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ERROR BOUNDS FOR EXPONENTIAL APPROXIMATIONS
OF GEOMETRIC CONVOLUTIONS'

By Mark Brown
The City College, CUNY

Define Y, to be a geometric convolution of X if Y| is the sum of N,
iid. random variables distributed as X, where N, is geometrically dis-
tributed and independent of X. It is known that if X is nonnegative with
finite second moment, then as p — 0, Y,/EY, converges in distribution to
an exponential distribution with mean 1. We derive an upper bound for
d(Y,), the supnorm distance between Y, and an exponential with mean
EY,. This upper bound is d(Y,) < ¢p for 0 < p < %, where ¢ = EX2/(EX)2.
It is asymptotically (p — 0) tight. Also derived is a bound for d(Y, + Z),
where Z is independent of Y.

1. Introduction. If {X;, i > 1} is an ii.d. sequence of nonnegative ran-
dom variables and N, is geometrically distributed [Pr(N, = k) = q*p, k =
0,1,2,...] and independent of {X,}, then Y, = EMX; is called a geometric
convolution of X. Closely related to Y, is the random variable Y = L VX,
where N = Ny + 1. Y is also referred to as a geometric convolution.

Geometric convolutions arise naturally in many applied probability models.
Gertsbakh (1984) discusses a rich variety of applications in reliability and
queues and surveys research in the area, most of which was performed by
Soviet authors. Feller (1971), Section XI.6, elegantly discusses terminating
renewal processes, the time until termination being a geometric convolution.
Several authors have studied random sampling, or “thinning,” of renewal
processes; this procedure results in new renewal processes with geometric
convolution interarrival times. Jacobs (1986) investigates a geometric convolu-
tion in the context of combining random loads and waiting for the stress to
exceed a given level. In a G|G|1 queue in equilibrium, the waiting time
distribution is a geometric convolution and has been studied in this context by
Szekli (1986) and Kollerstrom (1976). Finally, numerous applications arise in
regenerative stochastic processes. Consider a regenerative process [Smith
(1958)] where in each cycle an event A may or may not occur, independently of
other cycles. The waiting time for A to occur is then of the form

NO
(1.1) W=YX+Z=Y,+2Z,
1
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APPROXIMATING GEOMETRIC CONVOLUTIONS 1389

where A occurs for the first time in cycle N, + 1, N, is geometrically
distributed with parameter equal to the probability of A occurring during a
specified cycle and Z is the waiting time from the beginning of cycle N, + 1
until A occurs.

Keilson (1966) recognized the prevalence of (1.1) and considered the case of
small p. He showed that if the X, are nonnegative with finite second moment,
then W/EW converges in distribution to an exponential with mean 1 as
p — 0. Thus, the waiting time for a rare event (small p) to occur is approxi-
mately exponential. Solovyev (1971) considered a sequence of random variables
of the form (1.1) in which the distribution of X varies with p and obtained
conditions for asymptotic exponentiality as p — 0. Solovyev also obtained
error bounds for the exponential approximation.

In this paper we seek to bound the distance between a geometric convolu-
tion of nonnegative random variables and an exponential distribution with the
same mean. This problem is cited by Gertsbakh (1984) as being ‘‘of great
interest for engineering applications.” Defining X, Y and Y, as above, q =
1 -p, u=EX, uy, = EX? y = up/2u” and Fy(t) = Pr(Y, > t), we derive

pt) P
-—]+ —.
qu q

_ p|t
(1.2) qexp(——(— + 2y — 1)) <FY(t) < exp
qlm

Defining d(Y,) as the sup norm distance between Y, and an exponential
distribution with mean EY, = qu /p, it follows from (1.2) that for 0 <p < 3,

(1.3) d(Yy) < 2yp = uyp /1.

For a given p, let B(p, u, u,) denote the best upper bound for d(Y,) among
all distributions with common first two moments u and w,. It is shown in
Section 4 that lim, , ([ B(p, i, n5)/p] = 2. Thus the bound in (1.3) is asymp-
totically sharp as p — 0.

Bounds are also obtained for d(Y, + Z), where Z is a nonnegative random
variable independent of Y|, for d(Y) and for d(Y *), where Y * is the station-
ary renewal distribution corresponding to Y. It is easy to see that Y* is also
the stationary distribution corresponding to Y.

The current bounds offer improvement over those of Solovyev (1971) in that
they are derived under less restrictive conditions, require less information
about X and Z to compute and are in general tighter. This comparison is
discussed in Section 4.

