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NONCONVERGENCE TO UNSTABLE POINTS IN URN
MODELS AND STOCHASTIC APPROXIMATIONS?

By RoBIN PEMANTLE

Cornell University

A particle in R® moves in discrete time. The size of the nth step is of
order 1/n and when the particle is at a position v the expectation of the
next step is in the direction F(v) for some fixed vector function F of class
C?% Tt is well known that the only possible points p where v(n) may
converge are those satisfying F(p) = 0. This paper proves that convergence
to some of these points is in fact impossible as long as the ‘“noise”’ —the
difference between each step and its expectation—is sufficiently omnidirec-
tional. The points where convergence is impossible are the unstable critical
points for the autonomous flow (d /dt)v(¢) = F(v(¢)). This generalizes sev-
eral known results that say convergence is impossible at a repelling node of
the flow.

1. Introduction. Let F: R? — R? be a vector field, and consider a parti-
cle moving in discrete time whose position v(n) obeys the law

(1) v(in+1) =v(n) +a,F(v(n)) +¢,.

To explain the symbols in the foregoing equation, let %, be the o-algebra of
events up to time n, assume that a, is an .#,-measurable random variable and
that ¢, is a random vector with E(¢,| #,) = 0. In other words, from time n to
time n + 1 the particle moves a fraction a, of the way along the “arrow”
F(v(n)), where a, is determined by the past, and then its position is further
altered by adding some mean-zero noise, ¢,. This setup is fairly general and
encompasses several urn models and stochastic approximations that will be
detailed below. In all of these examples, the noise has bounded size, but no
further assumptions are made as to independence, or to the noise having a
classical distribution, such as Gaussian. In fact such assumptions do not make
the problems any easier.

The literature on these processes contains results of two types. The first
type are convergence results. These say that v(n) converges almost surely to
some possibly random limit v as n — «. For these results, ¢, and &, are
almost always taken to be on the order of 1/n. In urn models or reinforcement
models (see Section 2) this means that all times in the past have equal effects
on the future. Also assumptions are needed on F ranging from mild continuity
assumptions in the one-dimensional case to strong geometric conditions in the
n-dimensional case to prevent the particle from running around in circles.
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REMARK. The reason 1/n is a natural choice for the step size is that
(2) Y 1/n=w and Y 1/n%< .

This means that v(n) does not converge in a trivial manner by having a path
of bounded variation, but that the total variance of the increments is finite so
that at points where the drift F disappears, v(n) may converge in the manner
of a diffusion whose clock converges. Furthermore, all of the motivating
examples for this study have step size 1/n, arising naturally from the inter-
pretation. Replacing 1/n by 1/n” for 1/2 <y <1 leaves the finite and
infinite sums in (2) intact and the results of this paper are valid in that case
although I know of no application where y < 1.

The second type of result characterizes the law of the random limit v. These
results are qualitative, saying for example that the probability of finding v in a
certain set is 1 or perhaps only nonzero. The aim of this paper is to prove a
theorem that generalizes several existing results of the second type. In the
next section the existing results will be summarized and the main theorem,
Theorem 1, will be stated formally. Here is a brief description.

It is generally easy to show that the limit v if it exists satisfies F(v) = 0
almost surely. Since the stochastic process of (1) is in some sense a discrete
version of the differential flow

d
(3) V(@) =F(v(@),  v(0) =x,,

it is natural to classify the points where F(v) = 0 according to what kind of
critical points they are for the flow. To do so, let T' be the linear approximation
to F near a critical point p so that F(p + v) = T(v) + O(|v|?). Then p is an
attracting point if all the eigenvalues of T' have negative real part, in which
case the flow (3) always converges to p as ¢ — « for X, in some neighborhood
of p. If some eigenvalue of T has positive real part then p is an unstable
critical point and the flow exits a neighborhood of p for all choices of x, that
are not on a stable manifold of smaller dimension. Since the word unstable is
ambiguous in common usage, call p linearly unstable in this case. If all the
real parts of the eigenvalues of T are positive then p is a repelling node and
the flow can never converge to x, unless it begins there.

