4] for $\delta\Pi = \Pi_{\tau} - \Pi_{\sigma}$ can be used to show for $\sigma < \tau$,

(3.3)
$$|H_{\sigma}(r_{\sigma}, 0, R) - H_{\tau}(r_{\sigma}, 0, R)| \leq c\sigma^{-1}.$$

Also (5.15) gives

$$(3.4) r_{\tau} - r_{\sigma} \le c\sigma^{-1}.$$

In (3.3), (3.4) the constant c is independent of τ . Combining (3.4) with Lemma 4, we get

$$\big|H_{\tau}(r_{\tau},0,R)-H_{\tau}(r_{\sigma},0,R)\big|\leq c\sigma^{-1}$$

and hence with (3.3) we get

$$|H_{\sigma}(r_{\sigma},0,R)-H_{\tau}(r_{\tau},0,R)| \leq c\sigma^{-1}.$$

We assume the neighborhoods U_R of Section 2 have been chosen so that if $\mathbf{k} = (k_1, \ldots, k_d) \in U_R$, then $\overline{k}_s = (k_{s+1}, \ldots, k_R) \in U_{R-s}$ for every 1 < s < R-1. Then by induction on R we see from (2.4), Lemma 4 and (3.5) that $F_r(z, k, R)$ is analytic in $D_r(\frac{1}{2})$ and

$$\begin{aligned} |F_{\tau}(z,k,R)|, |\partial_{z}F_{\tau}(z,k,R)| &\leq c_{R}, \\ |F_{\sigma}(r_{\sigma},k,R) - F_{\tau}(r_{\tau},k,R)| &\leq c_{R}\sigma^{-1}, \end{aligned}$$

where c_R is independent of τ , σ (but depends on R).

Following [4], we let C be the circle of radius $\frac{1}{2}$ around 0, oriented counterclockwise, and let $k \in U_R$. Then

$$\begin{split} \varphi_{\tau}(k,R,T) &= \frac{1}{2\pi i} \int_{C} Z_{\tau}(z,k,R) \frac{dz}{z^{T+1}} \\ &= - \mathop{\rm Res}_{z=r_{\tau}} z^{-(T+1)} Z_{\tau}(z,k,R) + \frac{1}{2\pi i} \int_{\partial D_{\tau}(1/2)} Z_{\tau}(z,k,R) \frac{dz}{z^{T+1}} \\ &= - r_{\tau}^{-(T+1)} F_{\tau}(r_{\tau},k,R) \mathop{\rm Res}_{z=r_{\tau}} Z_{\tau}(z,0) \\ &+ \frac{1}{2\pi i} \int_{\partial D_{\tau}(1/2)} Z_{\tau}(z,k,R) \frac{dz}{z^{T+1}}. \end{split}$$

From (3.2) the absolute value of the second term is bounded by $c_R r_T^{-(T+1)} T^{-1/2} \log T$ for $\tau = T$. By Corollary 4.2 of [4] [see the comment in [4] below (5.7)],

$$\operatorname{Res}_{z=r_{\star}} Z_{\tau}(z,0) = -1 + O\left(\frac{1}{d}\right).$$

Hence we get

$$egin{align} ar{arphi}_T(k,R,T) &= rac{arphi_T(k,R,T)}{arphi_T(0,R,T)} \ &= rac{F_T(r_T,k,R)}{F_T(r_T,0,R)} ig(1 + O_R(T^{-1/2}\log T)ig), \end{split}$$

where we write O_R to indicate that the term may depend on R. But the uniform estimates (3.6) show that there exists a $\overline{\varphi}(k,R)$ such that

$$\lim_{T\to\infty}\frac{F_T(r_T,k,R)}{F_T(r_T,0,R)}=\overline{\varphi}(k,R)$$

and hence

$$\lim_{T\to\infty}\overline{\varphi}_T(k,R,T)=\overline{\varphi}(k,R),$$

which proves the theorem. \Box

REFERENCES

- [1] BRYDGES, D. and SPENCER, T. (1985). Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys. 97 125-148.
- [2] LAWLER, G. (1980). A self-avoiding random walk. Duke Math. J. 47 655-693.
- [3] MADRAS, N. (1988). End patterns of self-avoiding walks. J. Statist. Phys. 53 689-702.
- [4] SLADE, G. (1987). The diffusion of self-avoiding random walk in high dimensions. Comm. Math. Phys. 110 661-683.
- [5] SLADE, G. (1989). The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab. 17 91-107.

DEPARTMENT OF MATHEMATICS DUKE UNIVERSITY DURHAM, NORTH CAROLINA 27706