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We develop several applications to almost sure limit theorems for sums
of independent vector valued random variables of an isoperimetric inequal-
ity due to Talagrand. A general treatment of the classical laws of large
numbers of Kolmogorov and Prokorov and laws of the iterated logarithm of
Kolmogorov and Hartman and Wintner is described. New results as well as
simpler new proofs of known ones illustrate the usefulness of isoperimetric
methods in this context. We show further how this approach can be used in
the study of limit theorems for trimmed sums of independent and identi-
cally distributed random variables.

1. Introduction and theoretical statement. Isoperimetric methods
already appeared in the study of strong limit theorems for sums of indepen-
dent vector valued random variables through concentration inequalities, mainly
of Gaussian type. These inequalities are commonly used with the tool of
randomization and applied conditionally. In particular, this was the basic idea
of the main result of [24], which characterizes Banach space valued random
variables satisfying the classical Hartman-Wintner—Strassen law of the iter-
ated logarithm.

In a recent work [32], a new isoperimetric inequality for product measures
was obtained and applied to the integrability of sums of independent vector
valued random variables, providing at the same time new perspectives in the
study of strong limit theorems. This inequality was indeed further applied in
[25] to get extemsions of Kolmogorov’s law of the iterated logarithm and
Prokorov’s law of large numbers in Banach space. The purpose of this aricle is
to demonstrate further the usefulness of this approach. We study a general
statement (Section 2) on sums of independent Banach space valued random
variables, actually already of interest in the real case, to be applied to almost
sure limit theorems like the strong law of large numbers (Section 3) and the
law of the iterated logarithm (Section 4). In this way we obtain several
extensions of classical limit theorems as well as new and simpler proofs of
known results like the recent law of the iterated logarithm in Banach spaces of
[24]. This contribution, in particular, unifies the treatment of the classical laws
of large numbers of Kolmogorov and Prokorov and laws of the iterated
logarithm of Kolmogorov and Hartman, Wintner and Strassen. Moreover, the
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isoperimetric inequality seems to be also of some interest in the context of
trimming, when extreme values are excluded from sums, and we establish by
this method some new results on the law of the iterated logarithm in Banach
space in this case (Section 4). Similarly, extensions and new proofs of Mori’s
strong laws of large numbers for trimmed sums can be obtained (Section 4). In
Section 5 we discuss the identification of the limits in the vector valued
Hartman-Wintner law of the iterated logarithm.

The isoperimetric inequality of [32] is proved in the abstract setting of
product measures. One natural framework for applications to limit theorems
for sums of independent random variables concerns random variables taking
their values in a Banach space. B will therefore always denote below a real
separable Banach space with norm || - || and topological dual space B*; duality
is denoted f(x) for f in B* and x in B. Let us then describe the isoperimetric
inequality of [32] in this setting. Let N be a fixed, but arbitrary, integer and
let X =(X;),_y be a sample of independent random variables with values
in B. Let AcBY = s{x = (x,);_y, x; € B). For g, k integers, set

H(A,q,k) ={xeBN:3x',...,x7€A,
card{i < N:x; & {x},...,27}} < k}.

Then, if P{X € A} > ; and % > q, for some universal constant K,,
K, \*

where P, denotes inner probability. For simplicity, we will assume in the
applications K, to be an integer. The isoperimetric character of this inequality
proceeds from both its proof which uses delicate symmetrization techniques
and the conclusion itself which estimates some neighborhood of A (actually for
- any value of P{X € A} in [32]). On the set H(A, g, k), the sample X = (X)), _
is controlled by a finite number ¢ of points in the set A provided % elements
of the sample are neglected. The isoperimetric inequality (*) precisely esti-
mates the size of this set which increases when more terms are neglected
(and/or g is bigger). In the applications, in particular to the study of sums of
independent random variables, these discarded terms are intuitively the largest
elements of the sample and these large values have therefore to be estimated.
Moreover, this observation strongly suggests possible consequences for the
study of sums of independent random variables when extreme values are
excluded. Indeed, if the largest elements are deleted, it is likely that, in some
sense, the integer %2 can be diminished and various conditions can be weak-
ened.

This whole approach, which we call isoperimetric, is.already of great inter-
est on the line as will be clear from the results we will describe. It will be one
of the purposes of the next sections to find appropriate bounds on large values
in various situations which are identical in the scalar and vector valued cases.
What we would like to do first, in the remainder of this section, is to show how
the sums of independent random variables we study are controlled when the
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sample, on H(A, q, k), falls in the finite set of points in A. The basic idea is
quite simple and makes essential use of the tool of randomization; its applica-
tion, however, rests on some powerful observations on Rademacher averages,
like concentration and comparison properties. But these are much simpler on
the line, reducing essentially to the classical subgaussian estimate, and the
interested reader is perhaps invited to study first this case. It will lead to some
quite optimal estimates, as will be clear in the next sections. We describe the
theoretical result in the next proposition which we introduce with some
notation.

Let X = (X;), _ y be a family of independent and symmetric random vari-
ables with values in B. By the symmetry assumption, (X;) has the same
distribution as (¢;X;), where (¢;) denotes a (Bernoulli or Rademacher) se-
quence of independent random variables taking the values + 1 with probability
3 and independent from the X,’s. Accordingly we will sometimes denote, by
Fubini’s theorem, by P, E, (resp., Py, E x) conditional probability and expecta-
tion with respect to (X,) [resp., (¢;)]. We denote by (|| X;|[*); . 5 the nonincreas-
ing rearrangement of the sequence (|| X;|), - n-

ProposITION 1.1. Let (X;);,_y be independent and symmetric random
variables with values in B. For integers k > q and positive numbers s, t, we
have

r{|£x
(1.1) -

>t+23+8qM}

K°k+ﬂﬂ>§k_‘,X* +4 £ +4 _k
<|— A1 > - -
B ( q ) {i=1” . s} exp( 64qa'2) exp( 768qu)
where
N 1/2
M-=E , o= sup (Z [Efz(ui))
Ifll=s1\i=1

N
Z u;
i=1

and ui = XiI(]]X,”Ss/k)’ l < N.

We decided in this proposition to keep track, for clarity, of the numerical
constants (not best possible!); K, is the constant of the isoperimetric inequal-
ity () and the first term in the right-hand side of (1.1) comes from (*). The
second corresponds to the largest values and the others to the estimates we
have now to prove. Let us mention that M and o defined from truncated
random variables are of course majorized (using the contraction principle for
M) as '

N
L X

i=1

N 1/2
w M<E , o< SUP(Z [Efz(Xi))

Ifll<1l\i=1

and can often be used in these forms in applications.
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Proor. We prepare ourselves to apply the isoperimetric inequality. Recall
the symmetry assumption on the X,’s. Let A ¢ BY be defined as

<4M,

N
) &%l <5 /1)
i=1

A={xEBN:[Es

N 48 Ms
sup X (%) Ly <o m < 407+ }
Ifll<li=1

Let us first show that P{X € A} > 3. Clearly,

N
Y siug | > 4M} <3
i=1

o

On the other hand, by centering,

[E( sup g fz(ui)) < o? +[E( sup

Ifllsli=1 Ifll<1

N
Z Eifz(ui)

N

Z f2(ui) —IEfz(ui)
502+2[E( sup

i=1

i=1 )
Ifll<1 )

At this stage, we need to recall the comparison theorem for Rademacher
averages of [25], Theorem 5.

LEmma 1.2.  Let ¢;: R — R be contractions such that ¢(0) = 0,i = 1,..., N,
and let F be a class of functions on {1, ..., N}. Then, forp > 1,

4
Ef sup .
he F

We apply this lemma to E (sup; s <,/Z N &, f%(u,))), conditionally therefore
on the sequence (X,); we can choose .7 = {hf; f € U}, where hf(i) = |lu,|l f(u,)
and U is the unit ball of B* and ¢,(¢) = min(¢%/2||u;||% ||«;||?/2). We then get

N
Z gl llu;l
i=1

N

2 g;h(i)

i=1

N

IIERACICI)

i=1 he ¥

p
) < 3P[E( sup

N

E Eifz(ui)

i=1

)56[E6

[EE( sup
Fil=1

If we recall that ||u,|| < s/k, we finally obtain from the contraction principle
(18], page 18, or [16]) that

N

[E( sup Y, fz(ui)) <o?+ 12Ms

Ifl<1iz1 k

From the very definition of A, together with our first observation, it follows
indeed that P(X € A} > 3.