In the above X is assumed nonnegative with known first two finite mo-
ments. In Section 3 we restrict X further and obtain improved bounds.
Perhaps the most interesting of these results is that if X is assumed NBUE
(new better than used in expectation, defined in Section 2), then d(Y,) is
exactly equal to p.

Our methodology is a combmatlon of reliability and renewal theory geared
to exploit the fact that Y, is NWU (new worse than used) as pointed out by
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Daley and Trengove (1977). The technique of studying random variables
through their aging properties was developed by several authors, most notably
by Barlow, Marshall and Proschan, and is lucidly presented in the text of
Barlow and Proschan (1975).

2. Bounds for general X. A distribution F on [0,x) is defined to be
NWU if

(2.1) F(t+x) > F(t)F(x) forallt, x> 0.

Similarly, NBU (new better than used) is defined by reversing the inequality in
(2.1). Thus F is NWU (NBU) if its survival distribution at age 0 is stochasti-
cally smaller (larger) than its survival distribution at age x for all x > 0 with
F(x) > 0.

Let {X;, { > 0} be an i.i.d. sequence of nonnegative random variables; let N,
be independent of this sequence with Pr(N, = %) =q*p, £ =0,1,... and
define S, = L{X; and Y, = Sy. The following simple but useful result is
discussed in Stoyan (1983), page 96. Stoyan credits Koéllerstrom (1976) with
deriving the NWU result for the stationary waiting time distribution in a
G|G|1 queue and Daley and Trengove (1977) with noticing that it is a
consequence of the waiting time being representable as a geometric convolu-
tion.

LEmMa 2.1. Y, is NWU.

Proor. For ¢t > 0, define M, = min{k: S, > ¢}. Since M, is independent of
* N,, it follows from the lack of memory property of the geometric distribution
that (N, — M, N, > M,) ~ N,. Furthermore since M, is a stopping time,
{Xu,4i 1 2 1} ~{X,, i > 1}. Thus

N, No
(2.2) A Y XINyz=M,| ~ Y X, =Y,
M,+1 1

Note that the events {Y, > ¢} and {N, > M,} are equivalent. Thus their
indicator functions are equal, thus Iy ., = Iy . , Now

[ (| M, N,
(Yo —8)Iy,5. = {(Z Xi) _t} + Z‘Xi:IIY0>t
(2.9) W1 M,+1

& ' Ny
Z Xi)INont'

M,+1

v
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Next note that for x > 0,
Pr(Y,>t+x) = Pr((YO -t)ly > x)

No

Y X, INon, >x| (by2.3)
M,+1

No

—Pr| ¥ X, >x,Ny=M,
M,+1

No

M,+1

> Pr

= Pr(Y, > x)Pr(N, > M,) (by2.2)
= Pr(Y, > x)Pr(Y, > ¢t).
Thus Y, is NWU. O

In this paper the renewal function corresponding to a distribution F on
[0, ) will be defined by M(¢) = £%_,F™(¢) as in Feller (1971), Chapter XI.
Some authors use X5 _,F®(¢) = M(¢) — 1 for the renewal function.

Lemma 2.2 is a slight generalization of a known result [Barlow and Proschan
(1975), page 162], the generalization allowing for an atom at zero which will be
required for Y.

LEMMA 2.2. Assume that W is NWU with an atom of size p at zero, but
with no other atoms. Let F be the cdf of W and M = L3F™® the renewal
function. Then

F(t) > q exp(pq~")exp(—(M(t) — 1)) = exp(~(M(¢) - 1)).

Proor. Let {N,(¢) — N,(0), ¢ > 0} be a nonhomogeneous Poisson process
with E(Ny(t) — N(0)) = —In(F(t)/q). This process has its first event epoch
T, distributed as W|W > 0, its next interarrival time T, — T, distributed as
W — T,|W > T, and in general its kth interarrival time T, — T, _, distributed
asW-T,_,|W>T,_,. Since W is NWU,

(2.4) T, =T, 1Ty - Tho1 24 W fork > 2.

