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THE INFINITE SELF-AVOIDING WALK IN
HIGH DIMENSIONS!

BY GREGORY F. LAWLER
Duke University

A measure on infinite self-avoiding walks is defined which is the natural
limit of the uniform measure on finite self-avoiding walks. This limit is shown
to exist in sufficiently large dimensions using the methods of Slade and
Brydges and Spencer.

1. Introduction. A self-avoiding walk (SAW) of length T in Z¢ is
an ordered sequence of points [w(0),...,w(T)] in Z? with w(0) = 0;
lw(@) —w(i—1)=1,0<i<T; and w(i) # w(j), 0<i<j<T. Let Qp de-
note the set of SAWs of length T and ¢, the cardinality of @,. The study of
SAWs first arose in chemical physics as a model of polymer chains; in this model,
the uniform measure on £, was considered, that is, the measure P, (w) = 1/cy,
w € Q. Many questions about P are still open, in particular how does the
mean-square displacement Ep (|w(T )|?) behave as T — oo, and what is the
limiting distribution of [Ep (|w(T)|*)] /%(T)? Recently, Slade [4,5], using
the ideas of Brydges and Spencer [1] on a related model, proved that there is a
d, such that for d > d,,

(1.1) Ep,(|o(T)[®) ~ DT

and the limiting distribution is Gaussian. This result is expected to be true for all
d > 5. For d = 4, logarithmic corrections are expected in (1.1) and for d < 4 a
different power of T is expected.

As stated, the SAW problem is really a combinatorial rather than a proba-
bilistic problem. In particular, the measures {P;} do not form a consistent
family. [We call measures {p,} on €, consistent if for every R < T' and w € Qp,

“R(w) = Z MT(§)>
§€Qr
E>w
where ¢ > w means §(i) = w(i) for 0 <i < R.] To see that {P;} are not
consistent is not difficult; indeed one can find R and walks w € Q5 which are
“trapped,” that is, such that

Z PT(§) =0
o

for T sufficiently large. An example with d =2, R =8 is pictured in Figure 1.
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Given any consistent family of measures {g,} on Q;, we get a measure pu on
Q.., the set of infinite self-avoiding walks in the usual way. If A C Q we define
the cylinder set

B, = {0 €, [0(0),...,0(T)] € A}.

We then define u(B,) = pr(A) and extend p to the o-algebra generated by the
cylinder sets.

Recently a number of consistent measures have been given on SAWs. In the
physics literature consistent measures are sometimes called kinetically growing
walks. One which has been analyzed rigorously is the loop-erased or Laplacian
self-avoiding random walk introduced by the author [2]. There are a couple of
equivalent definitions for the loop-erased walk. One is to define it as the process
with transition probability for £ > w,

Proi(8) _ Baun(S()) # 0(i),0i< T,0<j < o)

Pr(0)  2dP,py{S(j) # w(i),0<i<T,0<j< o0}’

In the above, S(j) denotes a simple random walk and P, denotes probabilities
starting at x € Z¢ We note that to give any consistent family of measures, we
need only give the transition probabilities as in (1.2). In [2] it was suggested that

a consistent family of measures which would correspond to the usual SAW
problem could be defined as follows: If R < T, let Pj 5 be the measure on {p,

Pg r(w) = (CT)_II{"? € Qr: 1> 0}

(1.2)

and
(1.3) Py(w) = TH—I»I:,OPR’T(“)'
This would correspond to the transitions

Pr.\(§) L [{n € Q: n(i) =4(),0<i<T+1}]
P(0) koo |{m€Qn(i)=0(i),0<i<T}|
The problem comes in showing that the limit in (1.3) exists. In fact, it is
nontrivial even to prove that
liminf Py 7(w) > 0
T- ’

if  is not “trapped.” (Madras [3] has given a proof of this for all d > 2.)
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In this article, we use the methods of Slade to show that for sufficiently large
d, the limit exists, that is,

THEOREM 1. There exists a d,, such that for d > d;, & € Qp,
Tlim PR,T(“’) = PR(“’)
— 00

exists.

