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PARTIALLY OBSERVED CONTROL OF
MARKOV PROCESSES. III*

By Omar Hijas

Temple University

Let v denote the value function of a partially observed control problem.
If v is once differentiable in a certain direction B, then optimal controls are
characterized by a feedback involving the directional derivative Bu. 1t is
also shown that v satisfies the corresponding Bellman equation, an infinite-
dimensional PDE on the space of measures, in the viscosity sense of
Crandall and Lions.

0. Introduction. Let x be a controlled Markov process evolving on some
state space X and let observations be taken according to

(0.1) y(t) = ]O’c(x(s)) ds +n(t), t=0,

where 7 is standard Brownian motion. Consider the cost criterion
(0.2) vé(m) =E(j°°e—tL(x(t),u(t))dt
0

corresponding to a control u and initial probability distribution m of x(0) on
X. Let

v(m) = infv*(m)

denote the value function of the problem; here the infimum is taken over all
controls that depend only on the past of the corresponding observations y.

In this paper we are interested in characterizing optimal controls, i.e.,
controls u satisfying v*(m) = v(m).

This variational problem, motivated by engineering considerations, is one
formulation of the general problem of stabilizing a controlled dynamical
system in the presence of noisy or partial information concerning the state.

From a purely mathematical point of view, this problem involves the
analysis of a solution of a nonlinear PDE (0.5) in infinite dimensions.

Since information about x is available only through y, it turns out that the
conditional distribution u*(¢) of x(¢) given y(s), 0 < s < ¢, plays a crucial role
in the analysis. Let M(X) denote the set of probability measures on X,
endowed with the weak topology. Specifically then, it turns out optimal
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1100 O. HIJAB

controls satisfy a feedback of the form
u(t) = F(ph(t)), t=0,

for a specific F: M(X) — R involving the value function v and the Lagrangian
L. It is precisely such a fixed-point formula for u that is most useful in
applications.

To describe the feedback F more explicitly we will need to assume that the
infinitesimal generator A* of the Markov process x is affine in the control,
A" = A — Bu, where we assume that controls take values in a compact convex
subset U of euclidean space, taken to be one dimensional for now. Here we
have inserted a minus sign in A* in anticipation of the restoring nature of the
optimal control. We will also need to assume that both + B and —B generate
Markov semigroups on C(X) (see Section 1 for precise assumptions). Let T,2,
—o <t < o, denote the corresponding Markov group. The flow T2 then
naturally induces a flow u - uT,Z on M(X). For ®: M(X) - R, set

. d
(0.3) (BO)(u) =—| ®(uT?)
t=0
whenever the (two-sided) limit exists.
Heuristic considerations (Appendix B) then indicate that the feedback F is
the Legendre transform of the derivative of the value function v in the
direction of the vector field B,

F(u) = H,(1, Bu(n)),
where H is the convex conjugate of L(u,u) = f L(x,u)du(x),
X
(0.4) H(u,p) = sup (p-u—L(u,u))

and H denotes the partial derivative of H with respect to p.

The ﬁrst result established here states that the existence of Bu(u “(¢) for all
t > 0 implies the validity of the above stated feedback.

The plan of the paper is as follows. In Section 1 we state the above result
precisely while Section 2 is the proof. In Section 3 we derive the second result:
v satisfies the Bellman equation correspondmg to the above variational prob-
lem,

(0.5) —Av+H(u,Bv) +v=0, uneM(X),

in the viscosity sense of Crandall and Lions (1983).

The heuristic considerations referred to above rely heavily on the assump-
tion that v satisfy (0.5) in some strong sense, e.g., v is in the domain of the
generator of the semigroup generated by A. Since A in (0.5) is a second-order
diffusion generator on M(X) (see Section 1), this is tantamount to assuming
some sort of C? smoothness. If X =1{0,..., N}, then (0.5) reduces to a
finite-dimensional degenerate elliptic PDE on the domain M(X) c RY. Be-
cause of the degeneracy of A, the fact that v solves (0.5) in a weak sense does
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not allow us to conclude that v solves (0.5) in a strong or classical sense.
A fortiori, we certainly cannot conclude this in the general case, since a
regularity theory is not always available in infinite dimensions; see Lions
(1988). An important aspect of our main result is then that the optimal
feedback holds without having v satisfy (0.5) in any classical sense. This is
because the optimal feedback depends only on Bu, a first-order derivative of v.

In Appendix A we derive the necessary results concerning L and its
conjugate H. In Appendix B we provide the above-mentioned nonrigorous
derivation of the main result using the Bellman equation. In Appendix C we
establish a PDE-theoretic estimate that is necessary in the proof of the main
result.

The main idea behind the proof is the fact that v, being the infimum of
affine functions, is concave on M(X). This is put to good use via the well-known
observation that convergence of a sequence of differentiable functions to a
differentiable function does imply the corresponding convergence of the first
derivatives, provided all the functions are concave. Given this, the proof
proceeds via an approximation argument: In effect X is approximated by a
finite set X, of n points, the operators A, B are approximated by n X n
matrices A,, B,; and so on. Then, for each n, M(X,) is a bounded domain in
R”~!and the analogue (0.5), of (0.5) is a ﬁmte dimensional degenerate elliptic
PDE involving analogous operators A,, B, (see Section 2). Let v, denote the
value function of the approximating varlatlonal problem. Since (0. 5) is degen-
erate, v, is not necessarily smooth. To remedy this we add n observation
equations to (0.2) in such a way that the 1nformat10n in each equation
decreases to zero as n T« and A is replaced by A + ez A , where A is an
explicit second-order differential operator that is nondegenerate on the inte-
rior of M(X,,). Because (0.5),, is now nondegenerate, v, is smooth enough for
the application of the Ité rule and so the heuristic derivation presented in
Appendix B is fully rigorous and we obtain the correct feedback u 8 =
F(uy ), t=0, F, = (H, ),(, B 2Uy), for the optimal control of the approxi-
mating problem. Since this 1nvolves a first-order derivative of v,, we let n T
and appeal to the concavity of v,,v to complete the proof. A crucial estimate
(2.13), independent of the dimension n, is required to establish the uniformity
of the concavity of v, in n.

For the above to work, it is crucial to establish the convergence v, — v. This
is the main result in Hijab (1989b); its proof relies on the technique of
generalized controls introduced by Fleming and Pardoux (1982). To establish
the estimate (2.13), certain results from pseudo-differential operator theory
are utilized. It may be possible with additional work to derive (2.13) without
¥DO techniques, but we do not address this issue here. In simple cases (e.g.,
A, B,,..., B, with constant coefficients on the torus) one can get by with
more elementary arguments. We emphasize that the ¥ DO technique we use is
very patural (see Appendix C).

A flaw in Theorem B is the assumption of existence of Bv at each point of
the trajectory u“(¢), t > 0. Nevertheless the proof of Theorem B shows that
such a condition is extremely natural. This leads us to ask whether optimality
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actually implies the existence of the directional derivative. If this were so, this
would in some sense completely characterize optimal controls.