We are now in a position to apply the isoperimetric inequality (*). By

definition of H = H(A, q, k), if X € H, there exist points x!,...,x? in A and
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integers {i},...,i,;} with j <& such that
{1,...,N} ={iy,...,i;} U,

where I = U{_,{i < N: X, = x!}. Thus, in this case,

N
Z 298 Z & X,
iel

k
< 2 IXI* +
i-1 i-1

Now assume, moreover, that ©%_ || X;|[* < s; then, certainly, at most 2 — 1
X,’s satisfy || X;|| > s/k. Hence

N
Yo X | <s+ ZfiXi'523+ Loz
i=1 il el
Summarizing,
N
[p{ Y g, X, >t+2s+8qM}
i-1
k
(1.2) <P*X ¢ H} + P{ XX > S}
i-1

Z &;U;

el

+ supf[P;{ >t + 8qM} dPy,

F
where the sup runs over all measurable sets F' such that F c {X € H}. The
last step in this proof is therefore the (conditional) estimate of

lpe{ Z &;U;

el
To this aim, we will make use of a concentration inequality for Bernoulli
averages, also of isoperimetric type, recently obtained in [31]. Inequalities of
the same type were used for Gaussian averages in [24] and for averages by
uniform random variables in [25], and the latter ones can also be used here
(with some modifications). The more natural Bernoulli symmetrization, how-
ever, distinguishes the following result.

>t+8qM}.

LeEmMA 1.3. Letx,,...,xy be points in B. Let u be a median of | ¢;x,]|
and set o = sup s (X, f*(x;))'/% Then, for everyt > 0,

p{ > t} s4exp(_i).

8c?
In particular (but this is weaker than the previous inequality)

N
> £;%;

i=1

M

t2

N
Y ex; +t} s4exp(-§;§ .

i=1

N
Y ex,| > 2E
i=1

~——

(1.3) p{
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In order to apply this lemma, we make the following observation. For each i
in I, fix1<I(G)<q with X, =x/®. Let I, ={i: 1(i) =1}, 1 <l < q. Then

i Y gu,

IEE Z Eiui“ = [Ee
iel l=1i€l
q
!
< Y E[X &% Ly <s iy -
=1 llier

Now, by the monotonicity of Rademacher averages and the definition of A, it
follows that

< 4qM.

N
1
E, Z Eiin(||xf||Ss/k)
i=1

q
> Eiui“ < L E,
=1

iel

In the same way,

48qMs
sup Y. fi(u;) <4qo?+ .
Ifl=1ier k

Hence, by (1.3),

Pe{ Z gU;

iel
from which, together with (1.2), (1.1) readily follows. The proof of Proposition
1.1 is complete. O

42
>t+8gM ;) <4 - )
¢ } exp( 8(4qa? + 48qMs /k) )

Since we are also interested in some applications of the isoperimetric
inequality to extreme values, we mention, to conclude this introduction, the
analog of Proposition 1.1 in the context of sums of independent random
variables when extremes are excluded. However, we need to introduce first
some more convenient notation concerning large values which will also be
useful in the sequel. If (X,) is a sequence of random variables, we set, for
1<r<N, X=X, whenever | X;|| is the rth maximum of the sample
WXl - - -, 1 X x]D (breaking ties by priority of index). We agree, moreover, that
X =0 when r > N.

ProposiTiION 1.4. Let (X;),_n be independent and symmetric random
variables with values in B. Let also (r;); .;.n be integers and set r =

min; _; _n7;. Then, fork > qand k >r, and s,t > 0,
J T _
P{ max | X~ ) XP|>¢+2s+ 8qM
JosisN | ;-4 i=1

i=r+1

. (Ko )" . f - o £2 o (k —r)t?
<= D >s) + - _———
q * 1X1 > s eXp 64qo? + Sexp 768qMs |’

where M and o are as in Proposition 1.1 but with u; = X, I x ) <s k-ryp ¢ <N.
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Proor. It is completely similar to the proof of Proposition 1.1 which has
simply to be followed with the same notation. Take A as before with s/(k — r)
instead of s/k in the truncations; we have P{X € A} > ;. Suppose now that

X € H and L%, || X{| < s; then, if J denotes, for each j > j,, the set of

indices corresponding to the r; maxima of the sample (X, ..., X;),
j k ‘
YaX - XX |< X OIXQI+| X 5iXi)
i=1 ied i=r+1 ielng
t=Jj

<s+

Z EiXi‘

ieINd
i<j

Now, since L%_, . | X{P|| < s, there are at most & —r — 1 indices i <j in
I \ J such that || X;|| > s/(k — r). Hence

Z X,
|

ieINd
1<J

Z iU,

ieINg
i<j

<s+

Therefore
J
Z g X, — Z & X,

i=1 ied

)y ;U
ielNJ
15-9)
If we now recall Lévy’s maximal inequality (see, e.g., [18]),
IP’g{ max || Y, &u; >a} < 2|]3’£{ Y su,| > a}
Jo<J<N

ieINd iel
i<j
(where a > 0) we see that the conclusion to Proposition 1.4 is then obtained
exactly as in Proposition 1.1. O

< 2s + max

max
j Jo<j<N

joSJSN

2. A general statement for strong limit theorems. In this section we
draw from the preceding formulation of the isoperimetric inequality a general
statement for almost sure limit theorems for sums of independent random
variables. This general form will then be used in applications to the law of
large numbers and the law of the iterated logarithm in the next sections. It
follows rather easily from what we have already obtained. For the sake of
completeness, we start with some classical facts on symmetrization and block-
ing which will be useful later on.

We deal with a sequence (X;),; . of independent random variables with
values in a Banach space B. As usual, we set S, = X; + --- +X,, for each n.
Let also (a,), < be a sequence of positive numbers increasing to . We study
thé almost sure behavior of the sequence (S, /a ). As is classical in probability
in Banach spaces, such a study can be developed reasonably only if one
assumes some (necessary) boundedness or convergence in probability. This
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corresponds to the control of M in Proposition 1.1 (see also Lemma 1.3) and
the difficulty in the vector valued setting is to find “good” conditions, in terms
of the individual summands only if possible, for such a property to hold; typical
in this regard are the law of large numbers (e.g., [23] and [6]) and the law of
the iterated logarithm (e.g., [24]). This basic hypothesis we shall keep along all
limit theorems in the sequel allows in particular a simple symmetrization
procedure summarized in the next trivial lemma. ‘

LEmMmA 2.1. Let (Z,),(Z}) be independent sequences of random variables
such that the sequence (Z, — Z)) is almost surely bounded (resp., convergent
to 0) and (Z,) is bounded (resp convergent to 0) in probability. Then (Z,) is
almost surely bounded (resp., convergent to 0). More quantitatively (if neces-
sary), if, for some numbers M and A,

limsup||Z, — Z!|| < M almost surely

n—o
and
limsupP{||Z,|| > A} <1,

n—o

then
limsup||Z,|| < 2M + A almost surely.

n—o

In the context of sums of independent random variables, let (X/) be an
independent copy of the sequence (X,) and set, for each i, X, =X, — X/
defining thus independent and symmetric random variables. Lemma 2.1 thus
tells us that under appropriate assumptions in probability on (S, /a,), it is
enough to study (X7_,X,/a,), reducing ourselves to symmetric random vari-
ables. Therefore we only detail below our general statement in the symmetrical
case. Let us mention that if this symmetry assumption is of basic use at
various places, essentially through Proposition 1.1, it is, however, completely
superfluous at some others, like for example the control of the largest values.

As is well known also, we can study, in quite general situations, the sums
S, through blocks. Assume there exists a subsequence (a,, ) of (a,,) such that
for each n,

am+1
l1<es——<(C<x

my

and let I(n) be the set of integers {m,_; + 1,...,m,}. The next lemma may
be found in the book of Stout [29], page 158, to which we actually refer for a
general introduction on almost sure stability (for real random variables).

Lemma 2.2, Let (X,) be zndependent and symmetric random variables.
Then (S, /a,) is almost surely bounded (resp., convergent to 0) if and only if
the same holds for (L ;¢ 1, X;/@,, )-
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Since the blocks I(n) are disjoint, by independence and the Borel-Cantelli
lemma, what we have thus to study is the convergence of the series

¥ p{ > Xi” 5 sam"},

n iel(n)

for some, or all, ¢ > 0. Our general result that we describe now provides
sufficient conditions for this to hold. The somewhat technical formulation of
the theorem is justified by the sharpness of the various conditions.

