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THE BRANCHING ANNIHILATING PROCESS:
AN INTERACTING PARTICLE SYSTEM

‘By AIDAN SUDBURY

Monash University

The branching annihilating process (BAP) is a special case of the
branching annihilating walk of Bramson and Gray. In the BAP each
particle places offspring on neighbouring sites at unit rate, but when two
particles occupy the same site they annihilate each other. We show that the
product measure with density 1/2 is the limit starting from any A # .

Also considered will be the DBAP (double BAP) in one dimension. In
this model a particle always places offspring on both neighbouring sites.
The limiting measure here depends critically on whether the initial number
of particles is odd or even.

1. Introduction. Bramson and Gray (1985) introduced a model they
called the branching annihilating random walk. Particles are placed on the
one-dimensional lattice Z. Each can do two different things: (1) give birth at
exponential rate 1 to a new particle at one of the neighbouring sites; (2) jump
to a neighbouring site at rate p. When a particle attempts to occupy a site
already occupied both particles are annihilated. Bramson and Gray show that
for some p < 1/100 the system can survive indefinitely starting from a finite
number of particles, but that if p is large enough extinction is certain.

In this paper we consider the special case p = 0, which we shall call the
branching annihilating process (BAP). We shall, however, chiefly consider the
process in Z¢.

We define B2 c Z¢ to be the set of occupied sites at time ¢ in a BAP with
initial occupied set A, and B/(x) = 1 or 0 according as site x is occupied or
not at time ¢. The BAP is what is known as a spin system since changes in
configuration only occur at one site at a time. It may thus be defined by its flip
rates, c(x, B), the rates at which the coordinate B(x) flips from 0 to 1 or from 1
to 0 when the system is in state 8. For the BAP on Z¢,

1
(1) c(x,B) = Z ﬁﬁ(y)’

ly—x|=1
and the infinitesimal generator of the process is
Lf(B) = X c(x, B)(f(B*) = f(B)),

where B* is the configuration B with the value at x flipped. If we allow
branching from x to x +y with rate p(y), L p(y) <, then we have a
generalised BAP with flip rates )

@ c(x,B) = X B(x—y)p(y).
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582 A. SUDBURY

For the BAP survival is not a problem since the last particle has no means
of annihilating itself, rather interest turns to the limiting distribution. Now
the BAP is a process in which the flip rate at a site does not depend on whether
there is a particle at the site or not, and it is known [see Durrett (1981), page
111] that if (a) (unlike the BAP) the flip rate is strictly positive, and (b) only
determined by sites to the right of the given site, then the limiting distribution
is v; /5, the product measure density 1/2. In this paper we shall show that for
the BAP that is the only nonempty limiting measure.

Further, in Section 9 we shall introduce the double branching annihilating
process (DBAP) on Z. In this model a particle always places annihilating
offspring on both neighbouring sites. We shall show:

(a) if the initial number of particles is odd, then the limiting distribution is
V125
/(b) if the initial number of particles is even, then the number of particles
remains bounded;

() if the initial measure is v,, 0 < p < 1, then the limiting measure is v, »;

(d) v, 5 is not the only limiting measure with density greater than 0;

(e) the stationary measures form a one-parameter family, the borders of
product measures v,, 0 <p < 1/2.

An annihilating random walk with rate p is added to the DBAP in Section
10. We show that for this model & is the only limiting measure.

2. Finite graphs. Consider a finite graph G for which there is a path
from each vertex to any other. Initially at least one of the vertices is occupied
by a particle. The particles interact as a generalised BAP in which the rate at
which a vertex V; receives offspring is a nonnegative function f(N;), where N,
is the set of occupied neighbouring sites of V,, and f= 0 only when N, = &.
The state space is {0, 1}¢/@.

THEOREM 1. Consider a generalised BAP on a connected finite graph G
with initial state nonempty. In the limiting distribution each occupied state
has probability 1/(2! — 1).

Proor. Let B and B* be states of the system such that it is possible for g
to jump to B*. For this to be possible 8 and B* can only differ at one vertex V;
with N; # . The rates at which B8 jumps to g* and g* to B are both f(N;).

This means the Markov process is doubly stochastic. It is also irreducible
since, starting from any occupied state, it is clear the state “all occupied” can
be reached, and any state can then be reached by reversing the process. Thus,
in the limit, each state has equal probability, in this case (2/¢! — 1)~1. O

'TuEOREM 2. Consider a BAP on 7 where branching only takes place to the
right, that is, from n to n + 1. Suppose in thf initial state the leftmost particle
is at 0. Then the limiting measure on {0,1}*" is v, ,.
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Proor. Consider the set of sites [1, n]. Even though branching only takes
place to the right, the Markov process on {0, 1}!"! is still irreducible, since,
starting from any occupied state, it is clear the state ““all occupied” can be
reached, and any state can then be reached by reversing the process. Further,
the rate at which B jumps to B* is the same as that for which g* jumps to B.
Thus, in the limiting distribution all states have equal probability 2", since
the all-empty state is included. O

3. The rate of spread of the nearest-neighbour BAP on Z. Given
BE, B finite, we may define a stochastic process G(¢) on Z*U{0} U {=} as the
number of unoccupied sites between the rightmost particle of 82 and the
nearest particle to it. G = « if there is only one particle. Then the following
transitions in G(¢) may occur: 0 — {1,...,} at rate 1, 1 — 0 at rate 3/2 and
{2,...,0} > 0 at rate 1. Thus, if we define H(¢) = 0 when G(¢) = 0 and
H(t) = 1 when G(¢) > 1, we have the following bounds on the transition rates
for H(¢): 0 — 1 at rate @y = 1 and 1 — 0 at rate 1 < a; < 3/2. We shall show
the following theorem.

