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POSITIVE DEPENDENCE PROPERTIES OF
POINT PROCESSES

By RoBERT M. BURTON, JR.! AND MARIE M. FRANZOSA
Oregon State University and Western Oregon State College

There are many ways of describing positive dependence, for example the
strong FKG inequalities and association. It is known that for Bernoulli
random variables the strong FKG inequalities are equivalent to all the
conditional distributions being associated, which is in turn equivalent to all
the conditional distributions having positively correlated marginals. These
and similar definitions are extended to point processes on R?. Examples are
given to show that, unlike the analogous Bernoulli random variable case,
these conditions are no longer equivalent, although some are implied by
others.

1. Introduction. In this paper we compare the various notions of positive
dependence for point processes. Analogs of properties that are equivalent in the
case of binary random variables turn out to be distinct in the point process case.

Section 2 describes the relationship between various positive dependence
properties for 0-1 valued random variables. Such properties have been applied to
many fields including reliability theory and statistical physics. In Section 3 point
processes and their densities are defined. These densities are then used in Section
4 to define properties for point processes analogous to those defined in Section 2.
In this section the theorems relating positive dependence properties for point
processes are stated. Section 5 provides examples of point processes satisfying
various positive dependence properties. In Section 6 the theorems of Section 4
are proven and counterexamples are given to show the limitations of these
theorems.

2. Positive dependence for 0-1 valued random variables. We begin by
considering positive dependence properties of Bernoulli random variables. Let P
be a probability measure on @ = {0,1}" with the c-algebra generated by points.
Q is a distributive lattice with the coordinatewise ordering a A 8 =
(min(ay, B,), ., min(ay, By)) and @V B = (max(a,, B,),...,max(ay, By)) for
a,B € Q. Let X=(X,,..., Xy) where X; € {0,1) for each i = 1,2,..., N, and
X has distribution P. Positive dependence of such random variables can be
described in many ways, several of which are given here. For more details as
well as the proofs of statements given in this section the reader is referred to
van den Berg and Burton [20].

DEFINITION 2.1. X satisfies the strong FKG inequalities if
PX=aAB)PX=aVp)>PX=a)P(X=p) foralla,g e {0,1}".
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DEFINITION 2.2. X is associated (or, X;,..., X, is an associated collection
of random variables) if for all pairs of nondecreasing functions f and g,
Cov( f(X), &(X)) = 0.

REMARK. The strong FKG inequalities are also known in the literature as
the FKG lattice condition and the FKG property. That X satisfying the strong
FKG inequalities implies X is associated is called the FKG theorem [7].

DEFINITION 2.3. X has positively correlated increasing cylinder sets (X has
PCIC) if when I, K are disjoint subsets of {1,..., N} and A, is the event that
X,=1forall i € I, then P(A; N Ag) > P(A;)P(Ag).

DEFINITION 2.4. X is positively correlated (X is PC) if

P(X,=1,X,=1)>P(X;=1)P(X,=1) foralli,je {1,...,N}.

Each of the above properties is implied by the preceding properties.

DEFINITION 2.5. X is conditionally associated if for each J C {(1,..., N}
and a, € {0,1}", (X|X; = (ay); = (a,); V j € J) is associated, provided that
P[X;=(ay);VjEJI]>0.

DEFINITION 2.6. X has conditionally positively correlated increasing cylinder
sets (X has CPCIC) when if I, J, K are all disjoint subsets of {1,..., N},
a, € {0,1}" and if A, is the event that X; = 1 for all i € I, then

P(A;NAxX, = (ay);VjEJ)
> P(A)X, = (a,);VjeJ)P(AgX, = (ap), VjEJ),

provided that the event conditioned upon has positive probability.

DEFINITION 2.7. X is conditionally positively correlated (X is CPC) if for
each K c {1,..., N} and ¢, € {0,1}",

P(X;=1,X,=1X,=(a,),VEEK)
> P(X,=1|X, = (&), Vk € K)P(X;,=1X,(a,),VEEK)
for all ¢, j € {1,..., N}.
THEOREM 2.8 (van den Berg and Burton [20]; see also Kemperman [12]).
The following are equivalent:

(a) X satisfies the strong FKG inequalities.
(b) X is conditionally associated.
(c) X has conditionally positively correlated increasing cylinder sets (CPCIC).

Furthermore, if P assigns positive probability to all configurations, then the
above are also equivalent to:

(d) X is conditionally positively correlated (CPC).
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For further information about related inequalities the reader can see
[3,4,10,12,16]. For applications to probability and statistics see (3, 4,15, 16, 19].