It turns out that in certain situations the result described in the last
paragraph is true. The classical case arises in the calculus of variations
[Fleming (1969)]; there it turns out that v is differentiable at each point of a
minimizing geodesic, except perhaps the initial point. This is a finite-dimen-
sional result involving solutions of a first-order Hamilton-Jacobi equation.
The corresponding finite-dimensional result for controlled degenerate diffu-
sions, although never established, is also true; this work will appear elsewhere.
The result alluded to in the previous paragraph is a corresponding result for a
controlled diffusion in infinite dimensions; since the techniques are probabilis-
tic, this result is expected to hold. For these results, the technique of proof is
somewhat different from the techniques of the present paper and involves the
Euler-Lagrange equations for this variational problem.

1. Statement of results. Any undefined notation is as in Ethier and
Kurtz (1986) or Stroock and Varadhan (1979). The Hijab (1989a, b) papers are
referred to as Part I and Part II, respectively. We begin by describing the
setting natural to the problem. Then we state our somewhat stricter assump-
tions. Let X be a Polish space and U a closed convex subset of R?. Let
9 c Cy(X) be a linear subspace containing 1 such that the closure of 2 under
bounded pointwise convergence is all of B(X). Let M(X) denote the space of
(Borel) probability measures on X equipped- with the weak topology. Then
M(X) is a Polish space. Let L? denote the space L2([0,), U;e *dt) of all
maps u: [0,0) > U that are square integrable against e ‘dt over [0, x),
" equipped with the weak topology. When U is compact, as we shall assume
below, L? is Polish and the Borel o-field of L2 agrees with the o-field
generated by the norm topology.

Let A, By,...,B;: 2 - C(X) be linear operators and set A* =
A—-Bu,— -+ —Byuy for u=(u,...,u;) € R% Let c: X > R be a func-
tion and set

1.1 G*=A L7 i

. Y= A%+ —— + —
Ly T R OFs

Then G* acts on the space Z ® Ci(R) of all sums of productlsmaps,s ¢y
where ¢ € 2, ¢y € CGR). Let Q = D([0, ©); X) x C([0, ©); R), x(2):
QO-X, y@): Q- R, t >0, the canonical evaluation maps, Z, = o(x(s),
0<s<t), Z=0y(),0<s<t), F=2,X%, ZL=cZ,t=0),
Y=0(2,t20), F= X Z=0(F,t > 0). Then ¥ is the Borel o-field of
the Polish space (.

Let W denote Wiener measure on %. A control is a %, progressively
measurable map u: [0, ») X Q — U such that for W-almost all o, u(-, @) is in
L2, Then the joint state-observations dynamics is specified by solutions to the
martingale problem for G* on (), %). In particular for any such solution P
the process 1 defined by (0.1) is a Brownian motion under P.
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The following is our first set of assumptions.

1. ¢ is in Cy(X).
2. Lisin C>(X xR), L >0, for each x € X, L(x, - ) is strictly convex on
R4 and

L(x,u
i L u)

— +oo as|u| > ».
xeX |u|

3. For each u € L?, the martingale problem for A* on D([0,»); X) is well-

posed.
4. The martingale problems for +B,,..., + B, on D([0, »); X) are well-posed.

In particular these assumptions imply continuity of the map X X L? >
M(D([0, »); X)) that takes (x, u) to the solution of the martingale problem for
A* starting from x. This implies the well-posedness of the martingale problem
for G* on Q (Part I, Lemma 4.3) for any control u. Let u be a control, let
m € M(X) and let P* denote the solution to the martingale problem for G*
starting from x. It follows then that the solution P% of the martingale
problem for G* and starting from m in the sense P%(x(0) € B,y(0) = 0) =
m(B) satisfies P* = [xP¥ dm(x). Let E = E} denote expectation against P,.
Then we define v*(m) by (0.2) and the value function v(m) as the infimum of
the quantities v*(m) as w varies over the set of controls.

Let L(/.c, u) = [xL(-,u)du and for p € R?, let H(,u, ) be glven by 0.4).
Then H e C% HM(X) ¥ R?) (Appendix A). Define B,®, i=1,...,d, as in
(0.3) and set B® = (B,®,. , B,®).

In Part I it is shown that for each control u and m € M(X) there is a
right-continuous P%-a.s. continuous %, progressively measurable map u%,:
[0,%) X @ - M(X) satisfying

wa(t)(9) = Ep(d(x())12,)

a.s.-P% for all ¢ > 0, ¢ € B(X). Here and elsewhere u(¢) denotes the integral
of ¢ against the measure u over X. In particular u% (0) = m. The process u%,
is the conditional distribution process.

Our second set of assumptions is:

1. X is compact.
2. U is compact.

Most of the proof of the main result holds true under the above sets of
assumptions. The one exception is the estimate (2.13) whose proof is in
Appendix C. For this we need our third and final set of assumptions:

X is a compact C* manifold and 9 = C*(X).

U is a compact convex subset of R

¢ € C™(X) is smooth. '

LeCi(XxR%,L>0and L,, >0.

A is a nondegenerate C* Markov generator, in the sense that A = A, + Ay,
where A, is a second-order nondegenerate elliptic differential operator

OUp N
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with C” coefficients and A, is a jump process generator

(1.2) Aid(x) = [ (8(2) = d(x)A(x; dz),

where A is a transition probability kernel with C* density relative to
Lebesgue measure on X. ‘
6. B,,..., B, are C* vector fields.

These assumptions imply the well-posedness of the martingale problems
stated above as well as the compactness of M(X) and L% A control u is
optimal at m if v*(m) = v(m). We can now state the first result.

THEOREM A. Fix an arbitrary m € M(X). Let u be a control such that the
derivatives Bu(u%(2)), ..., Bau(u“(t), t > 0, exist a.s.-(dt X P;). Then u is
optimal at m iff

(1.3) u(t) = Hy(n%(t), Bu(p(t))), =0,
a.s.-(dt X P*).

As yet the existence of controls optimal at m has not been established.
Because of this Fleming and Pardoux (1982) introduced a notion of generalized
control and established the existence of optimal generalized controls. We
therefore derive Theorem A as a consequence of the analogous result for
generalized controls, Theorem B below. We begin by recalling the notion of
generalized control [Fleming and Pardoux (1982), Part II]. To this end we need
to think of L2 as a path space.

Recall that elements of L? are not functions but equivalence classes of
functions equal almost everywhere. Let % denote the Borel o-field of L2 To
define martingale problems on L2, we need an evaluation map. An evaluation
map on L? is a Borel map u: [0, o) X L? - U such that for all € L2, u(:, »)
is in the equivalence class . Let L? = L%(0,¢];U) and let %, denote the
o-field on L? that is the inverse image of the Borel o-field of L? under the
natural projection L? — L2. Then %,, ¢ > 0, is a filtration on L? generat-
ing %.