The results quoted from the literature in Section 2 give various conditions
implying that P(v(n) — p) = 0 when p is a repelling point. Theorem 1 gives a
stronger result: P(v(n) — p) = 0 if p is a linearly unstable critical point.

There are two inherent limitations on the usefulness of this theorem. First,
it is not very interesting unless the corresponding convergence theorem is
known. That is, no one cares that P(v(n) — p) = 0 unless v(n) is known to
converge somewhere. The results quoted in the next section all have their
corresponding convergence theorems, so this generalization is meaningful at
least in those cases. Second, the theorem is rather weak unless the set of
points {x: F(x) = 0} is discrete. When this set is discrete, Theorem 1 says that
unstable critical points are not in the support of the random limit v. But if
there are uncountably many unstable critical points then v(n) can still con-
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verge to one of them even though each point has probability 0 of being hit. In
this case, all one can conclude is that the law of the limit has no point masses
at unstable critical points. This information may be nontrivial, see Pemantle
(1989).

As mentioned before, Section 2 states the main theorem and fits it to known
results. The proof is then given in Sections 3 and 4, with Section 3 containing
the geometry and Section 4 containing the probability.

2. Statement of Theorem 1 and motivating examples. Because the
motion of the particle in some of the examples is restricted to a subset of R<,
the theorem will be stated in sufficient generality to allow for this. Let A ¢ R?
be an open subset of an affine subspace in R?. Let F: A — TA be of class C",
where TA is the translation of the affine subspace that contains the origin.
(Note: The tangent space to A at each point will be identified with TA. Thus F
is viewed as a tangent vector field as well as a vector-valued function.) Define a
stochastic process according to (1):

v(n +1) =v(n) +a,F(v(n)) +£,,

with @, being %,-measurable and E(¢,| %,) = 0 and such that v(n) always
remains in A.

THEOREM 1. Let the stochastic process {v(n): n > 0} be defined so that it
satisfies (1) for some sequence of random variables {a,} and {¢,} as described
after (1). Let p be any point of A with F(p) = 0, let .+ be a neighborhood of p
and assume that there are constants y € (1/2,1] and ¢y, ¢y, ¢5,¢4 > 0 for
which the following conditions are satisfied whenever v(n) € .4 and n is
sufficiently large:

(4) (i)  p is alinearly unstable critical point,
(5) (i) ¢, /n” <a, <cy/n,
(6) (iii) E((fn - 9)") 9‘;) > c3/n” for every unit vector 6 € TA,

(7) (IV) |§nl < c4/n7,
where (¢ - 0)"= max{¢ - 0,0} is the positive part of ¢ - 6.

Assume F is smooth enough to apply the stable manifold theorem: at least C2.
Then P(v(n) — p) = 0.

Condition (iii) looks strange, but it just says that the increment ¢, is
sometimes on the order of 1/n” in any direction. To see why this is necessary,
suppose that A = R?, that ¢, is 1/n? times a standard normal in the x-direc-
tion and that F(x, y) = (—x,y). Then the origin is unstable in the y-direction
but the process starting at a point on the x-axis can converge to the origin
because it never gets jiggled in the y-direction. Some of the conditions can be
weakened. For instance both (ii) and (iv) can be allowed to fail on sets whose
probabilities decrease fast enough with time. And condition (i) may be replaced
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by the condition that F(v) is identically 0, which is useful for the two
applications mentioned in the last paragraph of this section. See Pemantle
(1988), Section 3.2, for these variations.

Examples. 1In all the examples, y is taken to be 1. The first example is an
urn model. Hill, Lane and Sudderth (1980) consider the following process. An
urn containing red and black balls has a given initial composition. At each new
time a ball is drawn from the urn and replaced along with another ball of the
same color. The draws are not exactly representative of the contents of the urn
but are determined by the contents in the following manner. Let the number
of red and black balls at time » be R, and B,, respectively, and let v(n) =
R,/(R, + B,). Instead of drawing a red ball with probability v(rn) draw a red
ball with probability f(v(n)), where f is any function mapping [0, 1] into itself.

Hill, Lane and Sudderth show that under a condition on the discontinuities
of f, v(n) converges almost surely to a random variable v for which f(v) = v.
They also give the following nonconvergence theorem.