3. Preliminaries for the point processes. Let R¢ be d-dimensional Eu-
clidean space and D C R¢ be a fixed, possibly infinite subrectangle. Let 2% be
the collection of Borel subsets of D. Denote the subset of #? consisting of
bounded sets by #? Let N denote the set of all Radon counting measures on
(D, %#%). Thus, p € N if and only if w(B) € Z*= {0,1,2,...} and w(B) < oo for
all B<€ #% N is naturally identified with the set of all finite or infinite
configurations of points (including multiplicities) in D without limit points.

Let A be the o-algebra on N generated by sets of the form {u € N|u(A) = k}
for all A € 49 and 0 < k < o0. A is the o-algebra on N which allows us to
count the points in bounded regions of D. N is a Polish space with the vague
topology and its class of Borel sets is A",

DEFINITION 3.1. A point process is a measurable mapping X from a proba-
bility space (2, %, P) into (N, A"). The distribution of X is the induced
measure on (N, #") given by Py = Po X L. If A € #?, then we set X(A) equal
to the (random) number of occurrences in A and if f is a function with compact
support, then we set X( f ) equal to the integral of f with respect to the random
measure X.

For details on point processes the reader should consult Matthes, Kerstan and
Mecke [17] and Kallenberg [9].
We now wish to define densities for point processes. That is, we want

functions p,(x,,...,x,) for each n=1,2,... such that p,(x, --- x,)
|Ax,| - - - |Ax,| approximates the probability of points occurring in the d-dimen-
sional intervals Ax, --- Ax, about x; --- x, when the Lebesgue measure |Ax;|

is sufficiently small. The nth-order moment measure M, is defined by M,(A4, X
-+ X A)=E[X(A) - X(A,)] for disjoint A, The nth-order factorial
moment measure M, is defined by M, (A} X -+ X A}) = E[X(A)M ...
X(A,)%], where ¢, + -+ +¢,=n and st =s(s —1)--- (s — t + 1). We will
drop the subscript n or [n] whenever it is clear which measure is meant. If the
point process has a.s. no multiple occurrences and if the factorial moment
measures are absolutely continuous with respect to Lebesgue measure, then their
Radon-Nikodym derivatives are defined to be p,(x; -+ x,). These functions
will be referred to as the product densities of X. We will usually write this as
p(x, -+ x,), dropping the subscript.

DEFINITION 3.2. Let S be the set of all real valued, bounded, measurable
functions £ on D satisfying:

(1) 0 < é(x)<1forall x € D.
(ii) &(x) = 1 on the complement of a bounded subset of D.
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Then the probability generating functional corresponding to X is defined by

(3.1) G(¢) = E{exp(fndlog £(x) dX(x))}, g 8.

The factorial moment measures can be computed using the probability gener-
ating functional according to the following formula due to Moyal [18]:
M .,x"EM([O’xl] X X [O’xn])

Xypen

(3.2) 9 n
=1 —_—GJ|1 + Al R
wil | 9N, --- A, P N

1= n

where 1, , | denotes the indicator function of the rectangle with diagonal corners
the origin and x,. .

To calculate the product densities from this formula, we differentiate M, . .
that is,

an

(3.3) p(xl’”"xn) = axl—ax(Mxl ..... x,,)’

Given a compact subset of A of D and disjoint Borel subsets 4, --- A, of A,
let R%(A, --- A,) be the probability of exactly one point occurring in each of
the sets A; --- A, and no other points occurring in A. Assume that all the
R’ are absolutely continuous with respect to Lebesgue measure on A” =
A X .-+ X A and that a.s. X has no multiple occurrences. The absolute product
densities rj(x,,...,x,) are defined to be 1/n! times the Radon-Nikodym
derivative of R%. rf(x,...,x,)|Ax;| - |Ax,| has the interpretation as an
approximation to the probability that X has exactly n occurrences in the set A
and that in each region Ax; about x; there is exactly one occurrence. Again we
will usually drop the superscript and write r,. Under very general conditions we
have the following relations between these density functions which hold a.e.:

® 1
(34) p(x,...,x,) = ngjTLjrA(xl,...,xn,ﬂl,...,ﬁj) de, --- de,

and

(-1’

J!

[oe]
(85) ry(xyy...,x,) = Jgo Ljp(xl,...,xn,ﬁl,...,ﬂj) dé, --- db,.