Using the martingale convergence theorem on LZ one can show that an
evaluation map exists. Moreover an evaluation map can be chosen %,, pro-
gressively measurable. Thus, for fin B([0, ) X U), the process [¢ f(s, u(s))ds,
t >0, is %, progressively measurable and is independent of the choice of
evaluation map.

To define generalized controls we extend our basic probability space (Q, &)
by setting Q' = QX L2, F'= FX U, %' = U X Uy F'= FX U, Y =
X %. Then ' is a Polish space with Borel o-field %'. Generalized controls
are certain probability measures @ on %' solving the martingale problem for
G? in the sense that for ¢y € I ® C5(R),

(14)  ¢u(x(8),5(t)) - fo’Gu<s><¢¢><x(s>,y<s))ds, t>0,
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is a (¥, %', @) martingale. Note that in (1.4), u denotes an evaluation map on
L? and not a control as defined earlier. In particular every control z induces a
natural map (x,y) - (x,y, u) from Q — '. Then the image of P* under this
map is a generalized control. The exact class of generalized controls is de-
scribed in Part II. A generalized control starts at m if @(x(0) € B, y(0) = 0) =
m(B). Given a generalized control @ set

v(Q) = EQ(f e tL(x(t),u(t)) dt)

v'(m) = inf{v(Q)|Q starts at m}.

We refer to v’ as the generalized value function. By the above remarks,
v(m) = v'(m) for all m. In Part II it is shown that under our assumptions
v="U.

In this context the conditional distribution process can be defined (Part II)
as follows: To each m € M(X), there is a right-continuous %;’ progressively
measurable map u,,: [0, ) X Q' — M(X) such that for all generalized controls
Q starting at m, ¢ € B(X) and ¢ > 0,

mn()(¢) = E?(¢(x(2))1%;")

a.s.-Q. A generalized control @ is optimal at m if @ starts at m and
(@) = v(m). We can now state the following.

TueoreM B. Fix an arbitrary m € M(X). Let Q be a generalized control,
starting at m, such that the derivatives B(u, (@), ..., Byu(u, (), t > 0,
exist a.s.-(dt X Q). Then Q is optimal at m iff

(1) u(t) = Hy(mn(6), Bo(un(®)), 20,
a.s.-(dt X Q).
The proof is in Section 2. Clearly Theorem A follows from Theorem B.

To describe the operators A, B appearing in (0.5), let & be the set of all
® € C(M(X)) of the form

D(n) = F(u(dy),...,u(d,))

for some n > 0, ¢4,...,¢, € Z, F € C*(R"). Here as before u(¢) denotes the
integral of ¢ against the measure u over X. Then 9 is uniformly dense in
C(M(X)) by the Stone-Weierstrass theorem. For ® € & set

A(®@)(n) = Z 0 F(u(dy),...,n(d,))n(Ad;)

i=1

+3 Y 0,0, F(u(d1),. .., n(d,))e, 60,0, ;)
e

i,j=1

(1.6)

where (¢, "), = u(p¢) — u($p)u(d’) denotes the covariance of ¢, ¢" under pu.



1106 O. HIJAB

Then for ® € & and B defined as in (0.3),
B\(I)(“) = Z 9; F(M(¢1)a---,M(¢n))M(B¢i)~
i=1

Now for ® € & define A* by setting A*® = Ad — B®u, — - - B,du,.
The second result of the paper is the following.

THEOREM C. The value function v is in C(M(X)) and is a viscosity solution
of (0.5) relative to the test function space .

The definition of viscosity solution and the proof are in Section 3. In Lions
(1988) the test function space considered is significantly larger; there existence
and uniqueness are established for the analogous PDE on L?%(X), rather than
M(X).

2. Proof of Theorem B. The key to establishing Theorem B is to estab-
lish the following: Let m € M(X) and let @ be a generalized control starting
at m. Suppose @ is such that Bu(u,(t)) exists a.s.-(dt X Q). Then, as (2.23)
shows,

w(Q) = v(m) +EQ([0°°e (E(n(£) 1(8)) = () Bo(pa,(£))

H(pn(t), Bo( (1)) dt|.

If v were in the domain of the generator of the semigroup generated by A and
(0.5) held in an operator sense, then (2.23) would follow immediately. Because
this is not so, the bulk of the proof is the approximation process outlined in
Section 0.

Once (2.23) is established, Theorem B follows by noting (Appendix A)

f,(#,u) —pu + ﬁ(#7p) = O’

for all u, u, p with equality iff « = H (1, p). (2.23) is established in Corollary
2.9.

To begin, by translating U — U + a, a € R, if necessary, we can assume
—-UcR,ie,u;<0,i=1,...,d, for u=(uy,..., u,) € U. For simplicity
of notation we also take d = 1, i.e., A* = A — Bu. The integral of ¢ against u
is denoted u(¢) and (&, ¥),, denotes the covariance of ¢, ¢ under m, m(¢y) —
m(¢)m(p). For T: 2 — C(X) linear and p € M(X), let uT: & — R denote
the linear functional (uT')(¢) = u(T'¢). Given L: 2 — R linear recall that the
variational norm of L is the quantity

\Llvar = sup |L].
X%
(¢l =1
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Here |¢| denotes the sup norm of ¢. Then |L|,,. < « implies the existence of a
signed measure u such that L(¢) = u(¢), with |L|,,,. = |u|(X).

Since A, is nondegenerate (notation of Section 1) there is a unique choice of
Riemannian metric on X and a C* vector field B, such that A, = A + B,
where A is the Laplacian corresponding to the metric. We fix this choice of
metric throughout. We use the notation |¢|.- for the sum of the sup norms of
all partial derivatives of ¢ of order less than or equal to r, taken relative to a
fixed collection of charts. We say G < X is geodesically small if any two points
of G can be joined by a unique minimizing geodesic. L% X) denotes the
Hilbert space of all square integrable functions relative to the volume element
induced by the Riemannian metric. Let (&, #);2 denote the corresponding
inner product.

A partition & of X is a collection of subsets {G,, ..., Gy} such that for
i=1,..., N, the sets G, are disjoint, geodesically small, have nonempty
interior and their union is all of X.

The size of the partition & is the integer N and the mesh is the maximum
of the diameters of G;, i =1,..., N, where the diameters are measured
relative to the induced metric. It is easy to see that partitions of arbitrarily
small mesh exist. Throughout ¢ denotes an element of Z, i.e., a C* function.

Let x(¢), 0 < ¢ < 1, be the minimizing geodesic joining x and x'. Then

d
#(x) = b(x) = [ o(x(0) dt = [D(x(1))#(2)

and so
(2.1) lp(x) — d(x)| < |plcrd(x,x').

~Let P denote the orthogonal projection of L%(X) onto the Hilbert subspace
L*(X, &) of all functions piecewise constant over . Then |P¢| < |¢|, P is
self-adjoint on L? and (2.1) implies

(2.2) |Pp — ¢| < |p|cr mesh(F).