Next, consider {N,(¢) — Ny(0), ¢ > 0}, where N, is a renewal process with
interarrival time W. The first event epoch of N,(¢) — N,(0) occurs at S, ~
W|W > 0 ~ T,. Subsequent interarrival times are distributed as W. It follows
from S, ~ T, and (2.4) that

(2.5) T,>4 S, fork>1.
Thus from 2.5), .
(2-6) Nl(t) _N1(0) st Nz(t) - N2(0)~
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Taking expectations in (2.6),
(2.7) ~ In(F(¢)/q) < M(¢) — g%,

Finally, the result follows from (2.7) and the observation that q exp(pq~1) >
ql+gp™H =10

CorOLLARY 2.1. Suppose that X >0 has F(0) <1 and u,=EX? <,
Then

Fy(t) > qexp(—pq~'(tp~' + 2y — 1)) = g exp(—pgq~*(2y — 1) )exp(—t/EY,),
where y = py/2u2.

Proor. Cast (). We first consider the case in which X has no atoms. Then
Y, has an atom of size p at zero and no other atoms. Define Ny and Ny as
renewal processes with interarrival times Y, and X, respectively, and My =
ENy, My = ENy.

Note that Ny has 1+ G, renewals at zero and G, renewals at each
renewal epoch of Ny in (0, ), where Pr(G, = %) = pkq, k=0,1,....

Thus,

(2.8) My(t) =q ' +pqg ' (Mx(¢) — 1) = 1 + pg~'Mx(2).

Alternatively, (2.8) can be easily proved using Laplace transforms. Next, we
note Lorden’s (1970) upper bound for the renewal function,

t
m
The result now follows from Lemma 2.2, (2.8), (2.9) and EY, = p " qu.

Cask (ii). Now consider the general case. Define e, to be uniformly dis-
tributed on (0,¢,), n = 1,2,..., with lime, = 0, e, independent of X and
X, =X +e,. Since X, converges to X in quadratic mean, u, = EX, —» u and
Y, = EX2/2u% — vy. Define Y, , = £¢»X, ;, the analogue of Y, with X re-
placed by X,. Then by choosing X, ; = X; + e, ;, we have E(Y, , — Y,)* =
E(z§re, )* - 0 as n —» «. Thus Y, , converges in quadratic mean and thus
in distribution to Y;. By Case (i),

(2.10) Fy, (t) = qexp(—pq~H(tu;* + 2v, - 1)).

It follows by letting n — « in (2.10) that the desired bound for Fyo(t) holds

at all continuity points of Y. But since F is right continuous and the bound
is a continuous function of ¢, it follows that the inequality must hold for all
t>0.

A nonnegative random variable X with distribution F is defined to be
NWUE (new worse than used in expectation) if 0 < u = EX < o and

(2.11) E(X-tiX>t)>u forall ¢t > 0with F(¢) > 0.
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Note that (2.11), with x > 0, implies that F(z) > 0 for all . X is defined to
be NBUE if 0 < pu < « and the inequality in (2.11) is reversed. NBUE distribu-
tions can have finite support.

Define X* to be a random variable distributed as the stationary renewal
distribution corresponding to X; X* has cdf G(x) = u~YiF(t)dt. Let h*(x)
be the failure rate function of X* defined by A*(x) = F(x)/uG(x) for x with
F(x) > 0. Noting that h*(x) = [E(X — x|X > x)]~ ! it follows that NWUE is
equivalent to each of the following:

(2.12) h*(x) <u~! forall x >0,

(2.13) X<, X*
Moreover, (2.12) implies

(2.14) X* > e,

where we is exponentially distributed with mean u.

Similarly X NBUE is equivalent to the reverse inequality holding in (2.12)
for all x with F(x) > 0. It is also equivalent to the reverse inequality holding
in (2.13).

For two probability distributions F, F, define 2*(F,, F,) = supg c 4|F\(B) —
F,(B)|, where B is the collection of Borel sets in R. Let A be a measure
dominating both F, and F, and set f, =dF,/dA, i =1,2. Define A=
{t: f1(#) > fo(¢)}. Note that

F(B) ~Fy(B) = [ (fi=f)dr <[ (fi=f)da

(2.15)
< fA( f1—f2) dA.
Similarly,
(2.16) Fy(B) — Fy(B) sz( fo—f1) dA.
Since [,(f, — fo) dA = [{ f, — f1) dA, it follows from (2.15) and (2.16) that
(2.17) D*(F,, F) = fA( fi = f2) dA = Fi(A) — Fy(A).

Define ce to be an exponentially distributed random variable with mean c.
For a random variable X on [0,) with w, = EX? < », define py=
I(ng/2u®) — 1| = |yx — 1]

LemMa 2.3. If X is either NWUE or NBUE, then 2%(X*, ue) < py.