The above results are given in Fisher [6], Macchi [14] and Moyal [18].
In order to consider conditional distributions we define conditional product
densities the natural way.
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DEFINITION 3.3. A point process X with product densities p(x,,..., x,) has
conditional product densities given by

p(xl""’xna yla"" ym)
P(Y1rees Ym)

p(xl"“)xnlyl""’ ym) =

and its conditional absolute product densities are given by

ra(x £l N )=rA(xl,...,xn,yl,...,ym)
A 1’000’ n l,ooo, m p(yl’...’ym)
for x,,...,%,, Y1,..., ¥ € A.
The densities p(x,,...,%,|%,-.., ¥,) correspond to the product densities of
the reduced Palm measure of X (see Karr [11]).
If X has product densities one can also define cumulant densities q(x,, ..., x,,)

(also called the correlation function) corresponding to X inductively by the
following relationship with p(x,,..., x,):

p(x,) = q(xy),
p(xy,%5) = (%, x,) + q(x,)q(x5),

(3.6)
p(xy, x5, x3) = q(x,, %5, %3) + (%, x)q(x3) + g(x4, x3)q(x,)
+q(xy, x5)q(x5) + q(x,)q(x2)q(x;)
and so on, so that p(x,,...,x,) is written in terms of ¢ by subdividing
(x4,...,x,) into all possible configurations of disjoint subsets and adding the

corresponding product of ¢’s.

4. Positive dependence properties of point processes. In this section,
the definitions of positive dependence for Bernoulli random variables are ex-
tended to the point process case. The proofs of the theorems given are presented
in Section 6. The first definition we give was originally stated by Burton and
Waymire [1].

_ DEFINITION 4.1. X satisfies the strong FKG inequalities if for all sets A in
#? there exists a version of the absolute product densities such that

(4.1) ra(®y, e, X )1a(25, 00, %) 2 a2y, ) 1a(, 0 x,)

for all x,,...,x, €A, 1<i<j<n.

There is the following restriction that the strong FKG inequalities put on
possible configurations.

THEOREM 4.2. Suppose that X satisfies the strong FKG inequalities. Then
there is a subset A C D so that P[X(A) = 0] = 1 and all finite configurations
are possible on D — A, in the sense that if B C D — A is a bounded Borel set,
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then there is a version of rg(x,,..., x,) that is strictly positive for all distinct
Xy,..., %, in B.

DEFINITION 4.3. X has positively correlated increasing cylinder sets (X has
PCIC) if

(4.2) P(x,..,2,) 2p(xy,.e0, 2)D(Xi41y0005 X,).

DEFINITION 4.4. X has conditionally positively correlated increasing cylin-
der sets (X has CPCIC) if

(4.3) p(xy, . x,)p(x0, %)) 2 p(xy,..,5,)p(x4. ., 1)

forl<i<j<n.

REMARK. We define X to be positively correlated if p(x, y) = p(x)p(y) for
all x, y € A. Similarly, X is conditionally positively correlated if for all
2y,..., 2, € A for which p(z,...,2,) > 0 we have

p(x, ylz1,..., 2,) = p(x|zy, ..., 2,)p(¥|21s- -5 2,)-

If p(z,...,2,) >0 for all z,..., 2, € A, then conditionally positively corre-
lated is equivalent to CPCIC.

DEFINITION 4.5. X is associated if Cov(F(X),G(X)) > 0 for all pairs of
functions F, G: N — R that are nondecreasing, measurable and bounded [where
nondecreasing means nondecreasing with respect to the ordering on N given by
p<vif p(B) <»(B) for all Be #?]. X is conditionally associated (CA) if
Py-almost surely for z,,..., z,, the point process given by conditioning X on
occurrences at zi,..., 2,, is associated. If X has absolute product densities this
means that for all compact A C R, for all z,,..., z, € A, the point process on A
with absolute product densities r,(-|z,,..., 2,) is associated.

Burton and Waymire [1,2] showed that Definition 4.4 is equivalent to the
family of random variables {X(B)|B € Qd} being associated. That is, all finite
subsets of { X(B)|B € Qd} are associated in the sense of Definition 2.2.

To see how these definitions are a natural extension of the definitions of
positive dependence for Bernoulli random variables, consider the following
method of approximating a points process X on the interval [0,1] whose
densities are well defined. For each n and % = 1,..., n define

kE—1 k]
n 'nl
k-1 k]

n ‘nl

1 if there is an occurrence of X in [
(4.4) X,ﬁ"’ =

0 if there is no occurrence of X in [
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That is, X{™ = min(1, X[(k — 1)/n, k/n]) and each X{™ is a Bernoulli random
variable. X = (X{™,..., X{™) approximates X and X converges to X in
distribution. Thus, for example, FKG for a point process X can be thought of as
a limiting condition of FKG for the random vectors X, In the limit we indicate
just where the 1’s are the 1’s indicating the occurrence of points). Burton and
Waymire used a similar approximation technique for point processes on R¢ to
prove the following theorem.

THEOREM 4.6 (Burton and Waymire [1]). If a point process X with piece-
wise continuous absolute product densities satisfies the strong FKG inequalities,
then X is associated.

We must be careful with approximations such as the one suggested above.
Based on the comparisons of the definitions one might expect a theorem for
point processes analogous to Theorem 2.8. In particular, it seems reasonable to
expect that strong FKG and CPCIC are equivalent. They are not, however, and
the relationship between the positive dependence definitions becomes a bit more
complicated.