Although we are interested only in the case of a single observation equation
(0.1) (the vector-valued case involves trivial modifications) for the proof below
we will actually need observations valued in R*, i.e., y = (¥1,%s,...). This is
because (see below) for each n we construct approximations to c¢ that take
values in RV», where N, — © as n — o is the size of the nth approximation
partition. To this end we redefine Q to be D([0, x); X) X C([0, ©); R®) and for
c: X > R” redefine G* to be A* + A, + c(x) - V, where V,, A, denote the
gradient and Laplacian in R”. In Part II it is shown that the value functions
v,v’ are well-defined in this more general setting and in particular if ¢ =
(c,0,0,...) we recover the value functions as defined in Section 1. In fact we
shall,only deal with ¢ that have only finitely many nonzero components.
Nevertheless we still need to work with R as we need to consider sequences of
observations ¢,: X - R"*! where the number N = N, of (nonzero) observa-
tions goes to infinity with n.
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Given c¢: X - R® with finitely many nonzero components, ¢ = (c;, ¢y, . . . ),
y =0y Ys-..), set
llell? = leg® + legl® + ++ -,
Cy =cy; +Cya + -,
cZ=ct+c2+ -+, etc.

A measure m € M(X) is smooth if in each coordinate chart m is absolutely
continuous relative to Lebesgue measure with dm /dleb positive and C*. In
particular the support of a smooth measure is all of X.

Although we do not need it, we begin by establishing that m € M(X)
smooth implies the smoothness of u,(¢), t > 0, a.s.-Q. We do this as motiva-
tion for the estimate (2.13) below. Let ¢ = (c,0,0,...). Then ¢y = ¢y, for
y € R”. Fix m € M(X) and let p, denote the corresponding density. Since
A, B have C* coefficients there are adjoint operators A*, B*,

<A¢), ll’>L2 = <¢7 A*‘/’>L27 <B¢a ll’)Lz = <¢’ B*(/’>L2'

Then A*, B* are operators with C* coefficients whose zeroth order terms may
be nonzero. Nevertheless A* — A*1 is a Markov generator (as in Section 1) and
B* — B*1 is a vector field. Set A** = A* — B*u. For u € U, y € R”, set

B%Y = ecyAue-—cy _ %02’
B*u,y — e—cyA*uecy _ %cz,
B(l)t,y = B%:Y — B“:Y].

Then (A%)* = A*%, (B*Y)* = B**Y These are operators with C* coeffi-
cients. For u € L? and y € C([0,»); R”), let B,, B}, B, denote the time-
dependent operators obtained from B*?Y, B*¥“¥ B{Y by plugging in u(¢), y(¢).
Let T, , denote the time-dependent semigroup generated by B, and let p =
p(¢, x) be the solution of the initial value problem

dp
(2.3) o = Bfp, t>0,p(0) =p,.
Then by the Feynman-Kac formula, p(z, x) is continuous and positive. Now
suppose m € C([0,»); M(X)) solves the initial value problem (recall ¢ -, - ).
denotes the covariance)

d
(24) —m($) =m(Bo,$) + (B, ¢),, t>0,46€7,7(0)=m.

Let R(#), t > 0, be the solution of R = Rw(B,1), R(0) = 1. Set p(t)X¢) =
R@®)m(tX¢). Then by differentiating p(sXT, ,¢), 0 <s <¢, it follows that
T(@XP) = (po, Ty 09)12/{Po» T, o1)1> is the unique solution of (2.4). Now set
(X ) = (p(t), ¢dr2/(p(t),1);2; then by (2.3) m satisfies (2.4). Moreover
since the coefficients of B, are C* and bounded in u, standard techniques
from PDE theory (see Appendix C) yield the following result: For each r > 0
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there is a progressively measurable continuous map k,.: [0, ®) X C([0,«); R) —
R, such that
(2.5) sup |p(t)lcr < k.(T,y1).
0<t<T

Thus the solution of (2.4) exists, is unique and the density p(¢) satisfies (2.5).
In particular p is in C%*([0, ) X X). ‘

Now let u(¢) = u,,(¢) denote the conditional distribution of x(¢) given %;’,
t > 0. Then (Part II) for all ¢ € 2 and all generalized controls @ starting at
m,

w)(9) =m(9) + [ ‘u(s)(A“®p) ds
(2.6)
+f ‘(Y (dy(s) — p(s)(c)ds), t=0,

a.s.-Q.
Moreover using the It6 differential rule (2.6) implies that for ® € 9,

(2.7) () - [ ‘A0 (p,(s))ds, t=0,

is a (¥, 2}’, @)-martingale. In fact for u € U constant, the martingale prob-
lem for A* is well-posed on C([0, ); M(X)) (Part I), although we do not use
this here. With reference to the discussion in Section 0, we note the well-
posedness of the martingale problem is the same as saying that A* (in
particular A) extends uniquely to a (Hille-Yosida) generator for a Markov
semigroup on C(M(X)).

Recall that ¢ denotes the function X — R given by (c,0,0,...) and y
denotes the canonical process in R”. Then (2.6) suggests that w,, can be
chosen o(u(s), y(s),0 < s < t) progressively measurable where y, denotes the
first component of y. That this is indeed the case is established in Part I,
Lemma 5.1. Set

T (E)() = 1n(£)(e7OB) /11, (£) (77O

Then a standard application of the It6 differential rule establishes that 7*¥
solves (2.4) a.s.-Q. Since

pn(t)(d) = 77 (1) (VP (2)(e~?),

it follows from the above that w,(#) is smooth for ¢t >0, as.-Q, and in
particular satisfies

sup sup- |/‘Lm(t)B|var = k(T’yl),

u 0<t<T

sup sup |u,,(#) B2, < k(T,y,)

v 0<t<T

( 2‘.8)
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for some progressively measurable W-a.s.-continuous map k&: [0, ©) X
C([0,); R) = R when m is smooth. It also follows that the solution of (2.6) is
unique.

The second step begins by choosing, for each n > 1, a partition &, with
8, = mesh(Z)) satisfying n®35, < 1, for all n. Let P, denote the correspond-
ing projection operator onto Lz(X Z,)and let N = N denote the size of &,.

With B, as defined above, let B(), B’ be the unique first-order differential
operators such that By, B’ are skew-adjoint on L?*(X) and differ from B, B
by multiplication operators Then e’4, t > 0, are self-adjoint and e?B6, !B’
t > 0, are unitary, both on L2(X). The operators e‘56 e’ can be written
down explicitly; for example,

(e'%g)(x) = ¢>(B,(x>)exp( [[(BD@.x) ds),

where B,: X — X is the flow corresponding to B.
Forn>1,ucU,set(recall A=A;+A; =A+B,+A4)

A,=n(P,e*"P, —I) +n(P,eB/"P, — P,eB0/"1) + A, ,,

B, =n(P,eB /P, — P e?/1),

A=A, -B,u,

¢, =(P.c,8,1g,...,8,15,,0,0,...), ¢, = 8,/N?,
L,(-,u)=P,L(",u).