The d, is the same d,, as in [4]. Our method is to develop an expansion for the
characteristic function of Py 7. While this expansion differs somewhat from that
in [4], when absolute values are taken the same expression is gotten, so that
results of [4] may be quoted here.

It is easy to check that PR gives a consistent family of measures; hence we
have 1300 which we define as the infinite self-avoiding walk. We expect Theorem
1 to hold for all dimensions; however, our methods will not be applicable to low
dimensions.

Section 2 of this article develops the expansion, Lemma 3. The section is
self-contained although it uses the methods of [1, 4 and 5]. The third section
proves the theorem and is not self-contained; it relies heavily on the estimates
derived in [4]. Any reader who wishes to follow this argument will need to read
[4] along with this article.

2. Expansion for the characteristic function. Let S(n) denote a simple
random walk starting at the origin in Z¢ and let P and E denote probabilities
and expectations with respect to this walk. If R < T, w € Qp, 7> 0, let

N(w,R,T) = P{[S(O),..., S(R)] = w, S(i) #+ S(j) for
0<i,j<T,1<|j—i <7}
The Fourier transform is defined for & € [ -, 7]%¢ by

¢.(k, R, T) = Y S0 S®N (4, R,T).

wely
Note that '
¢,(0,R,T)= Y N(w,R,T)
welp
= P(S(i) # S(j)for0<i, j<T,1<|i—Jj| <}
Let '

#,(k, R, T) =[9,0, R, T)] [k, R, T)].

Then the characteristic function of Py ; as defined in Section 1 considered as a
measure on Z%% is $,(k, R, T). In order to prove Theorem 1 it suffices to show
that there exists a neighborhood U about 0 in [—&, 7]%*¢ and a function
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@(k, R) such that for & € Up,
(2.1) lim §.(k, R, T) = 3(k, R).

[Since the sequence of measures P, r is supported on a finite subset of Z9E the
sequence is tight and hence it suffices to prove (2.1) for & € Up.]
We define the generating function

o0

Y. 2"p(k,R,T)
T=R

Y 2’E
T=R
[we write k= (ky,..., kg), k;€[—m, 7]%], where ¢._[a, b] is the indicator

function of the event {S(i) # S(j): a <i, j<b,1< |i —j| <7}, that is,

¥.[a,b] = m]:[ b(l - 8(8(2) - 8(4)))- R
limji<r

Let r, be the radius of convergence of Z (z,0) = Z(z,0,0), that is, of

£ 2E(v.[0.7)).

Z(z,k, R)
(2.2)

exli £ by S| [0.7]

Clearly r, is nondecreasing in .

LEMMA 2. For each R, there exists a neighborhood Uy of 0 such that for
every 7 > 0, k € Uy, the radius of convergence of Z(z, k, R) is r,.

ProoF. By symmetry, E(exp{(iLZ%_,k;- S(j)}¥,[0, T]) is real. Hence it suf-
fices to show for £ € Uy,

1E(v.[0,T]) <E < E(y,[0,T]).

R
exp{i >k S(J')}MO, r]

But a simple calculation, using |S(j)| < R, shows that the k-derivatives of the
middle expression are bounded by RE(y,[0, T']) which allows us to make the
estimate.

Given an interval [0,T], and 7, let G, be the graph whose vertices are
{0,1,..., T} and whose edges are {s, t}, 1 < |t — s| < 7. We will use graph to
mean a subgraph of G and we let 9, be the collection of all subgraphs. If
T € ¢, we write st € T' to mean that {s,t} is an edge of T.

A time ¢ > 0 is a cut-point for T if there do not exist s < 6 < t with st € T".
We call 0 a cut-point for T if 0t &€ I for each £ > 0. Every graph I’ has a
minimum cut-point, s(T’),

s(T) = inf{e: o cut-point of I'}.