THEOREM 3. If R(¢) and L(t) are the positions of the rightmost and
leftmost particles of a BAP, BE, B finite, then

2 R(t) - L(¢) < limsup R(t) - L(¢) 1

E < liminf ; E a.s.

To prove Theorem 3, we shall need the following lemma.
LEMMA 1. If there is a sequence of random variables {£,;} s.t. for some
positive integer n,
(3) E{§n0+m|§m,...,§1}2;¢, m=1,..., foradl w,
and var(¢;) is bounded, then
1 n
P{limm — Z } =1.

n ..

Proor. From Loéve (1955), page 387, we know that for any sequence of
random variables {£;} with bounded variances

]_ n
;[fl —E{é}+ X (¢, E{§m|§m—1,~o,§1})] -0 as.
m=2

For each 0 <r <n, we apply this result to the subsequence ¢,,¢, ..,
& t(n—1yny - - -» to obtain

1 n—1 .
; I:gr - E{fr} + Z (§r+mno - E{§r+mn0|§r+(m—1)n0’ Tt gr}):l -0 a.8.,

m=1
0<r<n,.
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Combined with (3), this gives

1 n-1
P{liminf; Y §r+mn02”‘} =1, 0 <r<n,.

m=0

Since this is true for all the subsequences 0 < r < n, the lemma follows. O

Proor oF THEOREM 3. Let h(¢) = P{H(¢) = 0}. Then, since a, =1 and
1<a, <3/2,
(1= h(t)) —h(t) =h'(¢) 21— k() = h(2),
from which follows
5+ (3 —h,)e ™2 > P{H(¢) = 0|H(s) = h)
>+ (h = h)e .

These mixing inequalities show the rate at which H(¢) “forgets’ its value at
time ¢ — s earlier. Let

(4)

N *(t) = number of jumps of + 1 made by the rightmost particle up to time .

Then N*(¢) is a Poisson process with rate 1/2, so that N*(¢)/t - 1/2 a.s.
N~(2) is a process with rate 1/2[{H(¢) = 0}. Let

¢, = the number of increments of N™(¢) in [n8,(n + 1)5), n=0,....
Then
_ 8
E{¢;|H(nd) =0} = 5t £,(8),

E{£,1H(nd) = 1} = ,(3),
where £,(8), £4(8) = 0(82). Using (4), it follows that

(5)  Elt, im|éms--nE1) < (g + ge‘f’"oa/?)(g + 51(6)) + £4(8).

From (5) and the lemma it follows that for all n, §,

11 2 1
(6) P{liminf— Y & < (E + —e"5"°‘3/2)(—6 + 31(3)) + 52(6)} =1.
n,.—o 5 2

5
Now L7 L ¢- = N~ (nd), so putting n, = [6~2 — 1] in (6), we obtain
1 1 &(8))  £3(9)
R | 3 2_-5/28\| — I\ 2 —
P{hmmfnéN (nd) < (2 + Ze )(2 =5 )+ 5 } 1.

Letting 6 — 0, it follows that

: N=(¢) 3
P{hmsup ; < 1—0} =1.
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Similar arguments give

=4
Since R(¢) = R(0) + N*(¢) — N~(¢), and similar arguments apply for L(¢), the
theorem follows. O

N-(¢) 1
P{liminf > }=1.

4. The BAP on 7% As remarked, the BAP is a special case of processes
for which the flip rate at a site does not depend on whether the site is occupied
or not. It is not hard to see that »,,, is an equilibrium measure for such
processes. Let S be the set of  C {0, 1}2° for which nx) =iy,...,nlx,) =1,
i,=0o0rl,r=1,...,n. Given 1, define m,, so that 7, (y) = n(y), y # x, and
7, (x,) = 1 — n(x,). The balance equation for w(n,: n, €8)is

[Sc(n, x,) du(n) = fSC('nxr, x,) du(m,),

where c(n, x,) is the flip rate at x, when the process is in state n. We have
assumed c(7, x,) = c(n, , x,) so the balance equation is satisfied when u(n) is
the uniform measure, v, .

It should be noted that the flip rates for the BAP are those of a stochastic
Ising model with J5 = 0, using the notation of Liggett (1985), Chapter 4.
However, because some of the flip rates are 0, the results of that chapter
cannot be used.

When the flip rate ¢ has the property that c¢(¢, x) = 0 for all x, then §, is
also an equilibrium. We shall show that mixtures of v, , and §, are the only
limiting measures for the nearest-neighbour BAP on Z¢. This will be done in
the following stages: (1) in Section 5 we shall show that with initial occupied
~ set A the probability a set B contains an even number of particles at time
¢t = the probability that independent BAPs starting from A and B, respec-
tively, have an even number of occupied sites in common at ¢/2; (2) in
Sections 6, 7 and 8 that the number in common approaches «; (3) that this
implies the probability that the number of sites in common is even approaches
1/2; and (4) that using (1) the probability that B has an even number of
occupied sites at time ¢ —» 1/2 as ¢ — o, which implies the limiting measure,

is vy .