Proor. Consider the NWUE case, the NBUE case being totally analogous.
Define A = {¢: F(t) > exp(—tu~1)}. By (2.17),

(2.18) D*(X*, ue) = /.L‘lfA(F(t) — exp(—tu~1)) dt.



1394 M. BROWN

From (2.13), (2.14) and (2.18),

P*(X*, pe) <p ' [ (G(t) - exp(—tu")) dt
(2.19) 4

s,u‘lf:(@(t) —exp(—tu~t)) dt = py. . ]

Define Y * to be the stationary renewal distribution corresponding to Y. As
previously mentioned Y* is also the stationary renewal distribution corre-
sponding to Y.

For X, ~F,, X, ~ F, define 2(X,, X,) = 9(F,, F,) = sup,|F\(¢) — F,(¢)|,
the sup norm distance between F, and F,.

COROLLARY 2.2. IfX > O with F(0) < 1 and p, < ®, then 2(Y *,(EY,)e) <
-1
bg v.

Proor. By simple computation, py = pq~'y. The result now follows from
Lemmas 2.1 and 2.3. O

Recall that d(Y,) = 2(Y,,(EY,)¢), the sup norm distance between Y, and
an exponential distribution with the same mean.

THEOREM 2.1. IfX > 0 with F(0) < 1 and p, < «, then
(@) )
qexp(—pq~'(2y — 1))exp(~t/EY,) < Fy(t) < exp(—t/EY,) + ypq~",

2yp, 0<p<s,

(ii) d(Y,) <pmax(2y,yqg~')={ . .
y¢~'p, p>3

Proor. The bound on the left of (i) is the conclusion of Corollary 2.1. The
upper bound follows from Lemma 2.1, (2.13) and Corollary 2.2 by
(2.20} Fy(t) — exp(—t/EY,) < Fy.(t) — exp(—¢/EY,) < 2(Y*,(EY,)¢)
2.20

<ypg '

Finally (ii) follows from (i) noting that
exp(—t/EY,) — Fy(t) < exp(—t/EYy)[1 — g exp(—pg~*(2y - 1))]
<1-¢(1-pg'(2y - 1)) = 2yp.

Thus, d(Y,) < max(2yp, ypq™!) < 2yp for p < 3. O

(2.21)

dOROLLARY 2.3. Under the conditions of Theorem 2.1,

d(Y) <pg 'max(1+yqg~',2y - 1).
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Proor. Since Fy(t) = q’IFYO(t), we can multiply all three components of
inequality (i) of Theorem 2.1, obtaining an upper and lower bound for Fy(z).
Subtracting exp(—¢/EY’) from both F(¢) and the upper bound, we obtain

Fy(t) —exp(—t/EY) < sup(q’lexp(—t/EYO) - exp(—t/EY)) +vq~ ?p

(2.22) =pg (1 +yg™h).

Subtracting Fy(t) from exp(—¢/EY) and from the lower bound for Fy(¢)
yields

(2.23) exp(—t/EY) — Fy(t) < sup(exp(—¢/EY) — bexp(—¢t/EY,)),

where b = exp(—pqg~(2y — 1)).

For b > g, the right side of (2.23) equals pg?/%exp(2y — 1) which is
bounded above by p, while for b < ¢ the right side of (2.23) equals 1 — b
which is bounded above by pg~'(2y — 1). Thus d(Y) is bounded above by the
larger of pg~ (1 + yg~!) and pg %2y — 1), and the result is thus proved. O

We next seek bounds for d(Y, + Z) with Z > 0 and independent of Y,. A
few simple preliminary results are first presented.
First, for ¢; < ¢y, a routine calculus argument proves

c, c, )01/02’01 c,
¢y )\ cy Co

(2.24) D(cqe, cpe) = (1 - —)(— <1-—.

Next, note that for any constant S,
(2-25) -@(W1+B,W2+B) =9(W1,W2)-

It follows from (2.25) that for any random variable V independent of W,
and W, that

(2.26) W, + V,W,+V) < 9(W,W,).
Next, let Z > 0 be independent of ¢ with Laplace transform .~

LEMMA 2.4. D(ce,ce +Z) <1 — A(c ) <1 —exp(—c 'EZ) <c 'EZ.

Proor. Let F(¢) =1 —exp(—c !#). Fort >y > 0,
(2.27)  F(y) = (F(t —y) — F(t))/F(t — y) = F(t —y) - F(2).