INFINITE SELF-AVOIDING WALK 1371

We call a graph T is connected if s(I') = T If we let
U - { 0, S(s) # S(¢),
o= S(s)=8(1),
then

[[ A+0,)

steG,

Y Ilu,

reg, steTl

T

Y Y [lvu

0=0 ey, stel
s(T) =0

¥.[0,7T]

By resumming it is easy to see that

X I1U,=¢[.T]

Teyg stel
s(T)= 0
Define
IIJ-r[O’ T] = Z ]._.[ Ust'
Teyg, stel
s(D)=T

Then for o > 0, again by resumming we get

L I1U.=v.[0,0]y.[0, T].

leg stel
s(T) =0
Note that ¢_[0, 0] and ¢, [0, T] are independent random variables. We then get
T
(2.3) ¥.[0,T] =y, [1,T]+ X ¥.[0,s]¢.[s, t].

s=1
LEmMA 3. For Z, as defined in (2.2),
Z(z,k,R) =2D(k)Z,(2,k,, R - 1)

R-1 _
+ Y st,(z,ks,R - )

s=1

+Z(2,0)H(2, k, R),

exp{ Zk - S(j A S)}¢ [o, S])

where
= ( kR)v kj € [_W’W]d; kj= (k;’ ) k;i);
1 4 R - .
D(k)=z Z (Zk}"); R,=(kyirre-r, kg)

sand

00 R _
H,,,(Z, kvR) = Z 2°E exp{i Z kj' S(])}IIJT[O,S] .

s=R A Jj=1
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Proor. By (2.3)

Z(z,k,R)= ) 2'E
T-R

ewfi - SO L1 71+ X 80,510, [5,71)|.

s=1

o0
Y 2"E
T=R

exp{i > k- s<j)}¢,[1, 7]

J=

R
exp{ g k;- S(l)}

x Y 2T7E

T=R

(2 b, (50) = S0 o1 7]
=2D(k)Z, (2, &k, R - 1).

§RE exp{ i Sk su)} ga,[o,s]us, t])

I
M8

N

N
||M|

exp{ fk - 8(j A S)}\P [o, S])

p{ S k- (S() - S(s))}ap,[s,T]

Jj=s+1

1
||M|

exp{z f ki-S(jA s)}z,b [o, s])

J=

- exp{i X k,-'(S(J')—S(S))}tPYt[s,T]

J=s+1

T=R

R-1

= 2°E
s=1

exp{szl S(]/\S)} .[0,5]|Z

Jj=1

(2,k;, R —s).

(]
L]
=
—_——
o~
™=
_
~
w
~~
~.
j—

} Y 7.0, 510,05, T]

=R

B{exp{i £ b+ ) |7.00, s]) £ (v, [s.7)

=Z(z,0) Z 2°E
s=R

=Z(2,0)H(z,k, R).

By adding up the contributions above we get the lemma. O

exp{ }I.i. . S(i)}JT[O, S])'

J=1
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If we define F(z, k, R) by
Z(z,k, R) = F (2, k, R)Z(2,0),
Lemma 3 becomes

F(z,k,R) = 2D(k)F(2,%,R - 1)

R-1 R
(2.4) + Y 2°F(z,k,,R—s)E exp{i Y k- S(jA s)}J,[o,s])
s=1 J=1
+ H(z,k, R).

3. Proof of Theorem 1. The proof of Theorem 1 follows [4] and we omit a
large amount of the hard analysis which is done in that article. The function
H (z, k, R) defined in Lemma 3 is analogous to II (%, z) in [4]; in our notation
the latter is defined by

M(k 2) = 3 2TE(e*ST5 [0,T]), ke [-m 7]
T=1

One can see that the functions differ only in the form of the complex exponential
term (and the fact that H, has fewer terms).

We will show that a number of the results for II (%, z) also hold for
H,(z, k, R) with similar if not identical proofs. We first refer to the derivation of
(2.11) and (2.12) of [4]. In the proof of (2.11), the complex exponential term is
just estimated by one, so the same proof works verbatim for H,. We are only
interested in (2.12) for z-derivatives of H,. To get (2.12) for the z-derivatives of
IT,, the exponential term must be separated into independent exponentials, that
is,for0 =T, < T, <T,< :-+ <T,=T we can write

exp{ik - S(T)} = ”f_llexp{ik - (8(1,) - S(T,,_1))}-

After differentiation by 2z, these terms are again estimated by one. The exponen-
tial term for H_ can be split similarly,

R n
i £ 4,50 - 17,
j=1 m=1
where Y, = 1if T,,_;, > R and otherwise

£ by (S0 T - ST,

J m-—1

Y, = exp{i

With this splitting of the exponential into ifldependent parts we can then follow
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the proof exactly. Hence we get that
|H,(z, k, R)| < RHS of (2.11),
|0,H,(z, k, R)| < RHS of (2.12).
.Sin;cilarly (2.14) holds for H, for those estimates which do not involve derivatives
in k.