THeEorREM [Hill, Lane and Sudderth (1980)]. Suppose f(p) = p and that p is
an upcrossing for f, i.e., f(x) < x for x < p in some neighborhood of p and
f(x) > x for x > p in some neighborhood of p. Then P(v(n) - p) = 0.

To see how this fits into the framework of the previous section, let F(x) =
f(x) — x and note that

E(v(n + 1)| %)

R, +1 .
=fm) g5 57 T Q- 577

1
=v(n) + mF(U(n))

Soifa,=1/(R, + B, + 1) and ¢, is defined by the equation
v(n+1) =v(n) +a,F(v(n)) +§¢,,

then E(¢,| ,) = 0 and the process v(n) obeys (1). When F is smooth and the
upcrossing is not tangential, p is linearly unstable and condition (i) of Theo-
rem 1 is satisfied. The other hypotheses are evidently satisfied, so the result in
this case is included in Theorem 1.

The next example is a generalization of this model to urns of more than two
colors. Arthur, Ermol’ev and Kaniovskii (1983) consider the following multi-
color version. Let there be balls of colors 1,...,d in.the urn initially and let
the urn evolve as before by drawing a ball and replacing it along with another
ball of the same color. This time the probability of drawing a ball of color i at
timie n is allowed to depend on the fractions of all colors present. The
dependence is via the vector quantity v(n), whose coordinates v;(n) are the
fractions of the balls in the urn having color j for j = 1,...,d. Writing f,(v)
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for the probability of drawing color i when the vector of fractions is v, the
function f with coordinates f; is a vector function mapping the unit simplex
A c R? into itself. Let F: A — TA be defined by F(v) = f(v) — v. As before, it
is easily verified that the stochastic process {v(n)} obeys the law

1
n+1+uv,(0)+ - +vy(0) F(v(n)) + &,

vin+1)=v(n) +

where the noise ¢, has mean 0, conditioned on the past.

Arthur, Ermol’ev and Kaniovskii generalize Hill, Lane and Sudderth’s
definition of an upcrossing by defining a point p with F(p) = 0 to have the
s-property if there is some positive definite matrix C such that the dot product
of C(F(v)) with v — p is always positive whenever F(v) # 0. This is slightly
stronger than requiring p to be a repelling point since a repelling point only
needs to satisfy this positivity property for v in some neighborhood of p. The
reason they assume the global property is that it is necessary for their
convergence theorem.

THEOREM [Arthur, Ermol’ev and Kaniovskii (1983), Theorem 2]. With an
urn process defined as above, suppose F(p) =0, p has the s-property, and
also suppose that F is Hélder with some exponent p > 0 in a neighborhood of
p. Then P(v(n) -» p) = 0.

Essentially the same theorem is proved in Nevel’son and Hasminskii’s
(1973) book, but for stochastic approximations instead of for urn models. They
consider processes such as the Robbins-Monro (1951) and the
Kiefer—Wolfowitzapproximation procedures, which can be written in the form
of (1). They have a theorem (Theorem 4.1 of Chapter 5) saying that the
probability of convergence to a point p is 0 if F satisfies the s-condition, under
some additional hypotheses on the magnitudes of {a,} and {¢,}. The additional
hypotheses are too complicated to reproduce here, but it is worth noting that
they are satisfied when a, and |{,| are on the order of 1/n. It is also worth
mentioning how they get their convergence theorems. They find a Liapounov
function V which always increases in the direction F, ie., VV(v) - F(v) > 0
with equality only when F(v) = 0. This Liapounov function can always be
found in the one-dimensional case, but its existence needs to be assumed in
higher dimensions. ,

The next example is a process called vertex reinforced random walk defined
by Diaconis (personal communication). A particle moves in discrete time
among the states 1,...,d. There is a positive symmetric matrix R that
governs the motion of the particle by letting the transition probabilities from
state i to state j at time n be proportional to R, x,(j), where x,(j) is 1 +
the number of visits to state j up to time n. Letting v, (n) = x,_4(i)/n, the
vector v(n) lies on the unit simplex and obeys (1) for suitably defined F, a,,
and ¢,. There is a Liapounov function V which implies the almost sure
convergence of v(n) under some nonsingularity conditions on R. The Lia-
pounov function has only one critical point p in the interior of the simplex and



NONCONVERGENCE TO UNSTABLE POINTS 703

it can be shown that (5)-(7) are always satisfied, whereas (4) is true if and only
if p is not a weak maximum for the Liapounov function V. The following
theorem is then a somewhat lengthy application of Theorem 1.