THEOREM 4.7. If X has piecewise continuous absolute product densities,
then the following implications, and no others, hold:

X satisfies the strong FKG inequalities
/ f ng q \
X is CPCIC X is associated
&
X has PCIC

REMARK. A conditional version of the FKG theorem shows that X satisfy-
ing the strong FKG inequalities implies X is conditionally associated. It is also
true that X being conditionally associated implies both that X is associated and
that X has CPCIC. It is an open problem to determine if X being conditionally
associated is equivalent to X satisfying the strong FKG inequalities.

In the lattice case, Theorem 2.8 has been useful (see, for example, [13]). In a
sense the main application of Theorem 4.7 is negative. CPCIC is a much easier
condition to check in practice than strong FKG and it would have been nice if
these conditions were equivalent. It is unknown whether an additional, easily
verifiable assumption can be found making these equivalent. It is to be expected
that CPCIC will be helpful in the future.

The cumulant densities defined in Section 3 also play a role in describing
positive dependence properties.

THEOREM 4.8. If a point process X has cumulant densities which are always
nonnegative, then X has PCIC, but not conversely.
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5. Examples of point processes.

ExamMPLE 5.1. The most fundamental point process is the Poisson point
process. Given a Radon measure A on R¢ a Poisson point process X with
intensity A is a point process with independent increments such that X(B) is a
Poisson random variable with parameter A(B). When the measure A is taken to
be a multiple of Lebesgue measure, i.e,, A(A) = A|A| for some 0 < A < o0, we
obtain a stationary Poisson process.

The probability generating functional of a Poisson point process has the form

(5. 6(8) = exp{ [[¢(x) = 1] dA(x)}.

If A is absolutely continuous with respect to Lebesgue measure with den-
sity function f(x), then the product densities of X are p(x,,...,x,) = f(x,) - - -
f(x,) and the absolute product densities are ry(x,,...,x,) = f(x,) -
f(x,)exp(— [4 f(y) dy). In particular, X is strong FKG.

EXAMPLE 5.2 (Mixed Poisson process). Here X is conditionally stationary
Poisson with random intensity I. We assume that all moments of I are finite.
The absolute product densities of X are rg(x,,..., x,) = E[I"e~!®]. The strong
FKG inequalities hold because the moments of a nonnegative random variable
are log-convex which follows from Holder’s inequality (see, e.g., Feller [5]).

ExXAMPLE 5.3 (Mixed sample processes). This class of distributions is charac-
terized by the property that the distributions are invariant under measure
preserving transformations of D. The absolute product densities are independent
of location, that is, there are functions fz(n) so that rg(x,,..., x,) = fz(n). This
means that, conditioned on the number of point occurrences in B, the points
are distributed uniformly and independently. These models are analyzed in
Kallenberg [8]. We shall see that such processes need not satisfy the strong FKG
inequalities even if they have CPCIC.

EXAMPLE 5.4 (Poisson center cluster processes). Let U be a stationary
Poisson point process on R with intensity ¢ and let V be a point process so that
E[V(R?)] < 0. Suppose that the (random) occurrences of U are {u;} and that
Vi, Vy, ... areiid and distributed as V. If X is defined by X(A) = LV(A — u;),
then X is a well-defined point process (see Westcott [21]) and is said to be
distributed as a Poisson center cluster process with centers U and clusters V. It is
known (Burton and Waymire [1]) that X is associated, although it will be shown
that such processes need not satisfy the strong FKG inequalities. The probabil-
ity generating functional of X is given by

(5.2) G(&) = exp{ [ [Gy(T.8) - 1¢ ds),

where T, is the translation operator, (T,£)(y) = £(x + y) and G is the proba-
bility generating functional of V.
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6. Proofs of theorems.

ProoF oF THEOREM 4.2. We may, of course, assume that all the product
densities and absolute product densities are Borel measurable. The relation

6) p) = o [ ey dy

of course holds only a.e. on B. If (6.1) does not hold for x, redefine rg(x,y) = 0
for all y € B™ and all n. The strong FKG inequalities still hold and we may
redefine p(x) = 0 so that (6.1) holds everywhere. Furthermore, this will change
p only on a set of measure 0 (even as we vary B). This is because the expression
(6.1) is essentially independent of B.

Now let A = {x € D|p(x) = 0} and let B be a bounded Borel subset. We
show that if (x,,..., x,,) € B™ has distinct coordinates, then rg(x,,..., x,,) > 0.
Suppose otherwise. Repeated applications of the strong FKG inequalities give

0 = rg(xy,..., xm)rB(Q)m_l > rg(x,)rg(xy) - -+ rp(x,,).