5. The dual process for the BAP. To construct the dual of the gener-
alised BAP in Z¢ we shall first define a percolation substructure of the kind
invented by Harris (1978) and developed by Griffeath (197 9). Let {U,(¢): t > 0},
z € 7%, be independent Poisson processes with rate 1. Let T, , be the time of
the nthevent in U,. Let {Y,(n): n > 1}, z € 7%, be independent i.i.d. sequences
with the property that P{Yz(n) =y} = p(y) for all y, z, n. We define a process
B with values the subsets of Z¢ so that if B(z) =1 at T, , the value at
z +Y, , is flipped. B has the correct flip rates for a generalised BAP [equation

(2).
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The percolation substructure, P, ,; is obtained by drawing the family of
line segments {2} X [s,¢], z € Z% and drawing arrows from (z,T,,) to
(z+Y,,T,,), s<T,, <t We shall abbreviate Py, by P,. A path from

z,n) “z,n

(A, s) to (B, t) is any continuous path consisting of line segments and arrows
in which the direction of time is always nondecreasing and which starts at
(x,8), x €A, and ends at (y, ¢), y € B. [There is said to be a path from (x, s) to
(x, s).] We define

N[‘g’ ;) = the number of paths from (4, s) to (B, ),
and once again we shall abbreviate the subscript [0, ] by ¢.

LeEmMA 2. The process
B2 = {x: NA(x) is odd}
is a BAP.
Proor. First, B¢ = {x: N{(x) = 1} = A. Further, if there is an arrow from
(2, T, )to(z+Y,,,T,,), then
N (2+7Y,,) =Np-(2+7Y,,) + Nz (2),

so that the parity at z + Y, , is flipped iff Nfi (2) is odd. Thus B is a
BAP. O ’

If there is a path from (x,0) up to (y,#) (time is normally represented as
going up), then there is a path from (y, ¢) down to (x, 0), obtained by reversing
time and reversing the direction of all arrows. This defines a dual substructure
P,. We define

N®B:9(A) = the number of paths down from (B, ¢) to (A,¢ — s).
Then the process "
BE = {x: N®9(x) is odd}
is a generalised BAP with flip rates
&(x,8) = X B(x —y)p(-y).

The definition of B given in the above lemma means that BAPs are
cancellative systems. They satisfy standard duality equations [see Griffeath
(1979), Chapter 3, Proposition (1.5)], of which the first identity of the next
theorem is an example.

THEOREM 4. For B finite
P{|B# N B|is even} = P{|BE N Al is even)
= P{|B2 n BE | is even},
where the B and f are independent BAPs.
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Proor. The dual percolation structure P, can be constructed from P, by
reversing time and all arrows. The event “|8/ N B| is even” is equivalent to
“NA(B) is even,” and since NA(B) = N/Z9(A) the first identity follows.

Because of the “forgetfulness” property of Poisson processes, P, and
P, ;, are independent. Thus, any independent processes B2 and BAtB_S may be
constructed from a single realisation P, with P,_; equivalent to P, ,,. Now

NA(B) = ¥ NA(x) N, o(B) = ¥ NA(x) NE(x)

= ¥ BA(x)Bl ,(x) (mod2) =|BA N L | (mod2),

and the second identity follows. O

The sort of duality identity which involves the meeting of a process and its
dual was used by Griffeath (1978).

We wish to prove P{B/ N B| is even} > 1/2 and, putting s =¢/2 in
Theorem 4, this is equivalent to showing P{|BA N B2 is even} - 1/2. Now
Arratia (1981), pages 921-922, has shown the following.

ARRATIA’S LEMMA. If a stochastic process on Z has the properties

(a) X(¢) increments by +1 at a rate which —, %,
(b) the change in rate across an increment is bounded,

then P{X(¢) is even} — 1/2.

The rate of change of |8/ N AP is equal to 27¢*1T,, _ BA(X)BE(y).
Without loss of generality it will thus be sufficient to demonstrate that
IBA N BfP| =,  for any sets A and B, B finite.

6. The distance to the nearest occupied site. In the next three
sections it will be shown that |8 N BZ| -, « for any sets A, B. The method
will be roughly as follows: A particular site is considered and the ‘‘distance”
from it to the nearest occupied site. It will be shown that this “distance’” may
be bounded above by something akin to a negative drift random walk, from
which it follows that the probability that the particular site is occupied is
bounded away from 0. Further, it will be shown that distant sites do not affect
the particular site sufficiently to prevent the conditional probability of occupa-
tion being bounded away from 0. The required result will then quickly follow.

In what follows we shall abbreviate 8 by B,. Points in Z? will be repre-
sented by Roman letters x, y, etc. Where necessary these same letters may also
represent the position vector of the points, so we may write ||x — y|| as the
Euclidean distance between the points x and y. Further x = (x,...,x,) so
théat x; is always the ith coordinate of x.

The process B, defines another process Q(%,) € B,, where %, = {B,: s < t}.
Roughly, Q(%,) represents a sequence of occupied sites that tends to get closer
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to the origin, 0. Sometimes we shall abbreviate the process Q(¢). @,(¢) is the
component in the direction of the ith coordinate axis.

First, we define @(0). Consider the set of y € B, with ||ly|| = min, c 4 [|%]. In
this set select those y with minimum y,. Within this set choose those y with
minimum y,. Continue until a unique point is reached. This is @(0).