Here A, , is the jump process generator whose transition probability kernel is
the piecewise constant projection of that of A; onto &,. Then A% satisfies the
maximum principle (recall —u > 0), A1 =0, c,: X > R” and we have the
estimates

(2.9) |A% ¢l = O(n)idl,

1 1
(210) s~ 471 = 0(ns, + Jibles = O[ bl
(2.11) lle, = (¢,0,0,...)]| = 0(§,),
(2.12) sup|L (r,u) =L(-,u) =0(s,).

By construction for each n > 1 the operator A% is of the form

ALb(x) = X5 [ (8(x) = B(x)ws(x, )

for some number A% > 0 and measurable transition kernel w“(x,-) whose
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explicit forms are not needed. Consequently [Ethier and Kurtz (1986), page
162], for each u € L? the martingale problem for A% is well-posed on
D([0, ©); X). This implies that to each m € M(X) and u € L? corresponds a
unique P solving the martingale problem for A% on D([0, ©); X). It is easy to
see that P depends measurably on u € L2 This implies (Part I, Corollary 4.3)
that the martingale problem for G¥ = A% + ¢,(x) - V, + 3 A, is well-posed on
D([0, »); X) X C([0,); R*). Let , P be the unique solution to this martingale
problem. With E denoting expectation against ,P%, v“(m) is defined as in
(0.2) and the corresponding value function v,: M(X) — R is defined as before.
With the above definitions, (2.10), (2.11) and (2.12) imply that v, converges
uniformly to v on M(X) as n T (Part II).

Let w, ,(¢) denote the conditional distribution of x(#) given %}’ corre-
sponding to the approximating system (A,, B,,c,, L,). Then u, , is a pro-
gressively measurable function of » and the first N, + 1 components of y.

Let m € M(X) be smooth. Below we shall need the estimates

sup sup IMn,m(t)BnlvarSk(T’yl’yZ’”-)y a.s.-W,

u 0<t<T

(2.13)
sup sup |, n(8) Bl < E(T,y1,55,...), as.-W,

u 0<t<T

the point being that %: [0, ) X C([0, »); R*) » R does not depend on n; W is
Wiener measure on C([0, »); R*). Since for n large, B, approximates B and
K, » approximates w,, the fact that (2.8) holds certainly makes (2.13) plausi-
ble. Nevertheless the proof, in Appendix C, is somewhat involved. In what
follows we let Ln, H be the quantities corresponding to L, as in Section 0.

The third step is the analysis of v, and the correspondlng control problem
< for each n fixed. Let X, denote the ﬁnite set {1,...,N,} and let m,: X > X,
be the p1ecew1se constant map whose value on G; is i. Then there are N, X N

matrices A,, B,, an N,-vector ¢,: X, » R® and an N,-vector of functlons
L,:X,x U — R such that with A‘,‘l =A, - B,u,

(A5d)om, = An(dom,),

C,°om, =¢C

n n n?
zn ° 7771/ = Ln )
where A%, c,, L, are already defined. In other words, the map , intertwines

the systems (A, By ey Ly, ),(A,,B,,¢,, L,). Since the matrices A% satisfy
the maximum principle, A%1 = O and (A,, B,,¢,, L,) is smooth (X, is a
finite set), the correspondlng variational problem and value function v,:
M(X,) > R are well-defined. Let A B ,L,, H,,i* , be the correspond-
ing quantities. Since the map m, 1nduces maps m,«: M(X) - M(X,),
D([0,»); X) - D([0,); X,) and M(D([O, »); X)) — M(D([O, »); X,)), chasing
through the definitions yields Lemma 2.1.
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LEmma 2.1. Let &, = {Gy,...,Gy}). Then
va(m) = v (mam),
v,(m) =0,(m,«m) =0,(m(G,),...,m(Gy)),
ﬁl;z,ﬁ(t) = Trn*/“‘lrtz,m(t)7 t= O’ m = nx 1M,
Trn*(/“‘LTtBn) = (Trn*l'l‘)TtEn7
'BAnvn(/"') = B'n,l_)n(‘”-n,*/"‘)7
ﬁn(/-"’ u) = zn(wn*/i" u)’

H,(u,p) = H(m,u, p).
Moreover if the support of m is X, then m = m,.m lies in the interior of M( Xn).

For m € M(X,) and control u, let &% .. denote the conditional distribution
process corresponding to (A, B,,,¢,, L,). Then & = % ., satisfies (W-a.s.)

B(6)(®) =m($) + [B(s)(XiB) ds
(2.14)
+j;)t<6n7 $>ﬁ(s)(dy(s) - [._L(S)((_Z‘n) ds)’ tZO’ 55 B(Xn)

Since X, is a finite set (2.14) is a finite-dimensional system of coupled
stochastic differential equations with polynomial coefficients. Moreover our
definition of ¢, guarantees the following.

LemMa 2.2. For m € M(X,), %  is a C* diffusion valued in M(X,) C

m

RM» with generator A“ that is nondegenerate on the interior of M(X,).

To describe A% more explicitly, we specialize Lemma 2.2 to two cases: First
we choose A =0, B=0, ¢ =0, and ¢, = 1 in the definition of c,. Then fT‘,‘L
does not depend on © and is a specific second-order nondegenerate differential
operator A, on M(X,) c RV». Second we choose (A, B,c) arbitrary but
choose ¢, = 0 in the definition of c,. Denote the generator given in Lemma 2.2
in this case by A%,. Given these generators, A% in the general case turns out
to be

A

At =A%+ 24,
Now note that

(2.15) 5X() = —,‘{,'ﬁ(f:e—tzn(a?(t),u(t)) dt)

(2.16) = B [ Lt (0, u(0) ).
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This and Lemma 2.2 imply that T, is a viscosity solution [Crandall and Lions
(1983)] of the Bellman equation

(2.17) ~ Az, +H,(5 B,3,)+7,=0
on M(X)).

LEMMA 2.3. U, is C2 on the interior of M(X,).

ProoF. Since (2.17) is nondegenerate, it follows [Lions (1981)] that 7, is
C!! on the interior of M(X,). Since in our case (2.17) is in addition quasilin-
ear (as opposed to fully nonlinear), it follows by Schauder that 7, is C*“. In

fact one can show that H (i, p) is C*! and obtain 7, in C%%. O

Note also that (2.15) shows that 7%(m) is affine in m. An immediate
consequence is the following a priori inequality.
LEMMA 2.4. For all n > 1, we have

max max |9, ,(%)| < sup max max |9, 04(%)| < |L,| < |L|
m 1 u B l<is<N,

r l<i<N,

and v, is concave on M(X,).

Let @, be a generalized control starting at 7, and let &, (¢) denote the
conditional distribution process, both for the system (A,, B,,¢,, L,). Then
(2.17) and Lemma 2.3 imply

e B,(E(1)) ~ [e7*(~u(s) B,B,(E(5))

+H,(7,(5), BO(E(s)))) ds, t20,

is a (V, %", @,)-martingale, provided 7, lies in the interior of M(X,). We
concltide the following. Below M(X )? denotes the measures whose support is
all of X.