For0 <t <y,
(2.28) F(y)=1-F(y)=1-F(t) =F[(t -y)"] - F(2).

Thus F(y) > F[(t — y)*] — F(¢) for y,t > 0. Consequently,
(2.29) Pr(ce +Z>t) — Pr(ce >¢) =E[F(¢ - Z)" - F(t)| <EF(Z).
Now

EF(Z) = E[1 — exp(—¢~'Z)]

(2.30)
=1-2/(c') <1-exp(—-c EZ). O
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Finally, we need a simple but useful result.

LEMMA 2.5. Suppose that X and Y are both either stochastically larger or
stochastically smaller than Z. Then

2(X,Y) <max(92(X,Z2),2(Y,Z)).
Proor. Immediate. O
The above inequalities now enable us to derive

THEOREM 2.2. Let X be as in Theorem 2.1 and let Z > 0 be independent of
X with EZ < . Define 6, = EZ/u. Then:

G) d(Yy+2) <[2y + 8,97 'Ip, for 0<p<3.
(i) d(Y*) < ypq™'.
Proor. By the triangle inequality,
(2.31) d(Y,+ Z) < (Y, + Z,(EYy)e + Z) + D(EYy)e + Z,(E(Y, + Z))e).
By (2.26) and Theorem 2.1,
(2.32) 2(Y,+ Z,(EYy)e + Z) <d(Y,) <2yp, for0<p < 3.
By Lemma 2.5,
D((EYy)e + Z,(E(Yy+ Z))e)
< max[ Z((EY,)e + Z,(EYy)e), Z((E(Yy + Z))e, (EYy)e)] .
By Lemma 2.4,
D((EYy)e + Z,(EY,)e)
<1 - exp(—EZ/EY,) = 1 — exp(—pq~'8;) <pq~'s;.

(2.33)

(2.34)

By (2.24),
EY, EZ
- <
E(Y,+2) — EY,

(2.35) D((E(Y,+ Z))e, (EYy)e) < 1 = pq~15,.

Result (i) now follows from (2.31)—(2.35).
Finally by (2.13), (2.14), Lemma 2.5, Corollary 2.2 and (2.24),
d(Y*) < max[.@(Y*, (EY,)e), 2((EY *)e, (EYO){;‘)]

<pg 'y
Thus, (ii) holds and the proof of Theorem 2.2 is complete. O

(2.36)

3. Improved bounds under additional assumptions. In this section
we outline the improvements in the results under various aging assumptions
on the distribution of X.
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3.1. NBUE. Suppose that X is NBUE distributed. Then Y* =,
Y, + X*<,Y,+X=, Y; thus Y is NBUE. Note that Y* is the stationary
renewal distribution corresponding to both Y, and Y. It thus follows from
(2.12) that

(3.1.1) P ochpt) <X foralltso.
n qu

Consequently,

X Fy(t+x X
(3.1.2) exp(—p—) < —L—(-———) < exp(— p_) forall ¢, x > 0.
qm Fy.(t) M

Thus for p small, Y* has an approximate lack of memory in that the
residual age distribution varies with ¢ by at most p in sup norm.

Note that from (3.1.1), (EYye <, Y* <, (EY)e and from (2.13), Y, <,
Y * <, Y. Since 2(Y,Y,) <p and Z((EY,)e, (EY)e) < p, it follows that

—st
(3.13)  max(d(Y*,Y,),d(Y*Y),d(Y* (EY,)e)) <p.
Furthermore by Lemma 2.3,
(3.1.4) d(Y*,(EY)e) < py = ppx-

From (3.1.3) and (3.1.4), using the methodology of Section 2, it is straight-
forward to derive

(3.1.5) d(Y,) <p,
(3.1.6) d(Y) <p,

(3.1.7) d(Y*) < ppx,

(3.1.8) d(Yy+2) <p(1+q715,),

(3.1.9) Fy(t) > exp(~t/EY) - ppx,
(3.1.10) exp(—t/EY,) < Fy(¢t) < q 'exp(—t/EY).

Note that Pr(Y, =0) = p/(1 — ¢ Pr(X = 0)) > p. It follows that for any
nonnegative X with finite mean,

(3.1.11) d(Y,) > p.
Thus (3.1.5) and (3.1.11) show that for F¥ NBUE,
(3.1.12) d(Y,) =p.