TuEOREM 2.3. Let (X,;) be a sequence of independent and symmetric
random variables with values in B. Assume there exist an integer q > 2K,
and a sequence of integers (k,) such that

K\
(2.1) » (#) <m,
n q
kn
(2.2) 5 P{ 5 x> m} <,
n i=1

for some & > 0, where X{[), denotes the rth maximum of (X,); c 1, Set then,
for each n,

M,=E ¥ XiI(nXinswm,,/k,,)

iel(n)

b

1/2
o, = sup( Z [E(f2(Xi)I(nX,-Ilsw,,,n/k,,))) .
Ifl=1\iel(n)

Then, if L = lim supn_,mMn/amn < w and, for some 6 > 0,

522
(2.3) Y exp(— 5 ”) < oo,
n On
we have
(2.4) ¥ u»{ v X,.” > 102a(s,8,q,L)amn} <w,
n iel(n)

where

1/2
a(e,8,q,L) =+ (aL+a2)1/2(q log Ki) <o +qL+q(eL + 82"
o 0

There is actually nothing to prove concerning this theorem that readily
follows from the inequality of Proposition 1.1 applied to the sample (X),); < 1)
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with k = k, (> q for n large enough), s = ¢a,, and

t =10%(¢L + 6%)"°

1 g \V2
(q og K_) am,,‘

(Of course, the numerical constant 102 is not the best one, just a convenlent
number!)

In order to apply Theorem 2.3 to concrete situations, several comments are
in order. Conditions (2.1) and (2.2) are rather technical, but we will see later
that they follow from a handy (but weaker) condition (Lemma 2.5 below).
Theorem 2.3 can often be applied by replacing the quantities M, and o,, by
the corresponding quantities without truncations. As stated, however, the
conditions on M, and o, are kind of optimal. More precisely, if the sequence
(S,/a,) is almost surely bounded, i.e., (2.4) holds for some a > 0, and if there
exist ¢ and (k) such that (2.1) [and (2.2)] is satisfied, then L is finite and (2.3)
holds for some 8 > 0. For L, since it is necessary that the sequence (S, /a,) is
bounded in probability, we have simply to translate this property in terms of
expectation. This is, however, classical and is expressed in the next lemma that
is proved using Hoffmann-Jgrgensen’s inequality (cf. [23] and [6]); it applies
directly to L using a contraction principle (cf. [18] and [16]) [or (2.2)].

LEmMMA 2.4. Let (X;) be independent and symmetric random variables.
Then, if the sequence (S, /a,) is bounded (resp., convergent to 0) in probabil-
ity, for any p > 0 and any & > 0, the sequence (E|Z7_;X;Ijx,<ca,)/%nl") is
bounded (resp., convergent to 0).

The necessity of (2.3) is obtained from Kolmogorov’s lower bound inequality
([29], page 262) and we sketch the proof following [3]. We assume thus that for
" some a > 0,

Xn_‘, IP{ Y Xi” >aamn} < o

iel(n)

and set, with ¢ = 1 for simplicity,
X! =XIyxza, /ey LE1(n).

For each n, choose f, in B*, | f,|l < 1, such that

sr<2 ¥ OEFAXN)  (<202).
iel(n)

We also have )
Z IP{ Z fn(XLn) > aamn} < ®,

n iel(n)

“li

where we have used either a contraction principle or (2.2). By Lemma 2.4,
a, /o,>c>0 for each n. In order to apply Kolmogorov’s 1nequahty, note
that it is sufficient, by (2.1), to consider the integers n such that a2, < no?k,,



764 M. LEDOUX AND M. TALAGRAND

n > 0. But then, it is easily seen that for some C(> a), some small > 0 and
all n large enough, we are under the hypotheses described on page 262 of [29]
and thus

2,2
Pl T r(xr)>Cay,) Zexp(— = Z"‘"),

iel(n) On

which proves our claim. Let us note further that if S, /a, — 0 almost surely,
then, in the prescribed setting, it is possible to show similarly that L = 0 and
that (2.3) holds for every & > 0.

Concerning conditions (2.1) and (2.2) in Theorem 2.3, it would be desirable
to find, if possible, simple, or at least easy to be handled, hypotheses on (X;) in
order for these conditions to be fulfilled. There could be many ways to do this.
We suggest a possible one in the next lemma in terms of the probabilities
Plmax; ¢ ;| X;ll > £} (or X ¢ 1) PUIX ]| > 2D

LemMma 2.5. In the notation of Theorem 2.3, assume that, for some u > 0,

(2.5) Y [P< max || X;|| > ua,, } < oo,
n iel(n) "
and that, for somev > 0, allnand t,0 <t <1,
1
(2.6) IP’{ max || X;|| > tva,, } <4, exp(—),
iel(n) i t

where ¥ ,6; < o for some integer s. Then, for each q > K, there exists a
sequence of integers (k) satisfying (2.1) and such that

k, -1
(2.7 Y IP{ XX > 2s(u + v(log Ki) )amn} < oo,
i-1 0

n

Proor. The idea is simply that if the largest element of (X)), c ., is
exactly estimated by (2.5), the 2sth one is already small enough so that quite a
large number of values after it are under control. Write indeed (for any %)

kn
2 NX5 ) < 281 Xf0l + R, | XSl
i=1
We have, 0 <t <1,
' 2s
P{IXE)N > tva,, } < (P{ max || X,|| > tvam”})

iel(n)

(which is easily checked by induction from

P{IX{) > a) < P{ max |1X,]| > a}P{1X§;571 > a)).
iel(n)
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(We thank A. de Acosta for pointing out to us the preceding inequality.)
Therefore, by (2.6),

1 2s
P{I1 X&) > tvamn} < (3n exp(;)) '

We choose next, for each n large enough, ¢ to be (log1/ ‘/g )~! and set &, to
be the integer part of

2 (1 a )_11 !
s|log — og —.
K, Von

It is plain that

On the other hand,

k, g \!
IP{ 2 IX5ON > 2s|u + v(log—) a,, }
i=1 K, "

(n

1\
log‘/y) vamn},

so that (2.7) holds by our preceding observation. O

< P{IX > ua,, } + P{MX}fzzn >

REMARK 2.6. Assume that (2.6) of Lemma 2.5 is strengthened into

P X ¢ ) .

max | X;|| > tva <é,—,
{ max 1X,)> wa,, } <5,
for some p > 0. It is easily seen then that the preceding proof can be improved
to yield the existence of a sequence (k,) of integers such that (2.7) is satisfied
and

1
L g <
= R

(or even X, k,?® < « for p’ > p). This observation is sometimes useful as will
be the case in the next sections.

REMARK 2.7. Theorem 2.3 and Lemma 2.5 have trivial analogs in case

some extreme values are deleted from sums. More precisely, if, in Theorem
2.3, (2.2) is replaced by

Ze|

for some fixed integer r > 0, and the other hypotheses are unchanged, then,

k,. £
£ 1> Gan,) <

i=r+1
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using Proposition 1.4 instead of Proposition 1.1, we get in the same way that

J r
Z Xz - .ZIX((:VZ",_I,/«] > loza(8!87Q7L)amn} < ®©,
i=

i=m,_;+1

ZIP’{ max

n j€l(n)

where X ;) denotes the ¢th maximum of (X, _ ,y,..., X))
Similarly, in Lemma 2.5, if (2.5) is weakened into

Y ([F"{ max || X,|| > uamn})m <,

n tel(n)

the proof leads to the same conclusion for L¥» 1||X,((",)z)“, i.e., the existence, for
each g > K,,, of a sequence (k,,) of integers satisfying . (K,/q)*" < © and

k -1
A . q
ZP{ X IXSO > 25| u + vflog —) amn} < o,
n i=r+1 KO

Further, Remark 2.6 clearly also applies in this context. We refer below to this
remark as the trimmed version of Theorem 2.3 and Lemma 2.5

3. The law of large numbers. This section is devoted to extensions of the
classical strong laws of large numbers of Kolmogorov and Prokorov (cf. [29]) for
Banach space valued random variables. What the isoperimetric approach pro-
vides is actually already of interest on the line, in the results themselves like
Theorem 3.1 and, perhaps more importantly, in the conceptual idea of the
proofs. We apply in a rather trivial manner the general statement of the preced-
ing paragraph. For clarity, we do not seek the greatest generality in normalizing
sequences and only deal with the natural and classical case a, = n. The same
approach leads, however, to similar statements in general (see, e.g., [3] in case of

‘Prokorov’s law of large numbers). We thus also simply take m, = 2" as the
blocking subsequence.

The classical law of large numbers of Kolmogorov states that if (X,) are real
independent random variables with mean O, then S,/n — 0 almost surely as
soon as

EX2

,i2

Y < o,
i

In Banach spaces ([17] and [23)]), if

E||1X,||?

Z ” '21” < w,
, i v .

then S,,/n — 0 almost surely if and only if S,/n — 0 in probability. Several
recent works in smooth norm spaces (starting with the law of the iterated
logarithm), however, showed that assumptions on the norms of the X,’s only are
in general too heavy and should be weakened and complemented with hypothe-
ses on weak moments ([13] and [15]). The isoperimetric inequality confirms this
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confirms this intuition in general Banach space and leads to some general
extension of Kolmogorov’s law of large numbers which appears to be sharp
even on the line. The result is the following. Recall that, for each n, I(n) =
2~-1+1,...,2".