LEMMA 2.5. For each n > 1, B, v, exists on all of M(X)°. Let m € M(X)°
and let Q, be a generalized control starting at m. Let v be a &,'-stopping time.
Then

E(e7v,(1,(7)))

(2.18)  ~Ualm)+ EQ”(fOe“(—u(t)P?nvn(#n(t)) + B, (u,(2),

B,v,(u,(2)))) dt).

Here u, is the conditional distribution process (given 2,') for the system
(A,,B,,c,,L,).

n’ n’
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Lemma 2.5 completes the analysis of the approximating value function v,
and step 3. The fourth step involves passing to the limit n 7oo.

LeEMMA 2.6. Let w,,u € M(X)° satisfy u, — w. If there exists a constant
C > 0 such that |u, B2|,,. < C, then
(2.19) v (w,TP") — |L|CE®
is a concave function of t € R for each n. If moreover Bu(w) exists, then

B,v,(u,) = Bu(w).

Proor. By Lemma 2.1,
O (1nTP) = 0,(n(TE16), s (TP g, ) )-
Differentiating twice and using Lemma 2.4 yields
d2
az

N
(/’LnTtBn) Z (81 8j 5n)/’l’n( BnTtBani)/’Ln(BnTtB"]'Gj)
i,j=1

b4

I

+ (al En)/'l’n(BrletBan,-)
1

IA

N
ILI Y |u(B2T51g,)
i=1

< 2L ¥ po( BIT P16,
S 2|L||I‘LRBI27,|Va!"

where L' denotes the sum over a subset of {1,..., N,}. This establishes the
concavity of (2.19). Now this implies

vn(/“LnTtB") - vn(l“Ln)

B\nvn(/’l’n) = t - |L|Ct
for t > 0, n > 1. Letting n 1=, ¢ } 0, in that order, yields
(2.20) liminfB,v,(u,) > Bu(u).

n—©

Replacing B, by —B,, in (2.20) the result follows. O
Let

R(T) = exp(/oTc(x(t)) dy(t) - éfjc(x(t))ﬁdt),

A(T) = exp(/fnm(t)(o OREINOION dt).

Let @ be a generalized control for (A, B,c, L) and define @* by setting
dQ/dQ* = R(T) on F. Then Q* is a generalized control for (A, B, 0, L). Let
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U denote its marginal on %”. Then the marginal of U on % is W and the
defining property of u,,(¢) implies

v(Q) _EQ(/ e 'L(x(t), u(t))dt)
(2.21)

= EQ(wae“fIZ(;Lm(t), u(t)) dt).

Let @* denote a regular conditional distribution of @* given %”. Then
(Part II) @* solves the martingale problem for A* on D([0,%); X), where
o = (y,u). Thus letting P! denote the unique solution to the martingale
problem for A* on D([0, »); X), we have @* = PX. It follows that (Part II)

(2:22)  pn(t,0)(¢) = EL(6(x(t))R(2))/EL(R(t)), as-U.

Now let w, , denote the conditional distribution process for the system
(A,, B,,c,, L,). Using the formula analogous to (2.22), one can verify the
following.

LEMMA 2.7. u,, () = w, (tX¢) in LXU) for all ¢ € C(X).

PROPOSITION 2.8. Let m € M(X) be smooth. Let @ be such that the
derivatives Bu(u, (1)), t = 0, exist a.s.-(dt X @) [= a.s.-(dt X U)]. Then the
following holds:

(@) = o(m) + B9 [ e (£ (un(0),u(6)) = u(t) Bo(1a, (1))
(2.23)

8 (1), Bl (1)) ).

ProoF. Since m is smooth, m has full support and so (see above) m, =
m,«m lies in the interior of M(X,). Thus (2.18) can be applied.

Now by passing to a subsequence we have ., ,(¢) = u,,(¢) in M(X) as.-U.
Note that |B,v(u,)l < |Lllx,B,lva. Let 7o be the first time ¢ that
| () B, |var, Ip,m n(t)B lvar €xceeds C for some n > 1. Then by (2.13) it
follows that 7, — ® as C — «. For each n let R, R, be defined as above but
with ,u,m’n, ¢, replacing u, ,c. Now let @ be the unique generahzed control
for (A,, B,,,0, L,) whose marginal on 2 is U and set d@,/d@7 = R,(T) on
T Then Q, is a generalized control for (4,, B,,c,, L,) satisfying
dQ,/dU = R AT) on %7 (the proof is analogous to that of Lemma 5.3 in Part
I). Using this, one checks that as n 1, d@,/dU — dQ/dU in U-probability.
Since H, — I-f uniformly on compact subsets of M(X) X R (Appendix A),
choosing 7 = 7, in (2.18) and noting that L — pu + H > 0 (Appendix A),
letting n 7o, C 1%, in that order, the result follows. O

CorOLLARY 2.9. Let m € M(X) be arbitrary and let @ be such that the
derivatives Bu(u,(2)), t > 0, exist a.s.-(dt X Q). Then (2.23) holds.
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Proor. For & > 0, let @; . be the r.c.p.d. satisfying
E% (®) = EY®(x(-+8),y(-+8) —y(8),u(-+6))|25).

For ' = (y, u), set S;w'(t) = (y(t + 8) — y(8), u(t + 8)). Since @ starts at m,
it follows that @, , starts at u,(8, ®), as.-Q. It also follows from the
definition (Section 1) that @, ,, is a generalized control for @-a.a. ’. Thus

(2.24) v(Q) = EQ(fO'Se“L(x(t), u()) dt + e 2v(Q; )|

Since u,, is the unique solution of (2.6) the semigroup property holds,
(2’25) I'Lm(t + 8’ w,) = ,“L,u,m(ﬁ,w')(t’ st,),

for Q-a.a. . This plus the fact that Bu(u,(#)) exists for ¢ > 6 implies the
existence of BU(I“L/.LM(S,w')(t))’ a.s.-Q; , for ¢ > 0, for Q-a.a. »'. Now the nonde-
generacy of A implies that of B; this implies that u, (8, »') is smooth for
Q-a.a. o, since w*¥ (Section 2) satisfies a nondegenerate parabolic integrodif-
ferential equation with C™ coefficients. Thus Proposition 2.8 applies with @; ,,
replacing @; this yields

(@5 o) = V(km(8,0)) + EQ( [O et (L(uy(2), u(t))

(2.26) —u(t) Bo(ua(0)) + H(u.(0), Bo(,(1)))) de ),

where z = (8, 0'),

for Q-a.a. »'. Now combining (2.24) and (2.25) together with E€ of (2.26) and
letting 6 | 0, (2.23) follows. O

By the remarks at the beginning of this section, this concludes the proof of
Theorem B. O

3. Bellman equation. Here we establish that the value function v is a
viscosity solution of the Bellman equation

(3.1) —Av + H(p, Bv) +v=0

on M(X), relative to the test function space 9. We begin by recalling the
definition [Crandall and Lions (1983)].

Let v € C(M(X)). We say v is a viscosity subsolution of (3.1) if for all
®e 9, meMX), the equality 0=uv(m)— ®(m) = max, .y x(V(p) —
®(w)) implies

(3.2) — Ao(m) + H(m, Bd(m)) + ®(m) < 0.