Q(?) is to evolve in such a manner that it has no occupied neighbours closer
to the origin than itself. If the particle at @(¢—) branches to such a site, then
that site will become Q(Z), unless it has occupied neighbours closer to the
origin, in which case one of those neighbours is to be Q(#), unless it has an
occupied neighbour closer to the origin, etc. An example in two dimensions will
help clarify this; @(¢—) is in the position occupied by *, the labels Q(z), y*, y°
appear above the sites they represent:

Q(t) y' »°

A(O, 0)

At time ¢, B,(y°) becomes 1, but @Q(¢) # y° because at time ¢, y° has an
occupied neighbour y!. y! has two occupied neighbours closer to the origin; we
choose the neighbour in the direction of the ith axis with i a minimum G.e.,
preferring the x, direction over the x, direction).

If Q(¢-) is annihilated by a neighbour at time ¢, then @Q(¢) jumps to that
neighbour, except for the provisos given in the above paragraph to ensure Q(¢)
never has occupied neighbours closer to the origin than itself. Another exam-
ple will help clarify this, with once again @(¢—) represented by *:

y? ¥ y°
0 1 1 1
y® l
0 1 0 *
| y*=Q(z)
0 1 0 0
0

(0,0)
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Formally, if either y° annihilates the particle at @(¢—) at time ¢, or the
particle at Q(¢—) branches to a y° which is closer to the origin, then
Q(t) = ¥°, unless there is a set of sites y!,...,y" such that

(a) y1’~'~7yn EBt’

(b) y' y**1 are neighbouring sites, i = 0,...,n — 1,

(c) y'is closer to 0 than ¥, i=1,...,n,

(d) if there are several nelghbours of y yi— 9%, € B,, then y'*! is the
neighbour with least j,,

in which case Q(¢) = y”. (Note: §/ means the unit vector component of y*.)
That is, Q(¢) passes instantaneously through a series of occupied sites each of
which is closer to the origin than the last. Provision (d) ensures that the path
is uniquely defined. (a), (b) and (c) ensure there is no occupied site neighbour-
ing @Q(¢) which is closer to 0.

We now define the displacement of Q(¢) from the origin in the x; direction

(7) D;(%,) = D,(t) =|Q,(¢)|.

D,(¢) is a jump process with increments less than or equal to 1 which is
reflected at the origin. We now define a coupled jump process D*(¢) and will
show that its increments have negative mean.

1 Dx(0) = D,(0);

2. when D;,(¢) jumps, D;*(¢) jumps by the same increment;

3. in addition to (2), when D,(¢) = 0, DX(¢) jumps by —1 at Poisson rate
1/2d.

Let the increments in D;*(¢) be X;, X,,..., X,,... at times 7,,79,..., 7y, ... .
Put 7, = 0. From (1), (2) and (3) we may deduce that
(8) Di(Tn) = max(O, Di(Tn _) + Xn)

We aim to show the following lemma.

LEMMA 3.

1+2d% 1

= <—— < =
P(X, =1, 0<s <7, 1} < g -5 <5

Proor. Define

8,(t) = B(Q(2) + Qi(2)).

When §,(¢) = 1, Q(¢) has a neighbour in the x; direction which could branch to
annihilate the particle at (¢), and thus increase D,(¢) [and D (#)], except that
a chain of occupied sites might end in them actually decreasing! In any case,
the instantaneous rate of increase of Dj*(¢) is < 6,(t)/2d and its rate of
decrease is > 1/2d, where once again the > sign reflects the possibility of
chains of occupied neighbours.
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Let Y;(#,) be the first increment in D*(%,), s > t. Define
S, = {%,:6(%,) =1}, So={%,:8,(%,) = 0}.

Suppose %, € S;. We condition on the first of three competing events to occur,
D(-) increments by 1, D(-) increments by < —1, or neither occurs but
8,(+) goes from 1 to 0. The respective instantaneous rates are .<1/2d,
>1/2d and > 1/2d. Since P{Y(%,) = 1} < 1/2, straightforward calcula-
tions give

(9) sup P{Y(%,) =1} <3+ 3 sup P{Y(%,) =1}.

B,e8, B,e8,
When %, € S,, the competing events are D;*(-) increments by < —1 at rate
> 1/2d, or D*(:) does not increment and §,(-) jumps from 0 to 1 at rate

€ [1/2d, d]. The upper bound d of the latter rate occurs in the following sort
of situation:

1
)
1 1 » 0 « 1
) )
0 1 - 0 <« =x
)
0 1 0

(0,0)

Any of the branchings shown will result in 6,(-) increasing from 0 to 1 without
D (-) changing. Thus,

10 sup P{Y(%,) =1} < —————— sup P{Y,(%,) = 1}.
(10) «@,EpSo {Y(%,) } (2d) 1+d.@se%’1 {Y(%,) }

Equations (9) and (10) give

PIY( 5 ) 1+ 2d?
;};};l {(Y(%,) = }33+4~d2-

Taking into account (10) the lemma follows. O

Now when D;(0) = 0, (8) shows that D/(¢) is the “queueing process”
induced by D#*(#), to use the terminology of Feller (1971), pages 194-198. For
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each ¢ > 0 define n(¢) to be the number of jumps of D*(¢) up to time ¢, so that
Toity =t < Thay+1-
Put
Sp = Xn(t) + Xn(t)—l + o +Xn(t)—k+1'