THEOREM 3.1. Let (X,) be a sequence of independent random variables
with values in a Banach space B. Assume that

X.
(3.1) T‘ — 0 almost surely
and
S, . .
(3.2) - 0 in probability.
Assume, moreover, that for some v > 0, allnand t,0 <t < 1,
1
(3.3) IP’{ max || X,|| > tv2"} <3, exp(-—),
iel(n) t

where ¥ ,8; < ® for some s > 0, and that, for each 6 > 0,

(3.4) Y exp(—522"/ sup ). [E(fz(Xi)Imxinsz"))) < .

n Ifl<1iei(n)
Then the strong law of large numbers holds, i.e.,

—= - 0 almost surely.
n

Proor. We simply apply Theorem 2.3 and Lemma 2.5. We can first as-
sume, by Lemma 2.1, the X,’s to be symmetric and, by (3.2) and Lemma 2.4,
take L (in Theorem 2.3) to be 0. Since X;/i — 0 almost surely, for every
u>0,

Y IP{ max || X;|| > u2"} < oo,

n iel(n)

Summarizing the conclusions of Lemma 2.5 and Theorem 2.3, for all ©,8 > 0
and q > 2K, and for s assumed to be an integer,

_ g1
Y Xi”> 102 28(u+v(log—l-{—-) +q8}2"} < o,

iel(n) Y

= e

n

It obviously follows that

Zn‘,um{‘ ¥ Xi”>82n} <

iel(n)

for every & > 0 and the theorem is proved by Lemma 2.2. O
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CoRrOLLARY 3.2. Under the hypotheses of Theorem 3.1, but with (3.3)
replaced by

1 S
(3.3) ) (2,,,, ) [EuXiuP) <,
n iel(n)
for some p > 0 and some s > 0, the strong law of large numbers is satisfied:
S,
- 0 almost surely.

Proor. Simply note that

Y P{IX;l > w2} < =5 L EIX|P
i€l(n) (tv)p 2P iel(n)
11 1
<C(p)exp( ) o L EHIXI
iel(n)

from which (3.3) of Theorem 3.1 follows. Note that the sums X, ¢ ;.,)Ell X;[|?
can also be replaced, if one wishes it, by expressions of the type

supt? Y, P{||X;|| > ¢}.
t>0  jel(n) O

Conditions (3.1) and (3.2) in Theorem 3.1 are of course necessary, (3.2)
describing the classical assumption in probability on the sequence (S,,) (usu-
ally trivially satisfied in the real valued statements). Under (3.1), it is legiti-
mate and sometimes convenient for comparison to assume that || X;| < i; for
* example, (3.3) [via (3.3)] holds under the stronger hypothesis

E| X,
X

which is then seen to be weaker and weaker as p increases. This condition is
easily comparable to the classical statements as described before. In this way,
it is possible to recover from Theorem 3.1 almost all known vector valued laws
of large numbers of Kolmogorov’s type, e.g., [23] and [15]. It is also possible to
include laws of Brunk’s type ([4], [33], [6] and [15]); Brunk’s theorem states
that if (X;) is a sequence of independent mean zero real random variables

satisfying

< o for some p > 0,

X,

77T <@ for some p > 2,
i

i
then the law of large numbers holds. If we observe that, for p > 2,
2/p

1
Y EfA(X) < one/2+ D) Y EF(X)P|

2n
2 iel(n) iel(n)
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it is easily seen how Theorem 3.1 (or better Corollary 3.2) contains Brunk’s
theorem as well as extensions to the vector valued setting.

One feature of the isoperimetric approach is a common treatment of
Kolmogorov’s and Prokorov’s laws of large numbers. As easily as we obtained
Theorem 3.1 from Section 2, we get an extension of Prokorov’s result to the
vector valued case: We still work under conditions (3.2) and (3.4), but reinforce

(3.1) into

i
1 X;]] < ILi almost surely for each i,

where we denote Lt = max(1,log¢) and LLt = L(L¢), t € R,. This bounded-
ness assumption provides the exact bound on large values and actually fits
(3.3) of Theorem 3.1. Indeed, for each n and ¢,0 < ¢ < 1,

IP{ max || X;|| > 2t2"} <8, exp(l),
iel(n) t

with §, = exp(—2LL2"). We thus obtain as a next corollary the following
result which already appeared in [25]; it improves upon previous results of [14]
and [2]. Note that the boundedness assumption, as is well known on the line
(cf. [29]), is-optimal under (3.4) and that (3.4) becomes necessary under this
hypothesis, following the necessity of (2.3) in Theorem 2.3 (see [2]). Further,
the convergence S, /n — 0 in probability for real mean zero random variables
always holds under (3.4).

CoROLLARY 3.3. Let (X;) be a sequence of independent random variables
with values in a Banach space B. Assume that

i
X < L almost surely for each i.

Then, if (and only if )

S

7" — 0 in probability
and

)y eXP(—622”/ sup Y Ef3(X,)| <o,

n IflI=1;en(n)
for each 8 > 0, we have

— > 0 almost surely.
n

4. The law of the iterated logarithm and extreme values. As for the
law of large numbers, the framework provided by the isoperimetric inequality
allows one to study quite easily the law of the iterated logarithm. The two
classical and main theorems are here the laws of the iterated logarithm of
Kolmogorov [19] and Hartman, Wintner and Strassen ([12] and [30]) (cf. [29]
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for a general reference). An extension to Banach space of the first one using
the isoperimetric approach has already been obtained in [25]. The general idea
of the proof is the same as the one used for Prokorov’s law of large numbers so
that we need only briefly describe the result.

THEOREM 4.1. Let (X;) be a sequence of independent random variables
with values in a Banach space B such that E f(X;) = 0 and E f*(X;) < « for
each fin B* and each i in N. Let, for each n, s, = sup, ;. (Z7_E fAX D2,
assumed to increase to ©. We suppose that

1:S;
(LLs?)"*

for some sequence (n,) of positive numbers tending to 0. Then, if (and only if )
the sequence (S, /(252 LLs2)'/?) is bounded in probability, with probability 1,
1Sl

1< limsup——5 <M,
n—e (28,2‘LL3,2,)1/2

1 X < almost surely for each i,

for some finite number M.

We do not know whether it is possible to take M = 1 as it is the case on the
line even if the sequence (S, /(2s2 LLs2)'/?) converges to 0 in probability.

Proor. The upper bound with M unspecified only requires the sequence
(n;) be bounded, for example by 1. We need only consider the case of symmet-
ric random variables. For each n, set a,, = (252 LLs2)'/? and define m , as the
smallest m such that s,, > 2”. It is easily seen that

Sn+1 - 1’ s, ~ 2n’ smn+l ~ 2’
s, » Sm,

so that we can make use of Lemma 2.2. To apply Theorem 2.3, note that (2.3)
will be trivially satisfied by the very definition of s, and that L will be finite
from Lemma 2.4. Concerning (2.1) and (2.2), we use Lemma 2.5 and observe,
as for Prokorov’s law of large numbers that, for each n and ¢, 0 <¢ < 1,

1
IP’{ max || X;|| > ta,, } <, exp(-—),

iel(n) " t
with 8, = exp(— V2 LLs2, ). It follows that for some M,

L |

n

Y X,” >Mamn} < oo,
iel(n)

hence the upper bound. The lower bound (which uses n; — 0) is detailed in
[25] and rests, as the necessity of (2.3) in Theorem 2.3, on Kolmogorov’s real
exponential minoration inequality. O
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Hartman and Wintner deduced their law of the iterated logarithm for
independent and identically distributed random variables from Kolmogorov’s
result and a (clever) truncation argument. (Along this line, cf. [7] for a simpler
proof of the Hartman-Wintner theorem.) In the framework of the isoperimet-
ric inequality, both, however, can be obtained essentially by the same proce-
dure: The identical distribution of the random variables and the integrability
condition we will require play the role of the truncation in Theorem 4.1. We
thus obtain, with the tools of Sections 1 and 2, a new and simpler proof of the
characterization of [24] of Banach space valued random variables satisfying the
law of the iterated logarithm in the Hartman-Wintner—Strassen form along
the same lines used for Kolmogorov’s law of the iterated logarithm (Theorem
4.1).

The proof we give applies similarly when extreme values are deleted from
sums and we deduce, in the second part of this section, several consequences
on the law of the iterated logarithm for trimmed sums. Extensions and new
proofs of Mori’s laws of large numbers when extreme values are deleted from
sums ([27] and [28]) complete in the same spirit this section.