This means that there is an x; so that rg(x;) = 0. We rename x; = x. If
¥,z € B” have distinct coordinates and if for each i = 1,...,n, x # 3, # 2, # x,
then 0 = rg(x,y,z)rg(x) > rg(x,y)rg(x,z). Thus at most one of ry(x,y) and
rg(x,z) can be strictly positive. This implies r5(x,y) = 0 for all but at most one
y on B™ But in view of (6.1) this means that p(x) = 0 so x € A, a contradic-
tion. O

Proor oF THEOREM 4.7. (a) That X satisfies the strong FKG inequalities
implies all conditional distributions of X are associated by Theorem 4.6 (as
noted previously). .

(b) That X has CPCIC implies X has PCIC is immediate.

(c) We show that if X satisfies the strong FKG inequalities, then X has
CPCIC. Let x = (x,,..., x,,) and we suppose with no loss of generality that each
x; is not in D — A, that is, p(x;) > 0. In fact, all the points discussed in this
part of the proof are assumed to be in D — A. Let r(x|y) be the conditional
absolute product density.

Define @, by ®,(x|y) = r(x, z|y)/r(x|y), where z = (2,,..., 2;) [so that (x,z) =
(X1,++45 %y, 215--+, 2;)]. Note that ®, is an increasing function of x for fixed y
since X satisfying the strong FKG inequalities implies r(x,y,z)r(y) >
”;}T’ Ny, z) = rx,zly)r(yly) = rx|y)r(zly) = r(x, z|y)/rx|y) = r(zly)/r(yly)

en

E[o,]

L i [ oy dx
(6.2) ”

g%f [r(x,2ly) dx = p(zly)
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and

E[00,]= ¥ o[- [0x15)0,xiy)r(xi) dx

_ f 1 fﬂ_/r(x,ZIy)r(x,WIy) Ix

(8.3) a-on! r(xly)
1
< — f ... / r(x,z,wly) dx (by the strong FKG inequalities)
n=0 """
= p(z,wly).

Since X satisfies the strong FKG inequalities its conditional distributions
are associated. For fixed y, ®, and @, are increasing functions on N so
Cov(®,, @) > 0, ie, E[DQ,]> E[®,]E[D,] or p(z,wl|y) = p(z|]y)p(W|y)
which is CPCIC.

(d) Now we show that if X is associated, then X has PCIC. If x is a point in
the interior of D and A is a real number, then let [x, A] be the rectangle
{z € D|x;, < z; < x;, + A} and note that X([x, A]) is nondecreasing. For each
Xiyeevs Xy Yis-os Yy DY association we have that

E[X([x,, A1) -+ X([x,, ADX([ 31, A1) X([ 3> A1)]
— E[X([x,,A]) ... X([x,, AD]E[X([ 31, AD X ([ 3> A1)] = 0.
Dividing by A**™ and taking the limit as A — 0 gives
ar om

0< M
dx, +-- dx, dy, -+~ 8ym( o

an am

3x, - ox, 3xn(Mxl ..... xn)m

=P(%1, e Xy Yiseees D) — P(1se e, %) D( Y155 Yim)

as in Moyal’s formula (3.3).
To complete the proof, we will find two examples, one of which has CPCIC
but is not associated and the other which is associated but does not have CPCIC.

ExXAMPLE 6.1. In this example, we construct a point process X on D =
[0, b] € R that has CPCIC but is not associated. X will be a mixed sample
process. That is, we will take Y to be a random variable with values in {0,1,...}.
Then, conditioned on Y = &, we let Z,,..., Z, be uniformly and independently
distributed on [0, b] as occurrences of X. Thus the distribution of X depends
only on the number of points and not on their locations.

For the actual construction of the densities, first note that such an X is a
point process with product densities p and absolute product densities
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rg(xy, ..., x,) = fg(k). In this case,

g(k) =p(xyx) = X if---fBX_,XBfB(k+n)dyl - dy,
(6.4) -

Conversely, if p(x,,..., x,) = g(k) we find that

00 n

b
(65) (k) = ra(xiy s 8) = X (=1)"g(k +n).
n=0 *

We will define the distribution of this process by finding values of the function
g(k) and then checking that they give a well-defined distribution. A given
function g(k) will represent product densities with corresponding absolute
product densities given by (6.5) if the following conditions are satisfied:

(6.6)(a) fg(k) =0 forall k.
(6.6)(b) fo—"fg(w -1
(6.6)(c) g(k) = fo—"fg(k + ).

LEMMA 62. If g satisﬁes

(a) Z( )" —g(k+n)>0 fork=0,1,2,.
(b) g(0) =1,

(c) g(k) =0 fork=0,1,2,...,
(d) ¥ 2b) Tk L) <o fork=0,132,.

then g determines product densities with corresponding absolute product densi-
ties given by (6.5).