THEOREM [Pemantle (1988), Theorem 5.12]. Let p be the unique critical
point of V in the interior of the simplex. Then P(v(n) —» p) = 0 if p is not a
(weak) maximum for V. This happens if and only if the matrix R has more
than one positive eigenvalue.

Theorem 1 subsumes other variants on urn schemes. The number of balls
added of the color drawn may depend on time as in Pemantle (1989) or may be
a random function of the color drawn as in Athreya (1969). Since these two
papers are concerned only with linear reinforcement [i.e., F(v) = 0], there are
no linearly unstable equilibria and Theorem 1 cannot be applied. However, as
mentioned above, the instability assumption may be replaced by the assump-
tion that F(v) = 0 with the same conclusion [see Pemantle (1988), Chapter 3].
When these variants are added to a nonlinear urn with some general urn
function F as in Arthur, Ermol’ev and Kaniovskii (1983), Theorem 1 may
again be applied to give previously unknown results.

3. Proof of Theorem 1: Geometric part. The proof of Theorem 1
presented here follows the methods of Pemantle (1988), Theorem 3.5, and
Pemantle (1989), Theorem 3. The basic idea is as follows. Because the matrix
T has eigenvalues with positive real part, there are some directions in which
any perturbation of the particle ought to be positively reinforced. The first step
is to find a function 1: A —» R that somehow measures the distance of the
particle from p in an unstable direction. The trick here is to make sure that F
always points in a direction that 7 increases and that 7 is smooth enough to
work with. The next step is to prove that the noise ¢, will always cause the
particle to stray a distance on the order of n!/2~7 from p. The last step is to
prove that once the particle has strayed that far, it may never return to a
smaller neighborhood of p. By a tail law, if it keeps straying away with a
probability of returning that is bounded away from 1, it eventually must stay
away.

The construction of the function 7 involves some technical geometric details
which may be skipped; the relevant properties are summarized in Proposition
3 below. Whether the process v(n) can converge to p with nonzero probability
is clearly a local property, i.e., it depends only on the behavior of F in a
neighborhood of p. So Theorem 1 is first proved under global hypotheses
which are weakened to local hypotheses in the last paragraph of the proof by a
coupling argument. .

One of the tools necessary for the construction of 7 is the stable manifold
theorem stated below, for whose proof the reader is referred to Hirsch, Pugh
afid Schub (1977), Theorem 5A.1. Let F: A —» TA be a C?2 vector field with
F(p) = 0 and let T: TA — TA be the linear approximation to F(p + v) so that
F(p + v) = T(v) + O(Jv|?). If T has no purely imaginary eigenvalues then F
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M)

Fic. 1. (a) The flow given by F(x,y) = (—x + k(x% — )4,y — 3x2), with stable manifold .#.
(b) The map  translates each vertical by the appropriate amount so that .# is mapped to U.

may be taken to be only C*. Then TA decomposes as U ® W, where T(U) c U,
T(W) c W, T|y has only eigenvalues with positive real part and 7|, has only
eigenvalues with nonpositive real part. (Hereafter, T', U and W will be defined
as in the previous sentence.) The stable manifold theorem gives a C?2 invariant
manifold for the flow (d/d¢)v(¢) = F(v(¢)) which is tangent to U and is the
graph of a C? function g: U —» W. The notation for multidimensional deriva-
tives employed below uses D® or D (®) for the differential of ® at v, so for
example if ®: A —» R is a scalar function then D (®) is a function mapping
tangent vectors at v into directional derivates of ® at v.

THEOREM (Stable manifold theorem). Let F, p, T, U and W be defined as
above. Then there is a neighborhood .# of 0 in U and a C? function g:
N — W such that g(0) = 0, Dy(g) = 0 and the set of points .#= {p + u + g(u):
u € U} is an invariant manifold for the flow (d/dt)v(t) = F(v(¢)). In other
words, F is always tangent to .#.