Let X be a random variable with values in a Banach space B. From now on,
(X,) will denote a sequence of independent random variables with the same
distribution as X. For convenience, we also set a, = (2nLLn)Y/? for each n,
where we recall that Lt = max(1,log ), LLt = L(L¢), t € R,. With this nota-
tion, the random variable X is said to satisfy the (compact) law of the iterated
logarithm if there is a compact set K in B such that, with probability 1,

S, S,

(4.1) lim d(—,K)=O and C(—)=K,

n—w a, a,

where d(x, K) denotes the distance from the point x to the set K and C(x,)
the set of limit points of the sequence (x,,). It is known ([20]) that if such a set
K exists, it is necessarily the unit ball of the reproducing kernel Hilbert space
associated to the covariance structure of X and that (4.1) holds if and only if
the sequence (S, /a ) is almost surely relatively compact in B. We refer to [24]
for further details, information and references concerning these definitions
and equivalent formulations. In [24] the following characterization of random

variables satisfying the law of the iterated logarithm was obtained.
THEOREM 4.2. Let X be a random variable with values in B. In order that

X satisfy the law of the iterated logarithm, it is necessary and sufficient that
the following conditions be fulfilled:

' LL| X ’

the family of real random variables {f*(X); f< B*,

(4.3) | fll < 1} is uniformly integrable;
@
S,
(44) — — 0 in probability.

a,
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Proor. We refer to [24] for the easy necessity part (see also the end of the
proof of Theorem 4.3). Turning to sufficiency, we first assume the random
variable X to be symmetric. We would like to apply Theorem 2.3 and the
results of Section 2. Set there, for each n, m, = 2". Note that, by Lemma 2.4
and (4.4), whatever the choice of ¢ and (%,) will be, we can take L = 0 in
Theorem 2.3. Further, if we let

o?= sup Ef3(X) (<),
Ifii=1

(2.3) will hold with § = 0. We are therefore left with conditions (2.1) and (2.2)
that we check using the integrability hypothesis (4.2) applying Lemma 2.5.
Recall first that E(|| X||2/LL|| X|) < o if and only if

L 2"P{IIX|| > eag} < =,

n
for each (or some) £ > 0. Set y, = y,(e) = 2"P{|| X|| > ea,}. It is easily seen
that there exists a sequence (B,,) such that B, > v, for each n, © B8, < » and

satisfying the regularity condition B, < 2, ., for each n. In order to verify
(2.6) of Lemma 2.5, let £ < 1 be such that 27% < 2 < 27%*1 When £ < n,

n I3 & 2% 4
2"P{|| X|| > teagn} < 2%y, _, < 2%B,_, < 2%%8, < t_4B”'
If 2>n,
4
2"P{|| X|| > teagsn} < 2" < ;Z2‘n,

so that, in any case, (2.6) holds with
8, = 96max(B,,27"),

which satisfies ¥, 8, < ». Lemma 2.5 thus tells us that, taking for example
q = 2K, there exists a sequence (%,) of integers such that ¥ ,27%» < « and

ky
Z IP{ Z ”Xéln)—lll > 58a2n} < o0,
i=1

n

It follows from Theorem 2.3 that for some numerical constant C and all ¢ > 0,
> u»{
n

Hence, by Lévy’s maximal inequality for symmetric random variables and the
Borel-Cantelli lemma, with probability 1,

ISl

on

XX

>C(e + O')azn—l} < o,
i=1

lim sup < Co.

n—o a,
By (4.4) and the symmetrization Lemma 2.1, the same inequality holds when
X is not symmetric, with perhaps 2y2 C instead of C. The proof is almost
complete: If we replace in the argument the norm of B by quotient norms by
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finite-dimensional subspaces of B, the uniform integrability (4.3) implies that
the corresponding ¢’s can be made arbitrarily small for large enough sub-
spaces. By the preceding inequality, the same holds for the lim sup||S,/a,|l
and it immediately follows that the sequence (S, /a,) is almost surely rela-
tively compact in B. Theorem 3.1 of Kuelbs [20], as mentioned before, leads
then to the existence of K satisfying (4.1). O

Theorem 4.2 and its proof can be extended to the case where extreme values
are deleted from the sums S,,. The result we obtain below has its origin in the
observation (see [21]) that the integrability condition E(|X||2/LL||X|) < » in
Theorem 4.2 exactly expresses that the maximal term of the sample
WXy, ..., 1 X, is asymptotically negligible with respect to the normalization
a,; thus deleting large values from sums should be reflected in this integrabil-
ity condition.

Before stating this result for trimmed sums, recall that for n >r > 1,
X(" = X, whenever || X, is the rth maximum 0f((|X1(|, L IX,D O if 7> n).
We also let Ng =8 —XP— - — X" OF isjust S,. We denote also by
L, 0<p,q< 00) the space of all real random varlables § such that

f (PP > 1) ﬂ <.

L, , isjust L, by the usual integration by parts formulaand L, , <L, . if
q1 < qs. Moreover as is easy to see, lim,_, t?P{|{| >t} = 0 when { € Lp 7

THEOREM 4.3. Let r be an integer and let X be a random variable with
values in B. In order that there exist a compact set K in B such that, with

probability 1,

(r)S (r)S
limd( ",K)=0 and C( ")=K,

n—o n an

it is necessary and sufficient that the following conditions be fulfilled:

X2
(4.5) LL|X|| €Ly, 15
(4.6) {FfA(X); feB* | fll<1} isuniformly integrable;
S, [ s
(4.7) a_: (or nn) — 0 in probability.

If such a set K exists, it is the same as the one which appears for r = 0, i.e,,
the usual cluster set of the law of the iterated logarithm. The proof of thls
result is actually only a small variation on the proof of Theorem 4.2 with the
modifications we mentioned aboit trimming at the ends of Sections 1 and 2.
Theorem 4.3 improves upon a result in [21] (to which we refer for a short
history of these questions) under the assumption of the central limit theorem.
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Moreover, Theorem 4.3 points out the certainly well-known fact that trimming
a finite number of values does not affect the stability of the real law of the

iterated logarithm, i.e., for any r,
r)

n

= (EX2)"? almost surely,

lim sup

n—wx n
if and only if the real valued random variable X satisfies EX = 0 and EX?2 < .
This is established in the course of the proof of Theorem 4.3 to which we turn
now. =

Proor. It is completely similar to the proof of Theorem 4.2 (corresponding
to r = 0) but a few points like the symmetrization procedure and the necessity
part require some more details. We start, however, with the portion reproduc-
ing Theorem 4.2. Note first, for further use, that the integrability condition
| X|?/LL||X|| € L, ,,, is equivalent to saying that

1 X5 2
(4.8) lim ——— =0 almost surely

n—o a,

(cf. [27], Lemma 3). Moreover, but this is trivial; it holds if and only if
Y (2"P(I X > eagr}) "t <

n

for some (or every) ¢ > 0. Hence, by the comments at the end of Remark 2.7
and the exact same argument for Theorem 4.2, we see that for ¢ = 2K, and
every ¢ > 0, there exists a sequence of integers (k,) such that ¥ ,27%» < « and
satisfying
kn
Yy P{ Y X > 5(r + 1)aa2,,} < o,
n

i=r+1

Let X be symmetric. Theorem 2.3 for trimmed sums (Remark 2.7) implies
now that for each ¢ > 0,

Y P{jniazz’f”(r)sjn >C(r)(e+ 0')a2n—1} < o,
" <

where C(r) only depends on r and o = sup, 7, . (E f2(X))"/2. Hence
A

(4.9) lim sup < C(r)o almost surely.

n—oo n
This already concludes the proof in the symmetrical case. To deal with the
general case, we make use of (4.8) and of the following elementary sym-
metrization lemma for trimmed sums. Let (X/) denote an independent copy of
the sequence (X;) and set, for each i, X; = X, — X/, defining thus symmetrical
réndom variables. The notation X/, S;, S, X, §,, S, is consistent
with that introduced above.
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LEmMMA 44. Foreachn=>r + 1,
"g ((r)Sn _(r)S',l‘) " <6r max{" X’(‘r+1)", I X',‘(r+1)", " X-'(lr+1)||}.

Proor. Denote by I (resp., J, K) the set of indices corresponding to the r
maxima of (X, ..., X,) [resp., (Xi,..., X2),(X,,..., X,)]. Then
(r)gn - ((T)Sn _(r)Sr'z) = Z Xk + Z Xi - Z X-']"
keK iel jed
Let A (resp., B,C) denote I N J N K (resp., the indices belonging to 2 exactly,
1 exactly, of the sets I,J, K). Then, letting a denote the maximum in the
right-hand side of the inequality of the lemma,

ifieA, -X,+X,-X!=0,
ifieB, |-XIx(i)+XIL(0)-X130)<a,
ifieC, ||-ZXIx(i)+X,I1;(i)—-X,1,(i)| < 2a.