Proor. (a) gives us condition (6.6)(a), and, given condition (6.6)(c), (b) gives
condition (6.6)(b). Thus we must only show that condition (6.6)(c) is satisfied:

[o%) n

)y _fB(k +n)

n()

] - L (- /(i + k)
(6.7) neo e
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By (d), the above sum is absolutely convergent so we may rearrange (6.7), by
summing over the diagonals, to get

n

> Y (- 1)’——g(j+k+n>

n=0 j=0

(6.8)

Lo(-ptr o

Z

——b
s L! n!'(L-n)

(L + k) y (fz)(_l)L—n.

n=0

|| MS

Lg(L + k)

ZbL

By the binomial theorem, the terms of this sum are all 0 except when L = 0.
Thus the series becomes
0

o8k +0)-1=g(k). =

Any function g which is nonnegative and bounded by an exponential will
satisfy condition (6.6)(c). For this example we must also choose g so that product
densities satisfy the inequalities given that X has CPCIC. That is, we need
p(xy, ..., x)p(x;5..., x;) = p(xy,...,x)p(x;,...,x,) or, in terms of g,
&(n)g(j — i) = g(j)g(n — i) for all n >j > i. This log-convexity condition is
true if and only if

(6.9) g(n+1)g(n - 1) > [g(n)]".

Let g(0) = 1, g(1) = a and g(k) = a®8*~2 for k& > 3, where a < B are to be
determined later. It is easy to check that g satisfies (6.9), so that X has CPCIC.

To see that X can have a well-defined distribution, we set a = 1 and 8 = 2,
then calculate the absolute product densities:

b 3 1
0) = T (-1)"Zg(0+n) =~ — b+ e,
n=0

bn
1) = £ (-1)" gl n) =1+ %[ -1,

n=0

fa(k) = Z (-" —g(k +n)= —2k “20 fork > 2.
n=0

Note that fgz(k) > 0 for all values of b if £ > 1. In order to be certain that these
functions determine absolute product densities [with corresponding product
densities g(k)], it remains to choose b so that fz0)> 0. By the inter-
mediate value theorem we may choose b so that fz(0) = 0. X with the values
of a,B and b thus chosen is well defined. Finally, we show that X is not
associated. Notice that P(X([0, b]) = 0) = f(0) = 0, but P(X([0, b/2]) = 0) =

P(X([b/2, b]) = 0) = Z3_o(1/k!)(b/2)*f5(k) > 0 since f50) = 0 and fz(k) >0
for all 2> 1. The 1ndlcat0rs of the events that X([0, 5/2]) =0 and that
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X([b/2, b]) = 0 are decreasing events and so would be positively correlated if X
were associated, but the above shows that these events are negatively correlated.
Thus this example has CPCIC but is not associated.

EXAMPLE 6.3. This example shows that X being associated does not imply
that X has CPCIC. Consider a Poisson center cluster process on R, where the
Poisson process of cluster centers is stationary with intensity A = 1. Assume also
that there are exactly two points distributed at each cluster center according to a
distance distribution F which has density f, continuous with the exception of a
finite number of jump discontinuities. This process was shown to be associated
by Burton and Waymire [1] but can be adjusted (by choosing an appropriate
distance distribution) so that if points x,, x, and x, are chosen properly the
inequality p(x,, x5, X3)p(x,) < p(x,, X5)P(x5, x3) holds, i.e., the process does
not have CPCIC. This may be expected due to the fact that in this process one is
more likely to observe points occurring in pairs than in triples or singles. Thus
we would expect that both p(x,, x,) and p(x,, x,) are likely to be larger than
P(%y, %, %3). :

In order to show that a process does not have CPCIC, we must first calculate
some of the product densities. p(x,) =2, the intensity of the process. We
calculate p(x,, x,), p(x,, x3) and p(x, x4, x3) by making use of Moyal’s for-
mula [(3.2) and (3.3)]. In this case, from Example 5.4 of the previous section, the
probability generating functional is given by

(6.10) G(¢) = expf[(f&(x +r)f(r) dr)2 - 1] dx.

Thus

ak
= li _
(6.11) nﬂl{ dx, - 9z,

) 0 k
Xexpf_w(f_w[l + ‘_V_" Ail[o‘x’](x + r)] f(r) dr) - ldx}

A= =A,=0
Let
00 o0 k
(6.12)  Au(Ay,...,Ap) = / (f [1 + X A o g(x + r)] f(r) dr) — 1ldx
oo\ " oo i=1
and
(6.13) Gr(Ay, -, Ay) = exp(Ry(Ay, ..., Ap)).
Then

ak
(6.14) M, . . .= m{ék(%---, M) Fae e —amor
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We use this to calculate p(x;, x,):
2

(6.15) M

xpxz 3A a}\z G2(}\1’ A2)

A=2Ay=0
32 d2h 3h dh
Gz(}‘v }\2) exp(h2()\1, }\2)) : : :

exp( hy(As, >\2))

dA dA, ar 8?\2 aN; N,
a2h2 ah2 3h2
1 -
(6 6) eXp(h2(>\1, A2))( 3A1 3A2 + 3A1 8A2
Let

I = /_ l[o,x,](x +r)f(r)dr
but

3;11;12 - 8?\ (/ 2I(/_w[1+ ZAl{Ox](x"’r)]f(r) dr) )

= /_ 211(/_ Lo,z (x + 1) f(r) dr) dx = /_ 21,1, dx.