We say v is a viscosity supersolution of (3.1) if for all & 9, m € M(X), the
equality 0 = v(m) — ®(m) = min,, ¢ y x,(v(p) — P(n)) implies

(3.3) — A®(m) + H(m, Bd(m)) + ®(m) = 0.
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A viscosity solution of (3.1) is a function that is both a subsolution and a
supersolution of (3.1). In Part II it is shown that v € C(M(X)).

THEOREM C. The value function v € C(M(X)) is a viscosity solution of
3.1).

Before we prove this result, we make some comments on the choice of test
function space 9. Certainly we expect Theorem C to hold for a larger class of
functions, as long as it is reasonable, i.e., A, etc., are naturally defined on the
class. We choose 2 because it is the smallest possible such class and arises
naturally in this context. It is an open problem whether a uniqueness result
for viscosity solutions holds relative to the above . Relative to a larger class,
existence and uniqueness were established in Lions (1988). '

The proof of Theorem C is standard and is based on the following dynamic

programming principle.
ProposiTION. For T > 0, m € M(X),
v(m) = 1nfEQ(f e 'L(x(t),u(t))dt +e” v(um(T))),

where the infimum is over all generalized controls starting at m.
Proor. By (2.24),
(@) = B9( [ L(x(0),u(®) dt + e Tu(@r, )

. EQ([ L (x(2), u(t)) dt + e‘Tv(,u,n(T)))
0
Taking the infimum over @ and recalling that v = v’ (Section 1) yields
v(m) > E(f e 'L(x(t),u(t))dt +e Tv(u,, (T)))

Recall that Fleming and Pardoux (1982) established the existence of optimal
generalized controls. In this setting, this is established as a corollary of results
in Part II. Now for the reverse inequality, let u — @, be a Borel map
M(X) —» M(£) such that @, is an optimal generalized control starting from u
[Stroock and Varadhan (1979) Section 12.1]. Then @, 5, is %% measurable.
Given a generalized control P starting at m, set @ = P ® #7Q,, ) [Stroock
and Varadhan, Section 6.1] and let @, . be as in Corollary 2.9. Then Qr .=

Q,, (r) a.s.-Q and so

v(m) <v(Q) = EQ([ _tL(x(t) u(t) dt +e” U(Qum(T))))
- B9 [e L x(0),u(0) dt + ¢ To(u(T)))).

This completes the proof. O°
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We now show that v is a subsolution of (3.1). Suppose m € M(X), ® € 9,
are such that 0 = v(m) — ®(m) = max, (v(un) — ®(u)). Then for all u € U
constant,

®d(m) < E“(/Te_tL(x(t), u)dt+ e‘T(I)(,u,‘,‘n(T))).
0
Using (2.7) and (2.21) we obtain

0< E“(fTe“(ﬁ - &+ AD — uB®d) dt).
0

Dividing by T and letting T' | 0 yields
0<L(m,u) - ®(m) +Ad(m) — uBd(m).

Taking the infimum over u € U yields (3.2). To show v is a supersolution,
suppose m € M(X), ® € 7, are such that 0 = v(m) — ®(m) = min (v(p) —
®(w)). Then there exists @ such that

d(m) > EQ(LTe_tL(x(t), u(t)) dt + e_TCIJ(,um(T))).

This implies

0> EQ(fTe—t(IZ - ®+AD - u(t)éap)dt)
0

> EQ(fOTe—‘(—I?I - @ + AD) dt).

Dividing by T and letting T | 0 yields (3.3).

APPENDIX A

Let X be a Polish space, U ¢ R? closed and convex, and let L: X X U - R
satisfy:

1. L € C((X X {ul||u| <) for all r.
2. L(x, - ) is strictly convex on U.
3. inf, L(x,u)/|u| - +x as |u| > .

Set Lw, u) = [xL(x, u) du(x),
(A.1) H(u,p) = Sull)](p ‘u—L(p,u)).

Then L € C,(M(X) X {u||u| < r}), for all r.

TueoreM. H € CPYM(X) x {pllp| <)) for all r, and

L(w,u) —p - u+H(p,p) =0
with equality iff u = ﬁp(u, p). Moreover suppose L, are uniformly bounded
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on X X {u]lu| < r} for all r. Then L, — L uniformly on compact subsets of
X x R? implies H — H uniformly on compact subsets of M(X) x R¢.

Proor. We prove only the first part and omit the proof of the convergence
statement. Clearly assumptions (2) and (3) on L 1mply the correspondlng
conditions on L. Given u, p let u, be a sequence in U such that p - u,
Lu,u ,) approaches the supremum in (A.1). Then because L grows faster
than llnearly at infinity, », must lie in a bounded subset of R<. Hence the
supremum is attained at some point in U, call it u*(u, p). Now strict convexity
of L implies that the supremum is attained at_ only u*. Since H is a
supremum of continuous functions, it follows that H is lower semicontinuous.
To establish upper semicontinuity, let ©,, = u, p,, = p. Then by the growth of
L at infinity, u *(k,, p,,) lies in a bounded subset of R¢. Hence by passing to a
subsequence H(,u,n,pn) D, uk— ﬁ(,u,,, ¥)op-u — L(u, u) < H(u, p).
This implies upper semicontinuity, and also implies the contmulty of u*. The
boundedness of H u* is straightforward; we conclude that He C,(M(X) X
{pilp| <r}) forallr.

Now let veR? and set p,=p + tv, u¥ = u*(u,p,). Then H(u,p, >
pyut — Lu,ul), Hu, po) = po - uf — L(u, u%). Subtracting these two ex-
press1ons dividing by ¢ and letting ¢ | 0 yields

H(/J'7p + tv) - H(/"WP)

lim inf >u*(p,p) v
t1,0 t

Reversing the roles of p,, p, yields
. H(p,p +w) - H(p, p)
lim sup
£10 ¢

where we have used the fact that u} — u§ as ¢ |0. This shows ﬁp(ﬂ,p) =
u*(u, p). The result follows. O

<u*(p,p) v,

APPENDIX B

Here we sketch the heuristic derivation leading to the Bellman equation
(0.5). Let u denote the conditional distribution process. Then (2.7) for ® € 9,

(B.1) e~'@(u(t) ~ [[(~®(u(s)) + AOD(u(s)))ds, 20,
0
is a martingale. Suppose F: M(X) — R is a bounded solution of
(B.2) — AF + H(n, BF) + F =0,
such that (B.1) applies to F. Then
E(e""F(u(T)))
T

B.3 . . .
(B.8) =F(m) +E([0 e (—u(t) BF(u(t)) +H(,u.(t),BF(,u(t))))ds).
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Since
(B.4) v¥(m) =E(fwe_’I:(,u,(t),u(t)) dt),
0
letting T 1 in (B.3) and combining (B.3) and (B.4) yields
v¥(m) = F(m)
(B.5)

+ E(f:e-f(f,(u, u) — uBF(u) + H(p, BF(w))) dt).