To illustrate this construction, suppose the dimension is 2 and F(x, y) =
(—x + k(x% — y)*,y — 3x?) [see Figure 1(a).] Then the origin is a critical point
whose stable manifold .# is the set y = x2. The linearization of F at the origin
is given by T'(x,y) = (—x, y) so the subspace U corresponding to the negative
eigenvalues is just the x-axis, which is tangent to .# at the origin.

The program for constructing n will be to assume first that the stable
manifold .# is actually equal to p + U and construct 7 in this case. [This
happens when F(p + u) is in U for u € U.] The general case can then be
reduced to this case by a C? change of coordinates involving the function g
from the stable manifold theorem. The following proposition constructs n in
this special case, by constructing a quadratic form D :which will be the square
of 1. It is a well-known construction whose proof can be found in Hirsch and
Smale (1974), page 145 and following.

ProposiTION 1. Let T: R? — R be a linear operator all of whose eigenval-
ues have real part > A_;, > 0. Then there is a k > 0 and a quadratic form D
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such that
(8) D(v +&Tv) > (1 +ke)D(v) forall e €[0,1].

(In fact, k can be chosen arbitrarily close to A ;,.)

In the special case .#= U, the definition of 7 is now completed by letting
n(u + w) = (Dw)/2 forue Uandw € W.

ProposiTioN 2. Let F, p, T, U and W be as above and assume .#= U.
Then the quadratic form D constructed above satisfies

D(v + eF(v)) = (1 + k&) D(v)

in some neighborhood of p for any k, < k.

Proor. The proposition will be proved by examining the power series
expansion of F. Since F(p + U) c U, the key approximation will require only
the W component of the argument to be small. Pick a basis so that the first r
elements are in U and the remaining d — r are in W. All the calculations will
take place in this basis, so let the coordinates of v in this basis be denoted
ay...,a, and b,,q,...,b,. Let the quadratic form D be represented in this
basis by (D;;); since D only pays attention to the part of v in W, this means
D(v) = L D, Jblb Each coordinate F,(p + v) of the vector function F(p + v)
has a power series expansion in the variables {a;} and {b,}, but since F(p + U)
c U, F(p + v) = 0 whenever i > r and v € U. This means that for i > r the

power series expansion of Fy(p + v) looks like
F(p +v) =(Tv); + Y c;,a;b, + ) c;b;b, + o(a;b, and b;b, terms).

The important fact is that all the higher-order monomials have some b, in
them. Then

D(v + eF(v)) = ¥ D,;(b, + £(Tv); + ¢ - stuff)(b; + e(Tv); + ¢ - stuff),

where the “stuff’’ represents monomials of quadratic and higher order in the
a;’s and b;’s having at least one b term. Since (T'v), is linear in the variables
b;, all the cross terms from the above equation involving “‘stuff”’ are at least
cubic in the a,’s and b,;’s with at least two factors that are b,’s. So

D(v + ¢F(v)) = D(v + ¢Tv) + ¢0(a,b;b, and b;b;b, terms).

Then, using the fact that b;b, is always at most a constant times D(v), a
neighborhood can be chosen ‘to make sup;{a;, b;} small enough so that all the
£0(a;b;b,) and £0(b,;b;b,) terms sum to less than (k — k)¢ D(v). Together
with the fact that D(v + &eTv) > (1 + ke)D(v), this implies D(v + eF(v)) >
1+ ke)D(v). O
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Finally,  can be defined in the general case. Forget the requirement that
#=U and let F be any C? vector field with F(p) =0 and T, U and W as
above. Use the stable manifold theorem to get a neighborhood .#” of 0 in U
and a C? function g: ./ > W with g(0) =0, Dy(g) = 0 and the stable
manifold .# given by {p + u + g(w): u € U}. Define ®: A —» A by writing
veTA asu+ wforu € U and w € W and letting

(9) P(p +v) =v-g(uw).