Finally, we mention that when py < p/2 we can improve on (3.1.6) by using
Daley’s (1988) bound for NBUE distributions applied to Y. This yields

(3.1.13) d(Y) < 2py = {2ppx.

3.2. NBU. If X is NBU, then an argument similar to the NBUE case of
Section 3.1 shows that Y is also NBU. Now Y, is NWU, Y is NBU and



1398 M. BROWN

Y, —tYy >t =4 Y—tY >t forall ¢t > 0. Thus
(3.2.1) Yo< Y—-tY>t<,7,
Fy(t +x)

Fy(2)
The residual age distributions thus cannot vary by more than p in sup-norm.
Since Y is NBU, we can derive an analogue of Corollary 2.1 for Y:

(3.2.3) Fy(t) < exp(p)exp(—t/EY).

Combine (3.1.9), (3.1.10) and (3.2.3) to obtain

max(exp( —¢/EY,), exp(—t/EY) — ppx)
< Fy(t) < exp(p)exp(—t/EY).

3.3. NWUE. Assume that X is NWUE distributed. It follows from the
argument of Section 2.1 that Y is also NWUE. Thus by Lemma 2.3,
(3.3.1) 9(Y*,(EY)e) <ppyx.

Since Y <, Y* [(2.13)], it follows from (3.3.1) that
(3.3.2) Fy(t) —exp(—t/EY) < Fy.(t) — exp(—t/EY) < ppy.

Finally using (3.3.1), Lemma 2.5, (2.13), (2.14) and (2.24),

(3.3.3) d(Y*) < max[2(Y*,(EY)e), 2((EY*)e,(EY)e)] < ppx.

(3.2.2) qF,(x) < <Fy(x) forall x,t> 0.

(3.2.4)

3.4. NWU. Assume that X is NWU. We can easily derive the analogue of
Corollary 2.1:

. (84.1) Fy(#) = exp(-p[tp~" + 2y ~ 1]) = exp(~p(2y ~ 1))exp(~¢/EY).
Then from (3.4.1),
(8.4.2) exp(—t/EY) — Fy(t) <1 —exp(—p(2y — 1)) <(2y — 1)p.
Then (3.3.2) and (3.4.2) yield
(3.4.3) d(Y) <(2y - 1)p.

3.5. IMRL. A random variable [0, ) is defined to be IMRL (increasing
mean residual life) distributed if EX < « and E(X — ¢/ X > ¢) is increasing in

t > 0. For X IMRL, Brown (1980), page 231, derived the upper bound on the
renewal function:

(3.5.1) M(t) <tu™'+y.
We can therefore improve upon (3.4.1) and its consequences, obtaining
(3.5,2) d(Y) < ppx.

3.6. DFR. A random variable on [0, ) is defined to be DFR (decreasing
failure rate) distributed if X — #|X > ¢ is stochastically increasing in ¢ > 0.
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Shantikumar (1988) recently proved that geometric convolutions of DFR are
DFR. Thus if X is DFR, then so are Y, Y and Y *. Using the DFR property of
Y and Y,, it follows from Brown (1983), page 422, that

" Ppx
(3.6.1) max(d(Y),d(Y*)) < T
(3.6.2) d(Y,) < ¥ Py

py,*1 py+a’

A geometric convolution of DFR random variables arises naturally in the
study of time to first failure for repairable systems [Brown (1984), page 611].

3.7. IFR. Assume that X is IFR (increasing failure rate). Then it follows
from Brown (1987) that

t o?
(3.7.1) M(t) = — + —,
12 12

where M is the renewal function corresponding to X. Then (3.7.1) and an
analogue of Corollary 2.1 yield
(8.7.2) Fy(t) <exp(—p(M(¢) - 1)) < exp(2pxp)exp(—¢/EY).
Since for X NBUE, 0 < px < 1, we see that (3.7.2) improves upon (3.2.3).
3.8. Pr(X=0)=8<(0,1), known. If B =Pr(X = 0)is known, with 0 <

B < 1, then an improvement in the bound for d(Y,) can be achieved. Define X’
to be distributed as the conditional distribution of X given X > 0. Then

G, Gy
(3.8.1) Y X, =4 ¥ X!, where p* =p/(1 - Bq),
1 1
(3.8.2) yx = (1 - B)yx-
From Theorem (2.1), for 0 < p* < %,
(3.8.3) d(Yy) < 2yxp* = (2yxp)(1 —B)/(1 — Bq).