LEMMA 4 (Theorem 4.3 of [4]). For d>d,, k< U, H(z k,R) and
d,H (2, k, R) are analytic in D(}) = {z: |z| < r,1 + L(log 7/7))} and
|H, (2, k, R)|,|0,H/z, k, R)| < c/d, where c is a constant independent of z, R, .

ProoF. Refer to the proof of Theorem 4.3 in [4]. The proof uses (2.12) and
estimates for the RHS—since (2.12) holds in our case the identical proof holds.
O
The generating function Z(z, k, R) is analogous to N,(k, z) of [4]; in fact
Z(z,0) = N,(0, 2),
Z(2,0,R) = N,(0,z) — p,(2, R),

where p (2, R) is the polynomial
R-1

ez, R) = ¥ 2"E(y.[0,T]).
T=0
Our r, is the same as r, = r,(0) of [4] and
(3.1) Res Z, (2,0, R) = Res N,(0, z).
z=r, z=r,

By (5.11) of [4],
IN,(0,2)] <clz —r,| L.
Since Z,(z,0, R) = N0, z) — p,(z, R) this clearly implies
(3.2) Z(z,0,R) <cglz —r,|” L.

In fact, we could prove the above estimate with a constant independent of R but
we will not need to do so. Since (2.14) holds for H,, the estimates above (5.15) of
[4] for 611 = II, — II, can be used to show for o < T,

(3.3) |H,(r,,0,R) — H(r,,0, R)| < co™.
Also (5.15) gives :
(34) r,—r,<co L

In (3.3), (3.4) the constant c is independent of r. Combining (3.4) with Lemma 4,
we get

|H/(r,,0,R) — H(r,,0,R)| < co™!
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and hence with (3.3) we get
(3.5) |H,(r,,0,R) — H(r,,0,R)| < co™ .
We assume the neighborhoods Uy of Section 2 have been chosen so that if

k= (ky...,k;) € Ug, then k,=(k,, ..., k) € Us_, for every 1 <s<
R — 1. Then by induction on R we see from (2.4), Lemma 4 and (3.5) that
F/(z, k, R) is analytic in D(3) and

F(z,k,R)|,|0,F(2,k,R)| < cpg,
69 [F (2. b, R 10,5, (2. b, B) | < c

|F:1(ro’ k’ R) - Er(r‘r’ k’ R)l < CRG_I,

where ¢y is independent of 7, o (but depends on R).
Following [4], we let C be the circle of radius § around 0, oriented counter-
clockwise, and let & € Uy. Then

1 5 dz

o(k, R, T) = Eﬁfczf(z, , R) oy
1 dz
- _ —(T+1) 4 7 .
iegz Z(2, k, R) 2mi /:90,(1/2) T(z’k’R)zT‘L1

= —r T*YE (r,, k, R)Res Z (2,0)
z=r,

+ ! VA4 k, R dz
27 -[;;D,(1/2) {2, &, )zT“'

From (3.2) the absolute value of the second term is bounded by
cprr T*VT~ /2 1og T for = T. By Corollary 4.2 of [4] [see the comment in [4]
below (5.7)],

(1
Res Z,(2,0) = —1 + 0(5).

Hence we get

or(k, R, T)

q)T(O: R,T)
Fp(rp, k, R)

~ Fp(r,0,R)

‘_pT(ka Ra T) =

(1 + Ox(T~210g T)),

where we write Oy to indicate that the term may depend on R. But the uniform
estimates (3.6) show that there exists a ¢(&, R) such that
F, T ( rr, k ’ R )

= ek
A a0, B) Pk R)
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and hence
Tlim aT(kr R’ T) = ¢(k» R)!
— 00

which proves the theorem. O
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