Then, as shown in Feller (1971), pages 197 and 198,
(11) D,(¢) = max[0, S{,..., 8} ]-

Define a set of dummy random variables X,, X_,,... with each X;, i <0,
independent of all X, j # i, and such that

P{X, =1} =p,, P{X,= -1} =1 —p,, i=0,—-1,...,

where p; = (1 + 2d%) /(8 + 4d%) < 1/2.
It follows from (11) that

n(t) =)

(12) P{D(t)>=r} < Y P(S;=r}< ) P{S;>r}.
k=1 k=1

Now Lemma 3 implies that
P{Xi = llXi—l’ SR Xn(t)—k+1} <DPg>

for i=n(t)—k + 2,...,n(¢). A straightforward coupling argument shows,
therefore, that

P{S;>r} < P{B(k,py) = (k +r)/2)
=P{B(k,py)/k —py = (5 — pa) + r/2k},

. where B(k, p,) is binomial with parameters & and p,. The inequality (56.1) of
Johnson and Kotz (1969), implies that

_ 2
P{S,é >r}) < exp{—Zk[(l/z _pd)2 + r(1/2k pd) + 47‘k2]}

(13)

< e 2Nikg=2har,
where A, = (1/2 — p,). Substituting into (12), we obtain
(14) P{D,(t) = r|D;(0) = 0} < yge~*'",

where y;, = (1 — e~ %) 1,
Now, suppose D,(0) = a > 0.

P{D,(t) = r|D,(0) = a}
(15) = P{D,(t) = r, D,(s).= 0 for some s € [0,¢]|D,(0) = a}
+P(D() = r, D(s) # 0 for s € [0,¢][ D,(0) = a}.
With ¢ — s playing the role of ¢, (14) gives a bound for the first term on the



592 A. SUDBURY

r.h.s. of (15). Further,
P{D,(s) # 0 for s € [0,¢]| D;(0) = a}2u
< P{D#(t) = —a}

o

(16) < Y P{n(t) =n, .Z:EIXi > —a} + P{n(t).<ny}

T P {zx,_ —a}+P{ P, o < o).

n=ng i=1

where P, ,,, ~ Poisson(¢ / 2d). Equation (13) gives a bound for the sum of % of
the X, so the first term is < yze~2*@"0¢?*4%, Johnson and Kotz (1969), (36.1),
page 102 is an inequality due to Bohman:

P(P,<k) <®((k+1-06)/V0),

where @ is the distribution function of the standard normal. So for ¢ >
2d(2n, + 2),

[ng+1
(17) P{Pt/ZdSno} S‘I’(_ 02

Combining (15), (16) and (17), we obtain the following theorem.

< e "0/8

THEOREM 5.
P{D,(t) > r|D,(0) = a} < yd[e'z’\dr + e~ 2Munog2Aaa 4 e‘"O/S] ,
forng>0,t>2d2n, + 2).

7. The probability a site is occupied. For each point x € Z 4 we may
define a stochastic process playing the role Q(¢) does for 0. We put
(18) Qx(t) = Qx(‘@t) = Q( ‘@tx)’
where & = {B, —x,0<s <t)and y € B, —x iff y + x € B,. Qy(?) = Q).
Now consider the n points
(19) x/ = (2j,,0,...,0), j=1,...,n,
where ¢, > n will be defined later. Let us designate Q,/(t) as Q’(t). Let
D/(t) = |Q/(¢). We define

(20) m, = max |Q/(0)].
1<j<n
1<i<d
Then, putting n, > A7 (Yn + 2m,), so that —Mny+ 2\,m, < —Ag/n in
Theorem 5, we obtain
(21) P(D(t) > V) < 3yse ™", > 1,

for all i, j, where t, = 2d[2A;'(/n + 2m,) + 2]. The next lemma immedi-
ately follows.
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LEmMMA 4. )
P{Dj(¢t) <Vn,i=1,...,d;j=1,...,n}
> 11— 3yydne ™, t>¢,.

Thus, as n — =, for large enough ¢, the probability that the displacements
of the nearest occupied positions to x!,..., x™ areall < yn — 1. We now show
that the probability that x’ is occupied is bounded away from 0 for large
enough ¢.

LEmMA 5.
P(Q/(t +pVn +1) =0|Dji(t) < Vn,i=1,...,d} >p >0,

for n and t large enough, where p and p do not depend on n or t.

Proor. Without loss of generality we prove the theorem for Q(#). Once
again we use Theorem 5. We take n, > 3A;Vn — 1 so that —A%n, +
2040 < —Ag/n + 2% and

P(D,(t + pVn) = r|D,(t) < Vn'} < yg(e 2 + e¥ig A/ 4 (1=30NRY/8)

where p = 12dA;'. Let r’ be the smallest integer such that y,e 2% < 1/2.
Then

P{D(t+pVn) <r,i=1,..,d|Dy(t) <vn,i=1,...,d)

> 1/2 — yyd(eMe 2alm 4 o(1-323'ym)/8)

>1/3,

~ for large enough n. Let C,. = {x: |x;| <7, i =1,...,d}. Then, if
p' = ;gig,}{P{Q(t +1) = 0|Q(¢) = x}},

the result follows for p = p’/3, once we have shown p’ > 0.