Then ®(#Z)cp + U and therefore D® maps tangent vectors to .# into U. In
particular, D® cFo®~! maps U into itself. Also D (®)oFo®~ (p) = 0 and
since Dy(g) = 0, the linear approximation to Dg,_ 1(p+v)(d>) cFod X p +v)is
just T. Then the hypotheses of the preceding proposition are satisfied with
D®-Fo®~! in place of F. Apply the proposition to get a quadratic form D
and let

(10) n(v) = [D(®(v) - p)]"*.
Figure 1(b) illustrates how @ straightens out .# by mapping it to U. Note
that ® is not a linearization, i.e., ® does not straighten out any of the other
invariant manifolds. Since .# has codimension 1 in this example, 1 is (up to a
constant multiple) just the absolute value of the vertical distance to the stable
manifold, so n(x,y) = |y — x?|. In higher codimensions, n measures the dis-
tance to the stable manifold in a direction parallel to W, where distance is
given by the appropriate quadratic form so as to be nondecreasing in the F
direction.

The next proposition summarizes the properties of ® and states all the
facts about D and 7 that are needed in Section 4.

ProposITION 3. Let F be a C? vector field with a linearly unstable point p.
There is a C2 map ® from a neighborhood of p in A to A such that ®(p) = p,
D, (®) is the identity, and P(A ) p + U, where .# is the stable manifold
assoczated with the flow F and U is its tangent space at p. Furthermore, there
are a quadratic form D and a function n defined in terms of D by (10) such
that the following are true:

(i) DY*(cv) = cD(v) forc > 0.
(i) DY2 is convex, i.e., DY*(cv, + (1 — ¢)vy) < cDYV3(vy) + (1 —
¢)DY/%(v,) for c €[0,1]. :
(iii) D'/2 is Lipschitz.
(iv) There exist ky, kg > 0 such that n(v + eF(v)) = (1 + kye)n(v) — kge®
for € €[0,1] and v in some neighborhood of Pp.
(v) For n(v) # 0 in some neighborhood of p, D (n)XF(v)) > 0.

Proor. (i) is obvious. To prove (ii), recall from the construction that there
is a basis in which D2 is just the standard norm of a projection onto a
subspace Then D72 is a seminorm and hence convex. To prove (iii), note that
D'/? is Lipschitz at the origin because it is the square root of a quadratic. By
(i) and (ii) D'/? satisfies the triangle inequality so Lipschitz at the origin
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implies Lipschitz everywhere. To show (iv), calculate
n(v + eF(v))

= [D(®(v + eF(v)) — p)]'?
= [D(®(v) + DD -F(v) + O(2) - p)|"*
= [D(y + eD®-F-d~'(y) - p)]"* + 0(£?)
where y = ®(v) and the O(e?) term can be pulled out by (iii)

< [(1 + k&) D(y - p)]"* + O(&?)
for v in some neighborhood of p
= (1 + k&) *n(v) + O(&?).
Choosing k&, so that 1 + kye < (1 + k)2 for ¢ € [0,1] and & so that kge?

is a bound for the O(¢?) term, (iv) is shown. Finally, (v) follows from (iv) by
letting e - 0. O

4. Proof of Theorem 1: Probabilistic part. As mentioned at the begin-
ning of the previous section, the probabilistic part of the argument breaks into
two lemmas. The first lemma shows that the particle always strays far enough
from p. To make the notation briefer, let S, denote n(v(n)) and let X, = S,
— S, _; be the difference sequence.

LemMmA 1.  Assume the hypotheses of Theorem 1 hold for all v(n), not just
for v(n) € # and n large. Then there is a constant cg determined by F and c,,
¢y, €3 and c, such that for sufficiently large n,

P( sup S, > cgn'/277| Z,) >1/2.

k>n

Proor. Fix n and let 7 = inf{k > n: S, > cz;n'/?77}. We will calculate the
variance of S stopped at 7. On the one hand, this is limited by the fact that
conditions (ii) and (iv) of Theorem 1 prohibit large jumps, so S, is never much
more than czn'/277 for £ < 7. On the other hand, condition (iii) forces the
variance to keep up a certain minimum growth on the order of n~2” until the
stopping time is reached. The accumulated variance is the tail sum of these
order n~2" terms, so it is of the order n'!~2?. When c; is small enough, these
two facts together imply that the stopping time is reached often enough for
Lemma 1 to hold. To calculate how E(S2, ,,| ,) increases with M, fix any
M > n and calculate

E(S7'2A(M+1)| ‘?n) - E(S7‘2/\ ul Zo)
= E(L,, y(2Xp4 1Sy + X )| 7)
= E(E(L,, 42Xy, 1Syl )l F)
+ B(E(L,, y Xi1l )l 7).