Substituting into (6.16), we find that
2

IN, 9N,

(6.17)

Ga(A1,5)
= exp( 2(Ay, )\2) (/ 201, dx
(6.18) ,
/_ 21(/ w[ + ;xi1[0,xl](x+r)]f(r)dr)dx)

X (f_wwzzl(f [1 + z Aido,x(x + r)] i(r) dr) ))

— 00

Evaluating (6.18) at A; = A, = 0, we obtain
M= [ 2LL s+ (/w 211dx)(f°° 212dx)
- 4(/_ f_ 1[0’x1](x + r)f(r) drdx)
(6.19) x(/w f°° 1[0,x1](x +r)f(r) drdx)

+

+2f_°°oo(/_°;1[0,xl](x +r)f(r) dr)
x (j_“who,m(x +1)f(r) dr) dx



POSITIVE DEPENDENCE FOR POINT PROCESSES 373
Differentiating, first with respect to x, and then with respect to x,, we obtain

p(x,, x,). First, we change the order of integration in the integrals of the first
term of (6.19):

M, . - 4(/°° [ dxdr)(/_oooo/rxrrf(r) dxdr)

—oor

(6.20) + 2/_ww(Lxl_xf(r)dr)(/:rxf(r)dr) dx
= 4x,x, + 2/_0000(/:1_xf(r) dr)(/:rxf(r) dr) dx.

Differentiating (6.20) with respect to x, and x,, we get

(6.21) Pz x) =4+ 2f" f(x—x)f(x, — x) d.

A similar calculation yields

p(x,, X9, x3) =32+ 4/_°o°°f(x2 - x)f(x3 —x)dx-
(6.22) + 4f_°;f(x1 — %) f(xy — x) dx

+ 4f_°o°of(x1 —x)f(x3 — x) dx.

Having calculated p(x,), p(x;, x,) and p(x,, x5, x3), we are able to show that
X does not have CPCIC by making an appropriate choice of f so that

(6.23) p(x,, x5, x3)p(x,) < (%1, %5) p(%,, x3).
The left-hand side of (6.23) is

Pl 2)p(xs) = 64+ 8( [ oy = )y — 2) o
(6.24) =2 - )

o7 i = 0y = ) ),

while on the right-hand side we have

P )p(x5) =16+ 8( [ 1y = ) — 2) o

# 7 H = )y - ) |
(6.25) . o
[ = )1y - ) as

X (f_m;f(x1 — x)f(x, — x) dx).
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Cancelling like terms above, we are reduced to showing that

12 + 2/_00 f(x, —x)f(xy3 — x) dx

(6.26)
([ =0t = @[ = 2 - ) ).

We now determine an appropriate choice of f. For a fixed value of n let

(6-27) fulx) = {0 otherwise

and let x, =0, x, =1/2n and x; = 1/n. Then f(x; — x)f(x; — x) = 0. For
f = f.(*), (6.27) becomes

12.< ([ f(x,— )i - x) &) [ 1= )1~ x) e

= (fol/znn-ndx)(fll/;in-ndx) = %,

which holds as long as n? > 48. So, for example, as long as n > 7 we get the
desired result. This completes the proof of Theorem 4.7. O

n if0<x<n,

ProoF oF THEOREM 4.8. In general p(x,,..., %, X4,1,..., X4, ,) consists of
the sum of products of q(:) terms where each such product is taken over a
subdivision of (x,,...,x,,,) and all such subdivisions are represented once in
the sum. On the other hand, p(x,,...,x,)p(%4,1,--., X, ,) is a product of
similar sums for p(x,,..., x,) and p(x,.,,..., X, ,). Clearly, every term in the
resulting sum for p(x,,...,x,)p(%4,1,---,%4.,) IS @ term in the sum for
P(Xy, ooy Xpy Xpyry -« -5 Xpyp)- There are, however, in p(x,, ..., x,,
Xp4+1r+++» Xpyp) additional terms in which the subdivisions allow for a combina-
tion of x;’s with 1 <i <k and x;’s with 2 + 1 <i < %k + n. Since all of the
cumulant densities are nonnegative, adding in these additional terms makes
P(Xy5 ey Xpy Xpiyyenns Xpy ) at least as large as p(xy,..., X)D(Xp 150 -5 Xpoip)-
Finally, we construct an example that has PCIC but also has some negative
cumulants.