For any x € C,. choose one of the shortest paths from x to 0 going from
neighbour to neighbour. The length of the path is < dr’. A sufficient condition
for Q(¢ + 1) = 0|Q(¢) = x is for branching (at rate 1/2d) along that path to
take place within time interval 1, while the particle at Q(s) is not annihilated
by one of the 2d — 1 neighbours not along the chosen path in the direction of
the origin for ¢ < s <t + 1. That is,

(1/2d)""

'S p—1/2d ~(@d-1)/2d, O
p=e (dr)! ¢

8.,The number of occupied sites. The Q(t) are not independent, but
since ||x/ — x| >n, j#i, and P{|Q/®)| <dVn}—> 1 as n - =, it may be
expected that in some sense within a time interval O(y/n) the @’(¢) will act
independently with probability approaching 1. We look for a condition such
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that no branching of a particle can affect both Q(¢) and Q’(¢), j # i, in a time
interval of O(yn).
Define the box of side 2/, centred at x/, as

(22) A(j, ) ={x:|x;, —xf{|<l,i=1,...,d}.

We choose ¢,,,¢,,, ¥, > ¢,, > n, large enough such that the probability of any
paths in the percolation substructure of the A(j,Vn) to A%(j, ¢,) and from
A(j, ¢,) to A°(j, ¢,) can be made vanishingly small. In Appendix 1 it is shown
that with ¢, > (n + De?"" *%(2/n + 1)? and ¢, > (n + De? V" *1(24, + 1)¢,

(23) P(NZG20 w o (A(J, 4,)) > O} < 1/n2,
Define an event

(24) F.(t) = N&Wow miy(AG,6,)) =0, j=1,...,n.
It follows from (23) and (24) that

(25) P{F,(t)} >1—-1/n.

Define an event

(26) H,(t) = N2 (AQG,vn)) =0, j=1,...,n,

where the path through the percolation substructure is in reverse time. If
Q’(¢) € A(j, Vn), then a necessary condition for Q’(s) € A°(j, ¢,) for some
t <s<t+p/n + 1 is that there is a series of neighbouring sites ¥, ..., y*
and times ¢ <s; <s, < -+ <8, <t +pyn + 1such that y' > Q/(¢) at s,,
y2-oylats,,...,y* > y* 1 at s,, where y* € A°(j, ¢,). This implies, revers-
ing time, that there is a path from (y*,¢ + pV/n + 1) to (Q/(¢), ¢). Defining

(27) G.(t) =Q/(¢) €A(j,Vn), Jj=1,...,n,
it is clear that G,(¢) N H,(¢) implies
Q/(s) € A(j,$,), Jj=1,...,n,t<s<t+p/n +1.

If E,(¢) =F,(¢t) nG,(¢) N H,(t) occurs, then there is no way in which any
event

in [¢,¢ + pyn + 1] can affect both Q/(s) and Q(s), i #j, within that time
interval. Further, F,(¢), G,(¢) and H,(¢) are independent as they are events
disjoint either in time or space in the percolation substructure. In Appendix 1
it will be shown that ‘

(28) HNm,nmAU¢»=®<Vn

which with (26) gives
(29) P{H,(t)} =1-1/n.
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Using Lemma 4 for G,(¢), we have
P{E,(¢)} > (1 —1/n)(1 — 8y;dne™ ™ )(1 - 1/n) =1 —¢,,
t>t

(30)

n’

where ¢, — 0.
Now, if o; ,(2) is the o field generated by the process g8 in

[t’t +p‘/77 + ]']Ac(l’ lpn)’
P{QI(s) =x|E,(¢) N g, (1)} = P{Q’(s) = x| E,(1)},

for t <s<t+p/n + 1. Since QE () €0, (DNEW), j+i, t<s<
t+p/n +1,

P{Q/(s) =x|E,(2),Q(s),i=1,...,j — 1}
= P{Qi(s) = xlEn(t)}.
Lemma 6 follows from (30), (31) and Lemma 5.

(31)

LEMMA 6.

P(QI(t + pVn +1) = 0|E, (), Q(¢ + pVn +1),i <j}>p -2, t>t,

Now, suppose that we have two independent BAPs 8 and B. Define r.v.’s
I,,I,,..., I, which are respectively the indicators of

E (t) NE(t),...,Q(t +pVn +1) =0n Q(¢t +p/n +1) =0,
1=1,...,n,

where the superscript " implies that the events have been defined for the
process B in a similar manner to those for 8. It follows from Lemma 6 that

E{L|1,,...,I;_} = (p — Sn)2IO’
We then use a theorem given in Loéve (1955), page 387, that, with
Il* = Il - E{IilIi—l’ ceey Io},

k 1
P{ max |y, I*|> e} < — ). E{1x%,
l<k=zn i=1 € p=1 '
so that
w n n+1
P{ Z [Ii_E{IilIO""’Ii—l}] Sg}>1_(—2).
i=0 €
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Putting ¢ = (n + 1)3/4 we have

n n 1
P E{L|I,,....I._}) - Y IL<(n+1)%*>1-
PEUTISARED AR L

i=0

or

P nI.>n(p—8)2I - (n+1)%* -1 1o
‘_11 n 0 /n+1’

1=

But
P{Iy=1}=(1-¢,)% &, -0,
so that for n large enough

P an L> Snp? (1 ?(1 __1
> — > — _
i=0 1 2 np 8n) n 1 b
for ¢ > max(t,, £,). Thus, we have that |8, N §,| -, ®.
At the end of Section 5 it was pointed out that this condition was sufficient
to show that the only nonzero limiting distribution was the product density
1/2. We thus have Theorem 6.