(11)
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Each piece of the quantity in (11) can now be estimated. Since 1, is
F,-measurable, it can be pulled out. To estimate the piece E(X;,, 1Syl Gy
calculate

E( Xy 1l Su)
= E(n(v(M + 1)) — n(v(M))| F)
— E(DV2(®(v(M + 1)) = p)| Fy) — Su
> DV?[E(®(v(M + 1)) — p| Fy)] — Sy by convexity of D2
= D1/2[E(cp(v(M)) —p + Dy ®(v(M + 1) — v(M))
+O(v(M + 1) = v(M)P) Fy)] — S
= DV2[®(V(M)) — p + Dy (P)E(V(M + 1) = v(M)| Fy)]
+ O(E(v(M + 1) = v(M)P?| F)) — Sy
by linearity of Dy, 4,(®) and because D'/? is Lipschitz
= DY2[®(v(M)) — P + Dyar(®) (ay F(V(M)))] + O(M") = Sy
= DV2[B(v(M) + ayF(v(M))) - p + O(ayF(v(M)))] + O(M*)
because ®(v) + D ®(w) = &(v + w) + O(lw|?)
= DV ®(v(M) + apyF(v(M))) —p] + O(M™%) — Sy
= n(v(M) + apyF(V(M))) + O(M™*") = Sy
> ko Sy + O(M™%") by part (iv) of Proposition 3.
Therefore the estimate for this piece of (11) is
(12) E(2Xy. 1Syl Far) = koaySE + O(M~21S,,).

The last piece, E(X2 | F), is on the order of M~?. The calculation begins
in the same way as for the first piece: Convexity of D'/? and smoothness of ®
imply

Xprer = n(v(M + 1)) — n(v(M))
(13) > Do) (v(M + 1) = v(M)) + O(1v(M + 1) = v(M)[*)

= D, y() (ay F(V(M)) + £y) + O(v(M + 1) — v(M)?),

where the gradient of 7 at a point on the stable manifold .#, where n = D'/?
= 0 is singular, is taken to be the limit of D7 along any approaching path.
(Geometrically, this means taking a support hyperplane at a place where the
‘tangent plane is not unique, but the inequality holds by convexity.) Let 6 be a
unit vector in the direction of the gradient of 7; since the quadratic form D is
nondegenerate at 0, Dn(v) is at least some constant cq times v - 6. Applying
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hypothesis (iii) of Theorem 1 together with (v) of Proposition 3 and (13) gives
E( X311l Fn)
2 E((Dyqan(m) (au F(V(M)) + &) + O(M2))7| 7,
> E((Dyun(n) (&) + O(M~%)"| 75)
= E((ce - £)"I Fur)
> cyee/M7” + O(M~27).
It follows that for const. < (cscg)? and large enough M,

(14) E(X%, .| F) is at least const. M~27,

Now both summands of the quantity in (11) have been calculated in (12)
and (14). For any constant c, if S;; < ¢/M? then for large M the summand in
(14) dominates and hence

E(2Xy, 1Sy + X%, 1| Fu) = const./M?".

On the other hand, if S,; > ¢/M? then for large M the order M~ 2 term in
(14), which is positive, has at least the magnitude of the order M~27S,, term
in (12) so the sum is at least as big as the first term in (12) and again

E(2Xy. 1Sy + X%, 1| Fy) = const./M?.
Substituting this back in (11) gives

E(S2, i1l 7)) — E(S2, ul F)

g

P(r==| ).

const.
T>M M2

zE(l

const.
> —
M2

Then by induction
E(Si n-l 72)

) M-1 1
> S?2 + const.: P(7 =x| %) Z 2
1=n
1
—1 M2y—l *

> const.: P(7 = ©| ) -
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But by hypotheses (ii) and (iv) of Theorem 1 and the fact that 7 is Lipschitz,
S, m < csn'/?77 + const./n?, so for n sufficiently large csn'/2~" > const. /n?,
s0 2¢5n'/27Y > S_, ,, and therefore

4c? 1 1
= E(SM/\TI Zz) > const.- P(7 = »| &) n2r-1 7 pv-1

n2y—1 =

and letting M — «, P(r = »| %,) is bounded by a constant times cZ. This can
be made smaller than j by choosing c; small enough, in which case

P(sup;,,lS; —pl > 5?77 F) =1 -P(r=x| %) 21/2. O

The second lemma shows that the particle fails to come back near p with
probability bounded away from 0.