ExaMPLE 6.4. This example shows that X can have PCIC and still have
cumulant densities that are negative. We again consider a mixed sample process,
this time on the interval [0, 1]. In this case we take p(x,,..., x,,) = g(n), where

n/2 if n is even

6.28 n)={¢ ! ’

(6.28) &(n) {c("‘l)/2 if n is odd.
There are three things we must check:

(a) The product densities p given above determine a completely regular point
process, that is, g(n) satisfies the conditions of Lemma 6.2.
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(b) The process has positively correlated increasing cylinder sets. That is,
P(Xysees Xy ) 2 P(Xys e, X)P(Xpiys o o5 Xpy ) OF 8(0 + k) 2 g(n)8(R).

(c) The process has at least one negative cumulant density function.

We begin by checking (b) and (c). For (b) it is clear that we have equality
when n and k& are both even or when one is even and the other is odd. In the
case when n and k are both odd, g(n + k) > g(n)g(k) if and only if ¢**#/2 >
c(r=1/2c(n=1/2 = (n+k=2)/2 That is, if and only if 1 > ¢~ '/2. Thus, as long as we
take ¢ > 1, the process will have PCIC.

To guarantee that at least one cumulant density is negative, we calculate
Q(xlr Yoy x3):

q(x,, x5, x3) = p(x1, %5, %3) — [P(xv xy) — P(xl)P(xz)] p(x3)
—[p(xy, x3) = p(x)p(x;5)] P(x,)
(6.29) - [p(xz’ x3) = p(x2)p(x3)] p(x,) — p(x,)p(x;)p(x3)
= 2(3) - 32(2)2(1) + 2(2(1))’
=2 - 2c¢.
Thus g(x;, x5, x3) < 0 as long as ¢ > 1.

It remains to determine at least one value of ¢ for which the conditions of
Lemma 6.2 hold. It is only necessary to check that

() = X (-1"(1/n)glk+ m) 20

for each value of k.
We consider separately the case where & is even and the case where £ is odd:

(6.30) f(2n) = i (—l)jjl'g(j +2n) = i (—]_)jjl'clogcg(j+2n)
=0 : !

Jj= Jj=0
but
J cp e
n+ Y if j is even,
log g(j + 2n) = -1
(6.31) n+— i jisodd
=n + log.g(J).
Thus
f(2n) = —1)/ —cn*logc.s(h)
(6.32) () ,go( ) J!
= c"f(0).
Likewise,

(6.33) f(2n + 1) = (D).
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Thus we need only check that f(0) > 0 and f(1) > 0:

(0) ;flo(—l)f},g(f)

(6.34)

1 1
Y —c2— ¥ e,
jevenJ! joddj!

We will compare the sum for j even with the sum for j odd by comparing them
term by term. The nth term of the first sum in (6.34) (starting with n = 0) is
(1/2n!)c", whereas the nth term of the second sum is (again starting with
n=0)[1/@2n + 1)!]c" Since ¢"(1/2n!—[1/(2n + 1)!]) > 0 for all values of n
and ¢, f(0) > 0.

Unfortunately, showing that f(1) > 0 is a little more complicated and requires
some restrictions on c:

(1)

X (-1 + )

1 1
Y 2o Y Ut
jevenJ! joda J!

(6.35)

We again compare the last two sums term by term. In this case we compare the
nth term of the sum over evens with the n + 1st term of the sum over odds.
Since the Oth term of the sum over the odds is —c, the remaining terms must
sum to at least c.

Notice that

1 1
R CEE

1 c?
@)\ T @t a)@nr D@n + 1)
so that the pairings are nonnegative as long as 1 — [¢2/(2n + 3)2n + 2)(2n +
1)] > 0. That is, as long as ¢ < (2n + 8)(2n + 2)(2n + 1). So we need c? < 6,
ie, c<V6.

It remains to check that we can also make these nonnegative terms add up to
a quantity at least as large as ¢ in order to ensure that f(1) > 0. We now choose
a particular value of ¢, 1 < ¢ < /6, to ensure that X has PCIC, at least one
negative cumulant density and g satisfies the conditions of Lemma 6.2.

Let ¢ = 1.1. For n = 0, we get the term

n+2

(6.36)

1.21
(6.37) 1(1 — T) = (.7983.
For n = 1, we get

1.1 1.21
(6.38) — (

1 - —— | = 0.5405.
2 69.88) 05
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Summing (6.37) and (6.38), we get 1.3388 > ¢ = 1.1, guaranteeing that f(1) >
This completes the proof of Theorem 4.8. In closing we note that it may be
checked that this X also does not have CPCIC. O
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