THEOREM 6. If Bf is a BAP on 7% with A + O, then its limiting measure
IS vy 9, the product measure with density 1/2.

9. The double branching annihilating process (DBAP). In this sec-
tion we consider a process on Z which is like the BAP except that particles
always invade both neighbours simultaneously instead of one neighbouring
site at a time. It is not a spin system. We call it the double branching
annihilating process (DBAP). It is defined by its flip rates, c(x — 1,x + 1, 8),
the rates at which the coordinates B(x — 1), B(x + 1) simultaneously flip to
1-B(x —1),1 — B(x + 1), respectively. We have

c(x—1,x+1,8) =B(x)

and the infinitesimal generator is

LF(B) = X B(x)[ F(B*1**) = £(B)],
where B*~1**! is B with the values at x — 1 and x + 1 flipped.

THEOREM 7. In a DBAP on Z:

(a) if the initial number of particles is odd, then the limiting distribution is
Vi/25 .
(b) if the initial number of particles is even, then the number of particles
remains bounded,;

. () if the initial measure is Vp, 0 <p <1, then the limiting measure is v, ,5;

(d) v, 5 is not the only limiting measure with density greater than 0;

(e) the stationary measures form a one-parameter family, the borders of

product measures v,, 0 <p < 1/2.
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First, we shall prove a lemma.
LeEmMA 7. The border of an exclusion process is a DBAP.

PROOF. An exclusion process on Z has state space {0, 1}2. v, is the set of
occupied sites at time ¢. Each pair of adjacent sites waits an exponential
holding time with mean 1 and then swaps the particles. In other words, if a
swap occurs at the pair (x, x + 1) at time ¢, y,(x + 1) = y,_(x), y(x) =y, _(x
+ 1). Clearly a noticeable change only occurs when y,_(x) # y,_(x + 1). We
define a coupled process ¢, as

(32) &i(x) =|7’t(x) — 7y (x + 1)|

If a swap occurs at time ¢ at (x,x + 1), {,(x) is unchanged, but if y,_(x) #
v,_(x + 1) [i.e,, {,_(x) = 1], then both {(x — 1) and {,(x + 1) are changed.
This is equivalent to the particle at x placing annihilating offspring on the
sites x — 1 and x + 1, so {, isa DBAP. O

Proor or THEOREM 7. We shall first consider the case for which the initial
number of particles in the DBAP is finite. Let {(x;) = {o(x5) *+ = {o(x,) =1
and {y(x) = 0 otherwise. This is the border of an exclusion process which
initially has 0’s from — up to x;, then 1’s from x, up to x,, 0’s from x, up to
x5, etc. That is,

YO(x)=O, xle,xz<xSx3,...,
YO(x)=17 X1 <X <Xg,....

(We could just as well have had 1’s from —o up to x;, 0’s from x; up to x,,
etc.) We have

vo(x) =1, x > x, for r odd,
Yo(x) =0, x > x, for r even.

Now as n = «, |y, N [—n,r]|/2n - 1/2 for r odd, and it is well known
[Liggett (1985), Chapter 8] that for such v,, v, , is the limiting measure of y,.
It follows that v, ,, is also the limiting measure for {,.

When r is even

lvol = (%5 —x1) + (x4 —x3) + -+ +(x, —x,_1).

Since 1’s can neither be created nor destroyed |y,| = |y,|, and since this finite
set of particles separates and wanders over the whole line, the probability that
any two particles are adjacent approaches 0. This is shown in Appendix 2. We
thus have that

P4 = 2lyol} = 1.

To prove (c), suppose the initial measure of ¢, is v,, 0 <p < 1. y, may be
constructed uniquely by specifying y,(0) = 0 and having ¢, the border of y,.
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v, then evolves as an exclusion process and ¢, is its border so that
(33) Yi(x + 1) = {(x) + y(x) (mod2).

{vo(x)} is a Markov chain with doubly stochastic transition matrix (1 Pt , )
It follows that P{y,(x) = 1} = 1/2 as |x| = « and by the strong law of large
numbers for Markov chains |y, N [—n,n]/2r — 1/2 so that, as in part (a),
{2 v

Equations (32) and (33) define a one-to-one relationship between measures
for vy, and ¢{,. It is known that in the one-dimensional case the only invariant
measures for exclusion processes are mixtures of the product measures, v, [see
Liggett (1985), page 369]. If y, ~ v, then y, ~ v, and P{{(x) = 1} = 2a(1 —
a), but ¢, is not a product measure. The measures of the cylinder sets in these
border measures of v, are simple to calculate [e.g., {,(011) = a?(1 — a) +
a(l — a)3), but do not seem to have a neat closed form. (d) and (e) follow from

these observations. O

10. The double branching annihilating random walk (DBARW). In
this process the annihilating random walk is added to the DBAP. In other
words this is the model of Bramson and Gray with, however, branching always
taking place simultaneously to both neighbours. Since it is known [see Schwartz
(1978)] that the ARW can be viewed as a border of a voter model, it is no
surprise that the DBARW is the border of a process which combines both
swapping (exclusion) and the voter model. In the voter model each site waits
an exponential holding time when it takes on the opinion (taking values 0 or 1)
of one of its neighbours chosen at random. In the swapping voter model, n, we
shall allow swapping at rate 1, but set the rate for the voter model at p. We
will define 7 in terms of a percolation substructure as in Section 4.