LEMMA 2. Again assume the hypotheses of Theorem 1 hold for all v(n),
not just for v(n) € .4 and n large. Then there is a constant a > 0 for which

1/2—vy
i Csn 1/2—
P| infS,>——|%,, S, = csn*?77| > a.
k=n 2

Proor. The idea this time is that the variance of the variables {X,: & > n}
is not enough to give a high probability of getting back under csn'/2=7 /2. The
inequality used is a one-sided Tchebycheff inequality relying on the fact that
the expectation of S, is increasing, so if S, has a probability of 1 — ¢ of
coming back under c;n'/277 /2, then & of the time it must grow to the order of
¢!, contributing to the variance on the order of &2

So assume that S, > c;n'/277. Let 7 = inf{k > n: S, < czn'/277/2). The
claim is that P(7 = ©) > a. Define a sequence of variables Y,,,,Y, ,,,... by
Y,=0for k> 7 and Y, = X, — pu,, for 7 > k> n, where u, = E(X,| %,_)).
What is important is that u, is positive. This is an easy consequence of the
estimate (12), plugging in the fact that S, > c;n'/277 /2. Then the sequence
{Z,: k> n}, where Z, =S, + Z§=n+1Y}, defines a martingale such that
ZS,»< and hence S, never gets below c;n'/277/2 for k > n as long as Z,
never does. Since its increments are O(k~Y), {Z,} is L%bounded and the
variable Z,, appearing in the calculations below is well defined almost surely. It
suffices to find a constant a > 0 for which

(15) P( Y, Y, < —c5n1/2‘7/2) <1l-a.
k=n+1

Again using the fact that the increments Y, are bounded by c/k” for some
constant c,

(16) Var( ZT‘, Yk)s f n—zy-s

k=n+1
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Also
Var( > Yk)
k=n+1
> P(7 < ®)(—csn'/277/2)" + P(r = ©)E((Z, — 8,)"I7 = )
2 P(1 = @) (E(Z, — §,Ir <))’
csn/2"7 P(r < )\’
2 P(7 = x)
¢ P(r< )?
= 4n2'y—1 P(T — oo) )
where the penultimate term is calculated from the fact that E(Z,|r < ) <

—cgn'/277 /2 while E(Z,) must be 0. Combining inequalities (16) and (17)
gives

(17)

2P(T=°0)(

P(r=o) ¢2
—_—2 Z ——
P(7 < ) 4c

so either P(7 = ®) > 1/2 or P(7 < ») < (c2/4¢c)X1/2)? = ¢%/16¢. Letting a =
min(1/2, cZ/16c¢} finishes the proof. O

Now an easy tail argument finishes the proof of Theorem 1. Suppose that
P(v(n) — p) > 0. Then there is some neighborhood .# of p, some n and some
event &€ %, for which the probability that v(n) converges to p and never
leaves .7~ after time n is greater than 1 —a/2. In fact n can be chosen
arbitrarily large and ./ arbitrarily small, and in particular so that .#] c .7,
where ./ is as is the hypothesis of Theorem 1. Couple the process {v(%)} to a
process {v'(k): &k > n} so that P(v(k) = V(k)| ) =1 for n <k < the exit
time from .#] after n, and such that v'(n) satisfies (i)-(iv) of Theorem 1 after
time n for all v/(n), not just locally. By the coupling, v/(n) also converges to p
with probability at least 1 — a/2 given 7. But Lemmas 1 and 2 together
imply that the probability of failing to converge to p is at least a /2 conditioned
on any set in %,. By contradiction, the probability of convergence to p must
be 0.
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