Hence
8, - (78, =S| < a(card B + 2card C).

Since card B + card C < 3r, the conclusion follows. O

Using the integrability condition || X|>/LL|| X| € L, ,,, (that also holds for
X and X'), we easily deduce from (4.8), Lemmas 4.4 and 2.1 that (4.9) will hold
for all random variables X satisfying the hypotheses of Theorem 4.3, and not
only symmetric ones. As in Theorem 4.2, the same theorem of Kuelbs [20]
concludes the sufficiency part of this proof since it is plain, by the one-dimen-
sional law of the iterated logarithm, that ‘

f((")Sn)

2 glmost surely,

lim sup = (Ef¥(X))
n—®o n
for every r > 0 and f in B* [note that E f(X) = 0 under (4.7)].

The necessity of (4.5) is well known and the argument is due to Mori
(see [21]). In order to prove the necessity of (4.7), note that the almost sure
relative compactness of the sequence (S, /a,) implies that the sequence of
the laws of the ”S,/a, is tight. Since under || X|?/LL||X| €L, .1
lim, _ nP{|X]| > sa,} = 0 for every & > 0, the sequence of the laws of the
S,/a, is also tight. Now, if we assume that E f %(X) < = for every f, clearly
f(S,)/a, — 0 in probability and (4.7) follows by tightness. We are thus left
with the necessity of (4.6). This will follow from the certainly known next

lemma.

LeEmMMA 4.5. If, with probability 1,

(4.10) lim su m
o p a < @,

n—o n

then E f3(X) < « for every f in B*.
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Proor. Lemma 4.4 and the necessity of (4.5) ensure that it is enough to
consider the case of a symmetric X, something we assume henceforth. Let
¢ > 0 arbitrary, but fixed, and define

X = Xlyxy<o — Xlyxy> o
By symmetry, X has the same distribution as X. We can suppose that
P{|X]| < ¢} <1 (if not there is nothing to prove). In this case, if we let, for
each n,
C, = {there exist at least r indices i < n such that | X,|| > c},

it is plain that P{lim inf, , ,C,} = 1 [since & ,P(C¢) < =]. Therefore, for almost
every w, there exists an integer n, such that for every n > n,, 0 € C,; if
w € C,, it is easy to see that

28, (o) =18 (0) +78 S),

where S, . = L7 X;I;x ., and ’S, has the same meaning for X as S,
for X. Slnce by the 0-1 law, (4.10) has really to be meant as

(r)

lim sup u =M almost surely,
n—oow n

for some finite number M, it follows that, for every ¢ > 0, with probability 1,

. IS, |l

limsup —— < M.

n—o n

By symmetry and the classical law of the iterated logarithm, we then get, for
each f in B*,
S,..)

([Ef (X)I("X”<c))1/ = llmsupL— < M| fl,

n—o n

from which the lemma follows when ¢ —» «. O

To prove that the family { f%(X); f € B*, || f|| < 1} is uniformly integrable is
now exactly as in the proof of Theorem 1.2 in [24]. This concludes the proof of
Theorem 4.3.

When r increases, the integrability conditions || X|?/LL|X| € L,,,; in
Theorem 4.3 are less and less constraining. If one decides then to subtract
from the sums S, a number r = r, depending on the size n of the sample,
increasing to o but still chosen to be reasonably small (for applications), it is
possible to replace the preceding integrability conditions by some tail behavior,
namely lim,_ t?P{|X| >t} = 0. The following theorem extends further a
result obtained in [21] under the stronger assumption of the central limit
property. .

THEOREM 4.6. Let X be a random variable with values in B satisfying
(4.11) lim ¢?P{|| X|| > ¢} = 0.
ft—> o

Then, there exists a sequence of positive numbers ({,) decreasing to 0 such
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that if r, denotes the integer part of {, LLn and if
(4.12) {Ff3(X); f€B* | fll<1} isuniformlyintegrable,
with probability 1,
(rn) S
. ) .

aﬂ

n—oo

("n)S
lim d( - ",K)=O and C

if and only if
(rn)S

a

“ — 0 in probability;

(4.13)

n

K is here again the usual cluster set of the law of the iterated logarithm.

Proor. The sequence ({,) is chosen as in [21]. More precisely, by
lim, . t?P{| X|| > ¢} = 0, let (£,,) be any sequence of positive numbers decreas-
ing to 0 such that, for each ¢ > 0,

(4.14) I}i_r)x:ogn log(/\_(s—é%—n)T) = oo,

where B(n) = (n/LLn)'/? and A(¢) = sup,. , s?P{|X| > s}. We may also as-
sume that r, = [{, LLn] - © with n, where [-] is the integer part function.
Set, for each n, s, = [{,n LL2" '] + 1. We first note that, for each ¢ > 0,

(4.15) Y P{LL2™| X$P|| > eagn} < .

n

Indeed, the classical binomial estimates (see, e.g., [5]) give
e2"P{|| X|| > eB(2")) )
s b

P{LL2"| X7 > eagn) < (
" from which (4.15) easily follows by (4.14). As a consequence of (4.15) we note
in particular that
rn
lim —|| X{*D|| =0 almost surely;

—
n—o n

hence the symmetrization Lemma 4.4 allows us to reduce to the case of
symmetric random variables.

We now make use of the framework developed in Sections 1 and 2. We find
it convenient to go back to Proposition 1.4, recalling that in our setting: For
k,>4q,s,, and s,t > 0,

IP{ max [(VS,||> ¢ + 25 + 8an}

2n"lcj<on
K, \* b ‘ £2
4.16 <[—| +P X®P|>st +8 -
(4.16) % {Esn” 2 } exp( 64q0n2)

+ 8exp

(k, —s,)t°
768¢M,s |’
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where

zn
o, = sup Y [E( fz(Xi)ImX,nssAkn—sn»)
Ifl<1i=1

and

271
M, =t XlXiI(llxillss/<kn—sn)> :
im

We will use this inequality for each n (large enough), with ¢ = 2K, %, =
[2LL2"]and s = eay, ¢ > 0. Clearly, 0,? < 2”0, where o = sup, ., E [ *(X).
More interesting is to notice that under hypotheses (4.11) and (4.13) of the
theorem, we have lim, ,.M,/a,» = 0. Indeed, we know from (4.15) that
almost surely for all » large enough, the number of X;, i < 2", satisfying
|1 X;|l > 2¢B(2") is less than r,.. Hence, combining with (4.13), we see that
o
— Y X Iyx <20y — 0 in probability.

2" =1 .
Since k, — s, > LL2" for n large enough, we deduce from Lemma 2.4 that
M, /a,. — 0 as announced. As yet another remark, note that, obviously,

ky
L IXEN < k)| XG0

i=s,

We can now conclude the proof of the theorem. By our preceding choices and
observations, if we take ¢ to be of the order of ga,. in (4.16), we easily obtain
from this inequality that for some numerical constant C and all £ > 0,

Y IP’{ max [["VS;||> C(e + U)a2n—l} < oo,
n 2"_1<jS2n

Hence
( n
78,

lim sup < Co almost surely.

n—sx n
As in Theorems 4.2 and 4.3, condition (4.12) implies further the relative

compactness in B of the sequence ("’S, /a,). The theorem of Kuelbs [20] will
complete our proof whenever we know that

(rn)S
lim sup -——(-a—n) = (Ef%(X))"* almost surely,

n—>x n

for each f in B*. By the classical law of the iterated logarithm, it is of course
enough to be convinced that, with probability 1,

1 (I
lim —f( Y X,(j)) = 0.

noe by \i=1
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To this aim, simply observe that for each n,

1 rn . 1 rn .
;‘ '2—:1 f(Xr(zl)) =< gn + ;‘ '¥1 f(Xr(zl))I(lf(Xﬁf)M>(2n/LLn)1/2)
1 n 1 n 1/2
St [ n .Zlfz(X"))(EfE{ -21I(lf(Xi)|>(2"/LL")1./2})] '
1= t=

By the strong law of large numbers and Kronecker’s lemma, the hypothesis
Ef%(X) < » implies that the second term in the right-hand side of the
previous inequality converges almost surely to 0; our claim is therefore
satisfied. As in Theorem 4.3, it proves by the same way the necessity of (4.13)
and the proof is complete. O

It is interesting to point out that the general method based on the isoperi-
metric inequality (*) also provides new and simple proofs of Mori’s strong laws
of large numbers for independent identically distributed random variables
when extreme values are deleted from sums ([27] and [28]). Extensions to the
vector valued case already appeared in a first version of the article [22]. For
r = 0, we recover the Marcinkiewicz—Zygmund laws of large numbers ([6]).
Statements analogous to Theorem 4.4 with r = r, can also be obtained and
some are described in [22].