4. Comments and additions.

4.1. Recall that Y, = L NoX,. If we replace each X, by cX; with ¢ > 0,
then Y, — c¢Y, and d(cY,) = d(Y,). Thus d(Y,) depends on (u,u,) only
through y = u,/2u2. Therefore, for a fixed p, if we define B(p, u, u,) to be
the best bound for d(Y,) among all distributions (of X) with fixed (u, u,) and
define B(p,y) to be the best bound for d(Y,) among all distributions with
fixed y = p,/2u% then B(p, u, u,) = B(p,y). We now argue that
lim, ,[B(p,y)/p]l =2y and thus that (1.3) is asymptotically (as p — 0)
sharp.

Consider X, ~ Bin(1, @), ie., P(X, =1) =a, Pr(X,=0) =1 — a. Then
y, = EX2/2(EX,)? = (2a)~!. Thus as « ranges from 1 to 0, vy, ranges from 3
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to «. Thus all possible values of y are assumed by the Bin(1, @) family. Now,
let Yy(a) be a sum of G, X,’s. Then

p 2
4.1.1 Pr(Y,(a) = 0) = - .
(4.1.1) (T = 0) = e = | |
It follows from (4.1.1) and (1.3) that for 0 < p < 1,
(4.1.2) 2yp = B(p,v) = 2yp/(q + 2vp).

From (4.1.2) it immediately follows that lim, _, .( B(p,y)/p) = 2y.
I conjecture that B(p,y) = 2yp/(q + 2yp) and thus that the Bin(1,(2y) 1)
distribution maximizes d(Y)) among all distributions with fixed y.

4.2. Solovyev’s (1971) bounds are more difficult to compute than the
current bounds and are derived under more stringent conditions. The two
methodologies are entirely different. It is hard to make a comparison to cover
all possible cases, but it appears that the bounds of this paper are, in general,

tighter.
For example, Solovyev’s bound, specialized to d(Y,) takes the form
(4.2.1) d(Y,) <C(a,/r —2)p,

where 2 <r <3, a, = (EX"/(EX)")"/""! and C < 24. For r = 3, Solovyev
reports that C can be reduced to approximately 12. The bound (4.2.1) requires
existence of EX" for some r > 2. Since 2 = (1/(r — D)r + (r — 2)/(r — D)1,
it follows from the log-convexity of moments [Marshall and Olkin (1979), page
74] that

(4.2.2) a,>2y forr=2.

Thus «, ranges from 2y to », depending on EX". For r = 3, the right side of
(4.2.1) with C =12 is 12a3p > 24yp. Thus Solovyev’s bound for d(Y,),
employing r = 3, is at least 12 times as large as the bound (1.3) of this paper.
For 2 < r < 8, Solovyev’s bound (using C = 24) is at least (24 /r — 2) times as
large as (1.3).

4.3. The bounds for Fy(¢) derived in Sections 2 and 3 immediately yield
bounds for the renewal function of a terminating renewal process [see Feller
(1971), Section XI.6].

4.4. A simple argument is now presented to show that under very general
conditions geometric convolutions are asymptotically exponential as p — 0.

Consider a random sequence {X;, i > 1} which obeys the strong law of large
numbers for u > 0, that is, :

(4.4.1) Pr( lim X, = ,L) -1,

n—»o
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where X, = (1/n)L7X,. Define G, to be a random variable which is geometri-
cally dlstrlbuted w1th parameter p Consider Y,(p) = X§rX,. Now

(4.4.2) pYo(p) = (pG,)Xq,.

It follows from (3.1.12) that d(pG,) = p and thus pG, converge in distribu-
tion to an exponential with mean 1 By (4.4.1), XG — u as. Thus pY,(p)
converges in distribution to an exponential with mean .

In the ii.d. case, 0 < EX < « suffices for exponential convergence of Y.
It is not necessary that X be nonnegative, or that G, be independent of
{X;,i > 1) or that EX2 < o,

It is also seen that a large variety of dependent sequences lead to exponen-
tial convergence of geometric convolutions, for example, stationary ergodic
sequences with 0 < u < «. An interesting problem is to obtain error bounds
for d(Y,) [also d(Y) and d(Y, + Z)] for various classes of dependent sequences
{X;,i>1}

If we relax (4.4.1) to convergence in probability but impose the condition
tl;e;t G, be independent of {X;}, then again pY,(p) is asymptotically exponen-
tial.
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