Let (M7 (¢), M (), N(t), t > 0, z € Z) be independent Poisson processes
with rates p/2, p/2 and 1, respectively. Let T, ,, T,",,, U, , be the /th event in
M, the mth event in M and the nth event in N,, respectively. At T, site
z flips to be the same as site z — 1. Similarly, at T}, z flips to be the same as
site z + 1. At U, , sites z and z + 1 swap values. If there is no difference in
the values at the sites there is no change in 7. Given initial state n,, M, M
and N, define 7,.

The percolation substructure, P,, is obtained by drawing the family of line
segments {2z} X [0, ¢], and drawing arrows from (z — 1, T, ) to (2, T, ), from
(z+1,T},) to (2,T,) and a two-headed arrow between (z,U,,) and
(z+ 1,0, ,). A path down from (z,,?) to (25, 5), s <¢, is a continuous path
consisting of downward line segments and arrows in which, whenever an
arrowhead is reached, the arrow is followed until its other end, when the
adjacent downward line segment is followed. There is clearly at most one path
from (z,, ) to (z,, s) and

(34) n,(z1) = n,(2,) if there is a path from (2, ¢) to (2,5, s).
We shall show the following theorem.
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THEOREM 8. If 7, is a swapping voter model on Z, then P{n/(z) = n(y)} —
last — oo

Proor. We define a set of processes {IIi(s), 0 < s < ¢, z € Z} which will
represent the position of particles II,. II, starts at z at time ¢ and moves in
reverse time. We define

IL(s) = x iff there is a path from (z,¢) to (x, s), 0<sc<t.

This defines I1:(s) uniquely. Each II, thus executes a reverse time symmetric
simple random walk with holding time (2 + p)~'. The jumps for II, and II,
are independent unless they occupy adjacent sites. Then the next change in
position for the two particles is either (a) a swap with probability 1/(3 + 2p),
or (b) one of the particles jumps away with probability (2 + p) /(3 + 2p) or (¢)
they occupy the same site with probability p /(8 + 2p). If they occupy the same
site at time s, then IT{(x) = IT’(x), 0 < u < s. Since symmetric random walks
in one dimension meet i.o., they will become adjacent i.o. and (¢) will eventu-
ally occur. Thus II, and II, will join together in [0, ¢] with probability 1 as
t — o, That is, P{II(0) = I1:(0)} — 1, and since n,(2) = 1,(I1(0)), and 1(y)
= no(I13(0)), the theorem follows. O

Note. This lemma only requires the associated random walks to meet i.o.
It is thus true for any swapping voter process in one or two-dimensions which
is symmetric with appropriate moment conditions on the random walk. The
nearest-neighbour condition is unnecessary.

It is simple to check that the border process {(x) = |n,(x) — n(x + 1)|is a
DBARW with double branching at rate 1 and the ARW at rate p. It follows
from Theorem 8 that P{{(x) = 1} — 0, so that we have Theorem 9.

THEOREM 9. The limiting measure for the DBARW is §,.

APPENDIX 1
We give here the justification for (23) and (29). Now the process defined by

WA = {x: NA(x) > 0)

is a Williams-Bjerknes process with « = «. Every occupied position branches
to one of its neighbours at unit rate, placing an offspring at a neighbouring site
if it is unoccupied. It is thus a pure birth or Yule process inhibited by the
spatial structure.

If Y(#) is the number of particles in a Yule process'with split rate 1 for each
particle, then

E{Y(t, +t)|Y(t,)} = Y(¢o)e',
Var{Y (¢, + £)|Y(2,)} = Y(£o) (¥ — e).
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So, using Chebyshev’s inequality,
P{Y (¢, + t) > ke'x|Y(t,) = x}

xe?t 1

< s = —.
(ke'x — e'x) (F—-1)"x

Now, the number of sites in the set A(j,[)is < (21 + 1)¢ so

i . 1
P{Iv[‘?,(tj-;—?‘/ﬁ+1](Ac(Ja m)) > 0} <—

if m > (n + 1e?*1. (21 + 1)?. Equations (23) and (29) follow if we take ¢,
to be the smallest integer greater than (n + 1)e?V" *1(2/n + 1)?, and ¢, the
smallest integer greater than (n + 1)e?V" *1(2¢, + 1)%.

¢, and ¢, are certainly far larger than is necessary. In fact ¢, = n is
sufficient for (23) and (29) to be true.

APPENDIX 2
LemMA. If vy, is an exclusion process with |y,| < «, then

P{Zx: Y(x)y,(x +1) = 0} - 1.

Proor. Consider two particles m,, m, in an exclusion process. Each parti-
cle executes a continuous time simple random walk with jumps independent of
each other except when they are adjacent, in which case they may swap
positions. The distance between the particles is thus a zero-mean random walk
reflected at 1. If dist(m,, m,, t) is the distance between m, and m,, then

P{dist(mq, m,,t) = 1} = 0.

Since there are a finite number of pairs of particles, the lemma follows. O
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Theorem 6 is also contained in Durrett (1989), Theorem 2B.
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