THEOREM 4.7. Let r be an integer and 0 < p < 2. Let also X be a random
variable with values in B. In order that there exist a sequence (c,) in B such
that

(r)Sn

nl/p

—c¢, > 0 almost surely,

it is necessary and sufficient that

(r)S

(4.17) 1/: — ¢, = 0 in probability
n

and

(4.18) - XisinL, .1y,

The sequence (c,) in this theorem can be chosen to be identically 0 in the
case of symmetric random variables (see the proof). Note, also, that under the
integrability condition (4.18), all the properties (4.17) when r varies are
equivalent, in particular r = 0. Furthermore, (4.18) always implies (4.17) (with
¢, = 0) whenever 0 < p < 1; as is well known this is no more the case however
for 1 < p < 2 and various conditions (type) have to be imposed on the Banach
space in order that such an_ implication holds (cf., e.g., [26] and [6]). These
‘conditions are of course always satisfied on the real line in which case one
might take ¢, = nEX when 1 <p <2 and ¢, = (X[;x _.,), € > 0, in the
remaining case p = 1 (see [28]).
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Proor. The necessity of (4.18) follows as in [28]. Turning to sufficiency,
since, following again [28], (4.18) implies that (is equivalent to)

X5

. n

lim —-—— =0 almost surely,
now N

it is easily seen, by Lemma 4.4, that we can restrict ourselves to symmetric
random variables and prove the theorem with ¢, = 0. We would like to apply
the trimmed versions of Theorem 2.3 and Lemma 2.5 (Remark 2.7). To this
aim, recall that (4.1) is equivalent to saying that

r+1

¥ (2"P{) X > e2"/P}) T <

n

for some (al) ¢ > 0. Let ¢ > 0 be fixed and set vy, = v,(¢) =
2"P{|| X|| > £2"/P})"* 1. There exists a sequence of positive numbers (3,) such
that B, > vy, for every n, L, B, <« and satisfying the regularity property
B, <2B,., for all n. Let now 0 <¢ <1 be such that 27% < ¢P < 27F*1
k>1.1If k <n,

2"P{|| X|| > te2"/P} < 2"P(|| X|| > e2»~»/P)

k 1/(r+1)
= 2 (’Yn—k)

22k 1/(r+1)< 4 1/(r+1)
< 22kgl < BT

When % > n,

4
2"P(| X[ > te2"/7) < 2" < 27"

Therefore, in any case, for every n and 0 <t < 1,

2"P{|| X|| > te2"/P} <&

nt2p’

where ZnS,';“ < o, It follows from Lemma 2.5 completed with Remarks 2.6
and 2.7 that, for ¢ = 2K, for example, there exists a sequence (%,) of integers
satisfying ¥ 2 %» < «, and even

(4.19) Y exp(—8k27P) <o forevery § > 0,

n

such that

ky
Y P{ Y 1 X8> 5(r + 1)32"/1’} < o,
n

i=r+1
We are now in a position to apply Theorem 2.3. Since S,/n'/? — 0 in
probability, by Lemma 2.4, L = 0. In order to check (2.3), note that, for
each n, .
ol < Zn[E(I|X|I21{||X||s5(r+1)e2"/P/kn));
since P{||X|| > t} < C/¢tP for all ¢ > 0 under (4.18), a simple integration by
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parts shows that
g2 < C(p,r)22/rPpr-2,

By (4.19), (2.3) holds for every & > 0. The trimmed version of Theorem 2.3
(Remark 2.7) then tells us that, for some constant C(r), and every ¢,6 > 0,

Y [P’{maxll(r)sjll > C(r)(e + 3)2””’} < .
Jj=<2"

n

By the Borel-Cantelli lemma the proof of Theorem 4.7 is complete. O

5. On the identification of the limits in the law of the iterated
logarithm. We keep the notation of the preceding section on the law of the
iterated logarithm. When a random variable X satisfies the law of the iterated
logarithm, (4.1), i.e.,

S, S,
lim d(a—, K) =0 and C(a_) = K almost surely,

n n

completely describes the limits of the sequence (S, /a,). However, it is also of
interest to try to have some idea of what (4.1) could be if X does not satisfy
the law of the iterated logarithm. In particular, one might want to estimate
the nonrandom (0-1 law) limit

. [ISA
(5.1) A = lim sup ,

n—x n

when the sequence (S, /a,) is only bounded almost surely and not relatively
compact (bounded law of the iterated logarithm).

In his remarkable recent work, Alexander [1] obtains a complete description
of the cluster set C(S,/a,). Assume that Ef(X) =0 and E f%(X) < « for
every f in B* so that the reproducing kernel Hilbert space associated with the
covariance structure of X, and its unit ball K, are well defined. Alexander
shows that C(S, /a,) can only be a multiple «aK of K with 0 <a <1, or
empty, and examples are given to show that all cases actually occur. Moreover,
a series condition involving the laws of the partial sums S, determines the
value of a. We retain in particular that C(S,/a,) = K almost surely when
S, /a, — 0 in probability, a result actually obtained earlier by de Acosta,
Kuelbs and Ledoux [9].

Concerning the limit (5.1), less is known. Identification in some smooth
normed spaces (including Hilbert spaces) was obtained by de Acosta and
Kuelbs [8]. In the notation of Theorem 4.2, we are interested in the case where
(4.2) and (4.4) hold, i.e., E(|| X||?/LL||X|) < « and S, /a, — 0 in probability,
and where (4.3) is replaced by

o= sup ([EfQ(X))l/2 < oo,
Ifil<1

What our proof of Theorem 4.2 actually shows in this case is that A < Co for
some numerical constant C (> 1!). When {f%(X); f<€ B*, | f|| < 1} is uni-
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formly integrable, which is equivalent to the compactness of K, it could be
shown, by an approximation argument, that the sequence (S, /a,) is almost
surely relatively compact, which implies (4.1). Besides the crucial symmetriza-
tion procedure itself, one reason for the poor constant C is that Lemma 1.3
does not provide the right constants. When dealing with Gaussian averages, it
was the observation of [10] that one does have the best constants and it could
be proved that A = o for random variables of the form A X, where A denotes a
standard Gaussian variable independent of X. In the last part of this work, we
show that the equality A = o holds for all random variables X satisfying (4.2)
and (4.4). The general idea of the proof avoids symmetrization and tries to find
a substitute for the approximation argument alluded to above. To this aim, it
combines the isoperimetric approach with real variable methods and exponen-
tial inequalities (instead of Lemma 1.3) that yield the best limit in the classical
case.

Before turning to the statement of our result, let us recall that we always
have A > o by the one-dimensional law of the iterated logarithm [ X has mean
0 under (4.4)]. Further, when (4.4) is replaced by some stochastic boundedness
of the sequence (S, /a,), the (still finite) limit A has to take this fact into
account (see [9] and [10]).

THEOREM 5.1. Let X be a random variable with values in a Banach space
B. If

(5.2) E X1 <o
' LL|X| ’
(5.3) o= sup ([Efz(X))l/2 <o
Hflii<1
and
S, .
(5.4) — — 0 in probability,
we have
. ISl
lim sup = o almost surely.

n—o® a’n

Moreover,

S, S,
limd|—,K|=0 and C|— | =K
n—o a, a, :

almost surely, where K is the unit ball of the reproducing kernel Hilbert space
associated with X. ‘

Proor. It is enough to prove the first assertion of the theorem; indeed,
replacing the norm of B by the gauge of K + ¢B;, where B, is the unit ball of
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B, it is easily seen that d(S,/a,, K) — 0; identification of the cluster set
follows from [8] and [1]. By homogeneity and the real law of the iterated
logarithm, we need only show that

. S,
lim sup

n—>o n

<1 almost surely,

for o = 1. As is well known, by the Borel-Cantelli lemma and Ottaviani’s
inequality, it suffices to prove that for all ¢ > 0 and p > 1,

ZP{

> (1+ e)am"} < o,

L X
i=1

where m, =[p"], n > 1.

Let 0 <& <1 and p > 1 be fixed. Recall (see [24]) that under (5.4), X has
mean 0, i.e, Ef(X) =0 for all fin B*. To begin with, we need first recall a
randomization property. Let (A,); .y be an orthogaussian sequence indepen-
dent of (X;). Then (5.4) implies (see, e.g., [24]) that

1
(5.5) lim —E

n—oo @,

= lim —E

n—owo aQ

i=1

n
Z £;X;
i=1

n

The first step in the proof, very much in the spirit of Section 4 of [25], uses
(5.5) and Gaussian properties to estimate some entropy numbers related to the
geometry of the unit ball of B*. Denote precisely by U this unit ball and set,
for every integer n and f, g in U,

d3(f,8) = (E(f - )" (D yxizar,)

Let further N(U, d%; ¢) denote the minimal number of points g in U such that
for every f in U there exists such a g with d}(f, g) <e.

LEmMMA 5.2. There exists a sequence (a,) of positive numbers tending to 0
such that, for every n large enough,

(5.6) N(U,d3%;¢) < exp(a,LLm,).
ProorF. Suppose this is not the case. Then, for every sequence «, — 0,

infinitely often in n, there exists U, c U such that for any f# g in U,
d3(f,g) > ¢, and

card U, = [exp(a,LLm )] + 1.

Set N(n) = m? (for example). By classical exponential estimates, in the form
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for example of Lemma 5.3 below, for h = f— g, f# g in U,

N(n) g2
{N( ) Z h (X)I(||X||<am)33}

N(n) &2
2 2
< P{N(n) Z (‘h (XD lyx<a, ) + ER (Xi)1{||x,||samn>) > 3}
e*N(n)
=P\~ 95642,
By the choice of N(n) = m2, for n large enough,
e*N(n) 1
card U, exp| — 25647, < 3
It follows that, infinitely often in n,
1 N(n) g2 1
P{Vf*ganm N( ) Z (f- g) (X)I(||X||sam)> 2} 9

We are then in a position to apply, conditionally on this set of probability
larger than ;, Sudakov’s minoration inequality for Gaussian processes (cf.,
e.g., [11], Theorem 2.3.1): For some numerical constant K > 0,

1

\/N(n)

N(n)
E| X A% iluxiza, )

1=1

€
1K — (logcard U,)"/*

€
—(a, LLm,)""*
2 4K(an mn) >

which holds therefore infinitely often in n. Since by (5.5) and the contraction
principle

N(n)

Bl X AXilyx, <a, )

i=1

1
=0,

lim
n—o aN(n)

this clearly leads to a contradiction when (a,) does not converge quickly
enough to 0 since LLN(n) ~ LLm . The proof of Lemma 5.2 is complete. O

According to Lemma 5.2, we denote, for each n and f in U, by g,(f) an
element of U such that d"( f,&.(f)) < & in such a way that the set U, of all
g.(f) has a cardlnahty less than exp(a,, LLm ,). We write that

5 (),

i=1

+ sup
hev,

Zﬂ g(X;)

i=1

< sup
geU,

where V, = {f — g,(f), f€ U} c 2U. The main observation concerning V, is
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that
[E(hz( X) Lyx samn)) <2,

for all # in V, and all n. Although the proofs of Theorems 4.2 and 2.3 are
described in the setting of a single true norm of a Banach space, it is clear that
they also apply to more general seminorms which might, moreover, eventually
depend on n on the blocks I(n). In this way, using the preceding observation,
it is just a mere exercise to see how the proofs of Theorems 4.2 and 2.3 yield
similarly that

¥ h(X,)

> Csamn} < oo,
i=1

n hev,

Yy P{ sup

for some numerical constant C > 0. Taking this fact into account, we have
now basically to prove that

> F(X)

> (1+ Cs)amn} < o,
i=1

n feu,

(5.7) Y [P’{ sup

To this aim, we will use the real exponential inequality of Kolmogorov in the
form put forward in [7], Lemma 2.2 (cf. also [29], page 262).

LEMMA 5.3. Let (Y,),_n be independent identically distributed real ran-
dom variables such that EY, = 0, EY;?> < o and |Y;| < c almost surely, i < N.

Then, for everyt > 0,
t? ct
> 1) < 2exp T SNg? 2 —exp(No_z) .

| !

To apply this lemma, let 6 = 8(¢) > 0 be specified in a moment and set, for
each n,c, =0m,/a,, . Define further, for each n,i <m, and f in U,

Y(f,n) = max(—c,, min( f(X,),c,)) — E(max(—c,, min(f(X,),c,)))-
Note that |Y)(f, n)| < 2¢, and KY,(f,n)?) < 1. By Lemma 5.3 it follows that

N
1Y
i-1

S Y(f,n)

> (1+ e)amn} < 2card U, exp(— (1 + ¢)LLm ),
i-1

P{ sup
fEUn

provided 8 = 8(¢) > 0 is small enough in order that 2 — exp(2(1 + £)8) >
(1 + &)~ 1. By (5.6), it thus already follows that

my

Y Y(f,n)

> (1+ s)amn} < o,
i=1

(5.8) Y IP’{ sup

n fEUn
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Consider now Z,(f,n) = f(X,) — Y(f,n), i <m,, f € U. Note that, by cen-
tering of f(X,),
EIZ,(f,n)l < 2[E( |X”I(||X||>cn})'

The integrability condition E(|| X||?/LL| X|) < » is equivalent to saying that
L ¥n < ®, where

Mn P{IX
Vo = m— X1 >c,}.

There exists a sequence (8,,) such that 8, > v,, L .8, < «© and satisfying the
regularity property B, ., < p'/38, for every n (recall that p > 1). It is then
easily seen that, for all n,

E(I X x> c,y) < Z e PUIXN > ¢))

>n

cl+1(LLml)

<Y ——B

I>n m,;
1\3/2
(_L_L_B_)__pa—n)/s

< CI(P’ 6)an pz/z

A I>n
(LLm,)*"?
< Cz(p,f?)BnT—,
mn
for some constants Cy(p, 8), Co(p, ) > 0. Consider the set of integers
L ={n:2Cy(p,d8)B,LLm , < ¢}.

The preceding estimate indicates that foralln € L, fe U,and i <m,,,

ea n
[Elzz( f,n)l =<

n

We now use this property to show that if n € L is large enough

(5.9) [E( sup %ﬂ 1Z( f,n)l) < 2¢a,,

felUi=1

Indeed, note that from Lemma 1.2, (5.5) implies that

1 Mn
lim —E| sup | Y &|Z,(f,n)||| = 0;
n—oo @, fevli=1

hence

i=1

1
lim ——E| sup
n—oe Q,, feUu

from which the announced property (5.9) follows.
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The main interest in the introduction of the absolute values in (5.9) is that
it allows a simple use of the isoperimetric inequality; it provides us indeed with
the crucial monotonicity property (which was before at our disposal by sym-
metrization and Rademacher averages). More precisely, let n € L and set

A= {w € Q:sup Y |Z,(f,n)(w) < 4samn}.
fevi=1

Then P(A) > 1 by (5.9). Now, if for w € Q, there exist »!,...,w? in A such
that
X(0) € {X;(0),..., X;(«)}

except perhaps for at most % values of i <m,, then

sup ¥ |Z,( f,n) ()] < Z 1ZA)F + Y sup ¥ 1Zi( f,m) (o)

feli=1 = I=1feUi=1
k
< Z ”Zz(w)”* + 4q8amn,
i=1

where (|| Z;|[*) denotes the nonincreasing rearrangement of (|| X,|| + E|| X;|D; < . -
Hence the isoperimetric inequality () ensures that for 2 > q,

K, \* k

{sup E \Z.(f, n)| > (4q + 1)ea,, } < (—0) + [P’{ Yz > eamn}.
feli=1 q i=1

If we now choose ¢ = 2K, and % = &, as in the proof of Theorem 4.2 using

the integrability condition E(|| X||?/LL|| X|) < «, we get that

mn
(5.10) Yy [P’{ sup Y. |Z,(f,n)| > (8K, + l)samn} < o,
neL \feUi=1
Combining (5.8) and (5.10), we see that in order to establish (5.7) and
conclude the proof of the theorem, we have to show that for some numerical
C>0,

T F(X)

i=1

> Csamn} < o,

(5.11) Y [P’{ sup

neEL fEUn

We follow very much the pattern of the case n € L. Let now ¢, = m,/4¢a,,
and define Y;'(f,n), Z/(f,n) as Y,(f,n), Z f, n) before but with ¢/, instead of
¢,,. We observe, now because o < 1, that

£1Z 8¢a,,
! < —Pn
Zi(fm)] < —

n

Exactly as what we described before for Z,(f, n), we can get from the isoperi-
metric inequality that

(5.12) Y [P’{ sup ;:" \Z!(f,n) > Csamn} < o,

n feli=1
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Concerning Y;'( f, n), the exponential inequality of Lemma 5.3 shows that

S Y/(fin)

i=1

> aamn} < 2card U, exp(—¢2%(2 — Ve ) LLm,,)

&2
< 2exp(—(z - an)LLmn),

where we have used (5.6) in the last inequality. Now, if n ¢ L,
€

202(p’ 6)Bn

where ¥, 8, < «. Since «, — 0, we clearly get that

IP’{ sup
fEUIl

LLm, >

Y Y/(f.n)

i=1

> samn} < oo,

Y IP{ sup

n&L feU,

from which, together with (5.12), (5.11) follows. This completes the proof of
Theorem 5.1. O
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