Suppose now there existed a control u satisfying the feedback u = H (1,
BF(w)). Since (Appendix A)

L(u,u) — pu + H(u,p) =0,
with equality iff » = H »(1, p), (B.5) implies:

1. F=v,
2. v satisfies (0.5). . .
3. Optimal controls are characterized by u = H,(u, Bv).

This concludes the nonrigorous derivation of the results described in Section 0.

APPENDIX C

The purpose here is to establish (2.13). To this end we need to recall
some notions from pseudo-differential operator (¢yDO) theory. Suppose that
dim(X) = d. We begin in R?.

A symbol of order m is a C* map p: R? X R? - C satisfying

(C.1) 02 68 p(x,€)| < Chp(1 + €™,

for all multi-indices «, 8. Let ™ =8 m(R?) denote the set of all symbols of

order m on R?Z. The best constants C,p that fit in (C.1) are seminorms on

S™(R?); with these seminorms, S™(R?) is a Frechet space. A linear operator
A: C5R?) - C*(R?) is a pseudo-differential operator (#DO) of order m if

(C-2) Ad(x) = [ p(x,6)d(Oet*dg,  i=V-1.

Here ¢ is the Fourier transform of ¢. In this case we write A = p(x, D). Let
H*® = H*(R?) denote the Sobolev space of order s. Then A € S™ implies A:
H* - H*™™ continuously for all s, and the map p — p(x,D), S™ —
Z(H?*, H*~™) is continuous for all s. Multiplication (a, b) — ab is continuous
S™ X 8™ - 8S™*" and there is a continuous bilinear map (a,d) - ¢, S™ X
S - §™*n=1 such that

¢(x,D) = a(x,D)b(x, D) — ab(x, D).

In particular there are continuous maps (a,b) = c,(a,b) > d, S™ X S" -
gm+r §m x §* — Smtr-1' gatisfying c(x, D) = a(x, D)b(x, D), d(x, D) =
[a(x, D), b(x, D)] [Hérmander (1984)].
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Let X be a compact C* manifold. It can be shown that under change of
coordinates the class S™ remains invariant and so it is meaningful to say a
linear operator A: C*(X) —» C*(X) is in OPS™(X) if in each chart A can be
represented as in (C.2). Then the topology on S™ induces, via a fixed choice of
finite atlas on X, a Frechet topology on OPS™(X). It follows that composition
and bracketing are continuous bilinear maps OPS™(X) X OPS™"(X) —
OPS™**(X),OPS™*"~1(X), respectively. It also follows that A € OPS°%(X)
implies A is bounded on L?(X) [Hérmander (1984)].

The Laplacian A is a negative-definite self-adjoint (densely defined) operator
on L%(X). By the functional calculus A = VI — A is positive definite and
self-adjoint. It is well known that A € OPSY(X) and, in fact, H5(X) is the
domain of the unbounded operator A® in L2%(X), 0 <s < ». In particular
A € OPS™ iff AA™™ € OPS°. Now suppose p € S°(R). Then p(A) €
OPS%(X). More generally, p,(¢£) = p(e£), 0 < & < 1, is bounded in S°(R) and
hence p,(A), 0 <e <1, is bounded in OPS%(X) [Taylor (1981)]. Choosing
p(&) = e'~¢* and applying the above facts yields

LeEmMA C.1. The family {e®%,0 < & < 1} is bounded in OPS°(X). Moreover
setting Ay, = A and

eeA_I 1
A = =A/e”Adt, 0<e<l,
0

¢ €
{A,,0 <& < 1} is bounded in OPS%(X) and
(C.3) [[A,,A],B], O<ex<l,

is bounded in OPS%(X) for A € OPS™(X), B € OPS ™(X). In particular
(C.3) is a uniformly bounded family of operators on L*(X).

Let H be a Hilbert space and suppose A: 9 € H —» H. Let A* denote the
adjoint (in H!) of A and define Re A by setting 2Re A = A + A*. Then Re A
is a symmetric operator on H. We say Re A < C if (Re A¢d, d)y =
Re(Ad,d)y < C|p|% for all ¢ € 2.

Let A, be as in Lemma C.1. Let ¢ € C*(X) be such that ¢! € C*(X). Set
A” = A 1. Recall that the inner product on H*(X) is given by (¢, ¥ dys =

(AN, N°p ).
Lemma C.2. Forall s,ReA’ <C,,0 <e <1, on H(X).

Proor. Note that
(A‘gqb, Odys = (N A‘ﬁ ATND, M) 2 = (B, AAE Bs_lAsd), Nz,
where B, = A*¢yA* € OPS2?°(X). Thus it is enough to establish

Re(B, A, B;Y) < C, on LA(X).
Now

Re(B, A, B;') =B,A,B;*+ B;'A, B, = A, — 4[[A,, B,], B;Y].
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But A, < 0 on L%(X) by the spectral theorem. Hence by Lemma C.1 the result
follows. O

We also need to establish the analog of Lemma C.2 for a first-order
differential operator. Let B be a first-order differential operator that is
skew-symmetric on L%(X), B* = —B. Let ¢*? denote the corresponding group
(see Section 2). Then e’ is unitary on L%(X). Set B, = (e*B —I)/¢, £ > 0,
BO = B, B:sp = lpBelp_l‘

Lemma C3. Re B! <C,, 0 <e <1, on H¥(X), for any even nonnegative
integer s.

Proor. Note e*B — ¢~*F is skew-adjoint on L2(X) so
2¢e Re B, = e®8 — 2] + ¢7¢B
= (e*B/2 e—eB/2)2 <0

on L*(X). Set D, = A*¢A°. Then D, is a differential operator of order 2s and
e° is not a yDO. However, appealing to the explicit formula for e*? in Section
2, using the chain rule and noting that D, is a differential operator, we see
that [D,,e] = ee*BP, . with P, , —1 <¢ < 1, bounded in OPS2(X). We
conclude that T, =[D,, Be]Ds‘i, —1<e<1, is uniformly bounded on
L*(X). Since A°BYA™* = D*B,D;* = B, + T, ,, it follows that Re(A’BYA~*) <
C, on L*(X). From this it follows that Re BY < C, on H*(X), completing the
proof. O

We return to our setting. As a warm-up to (2.13) we first establish (2.8). Let
B, be as in Section. 2. Then (remember u < 0) since B, is a second-order
differential operator with C* coefficients, it follows that Re B = Re B, < C,
on H*(X). Differentiating |p(¢)|%. (the standard trick) yields

d
= P(D)lfe = 2(Re B.p(2), p(¢))rs < Co(8, y1)Ip(8) -

and hence sup,_,_7lp(®)lgs < k (T, y,). (2.5) follows then by the Sobolev
embedding theorem. Since by Feynman-Kac

p(t) = inf po(x)esp( - ['1B;11ds
x 0

p(t) is bounded away from zero and (2.8) follows readily.
We proceed with a similar argument to establish (2.13). We begin with an
intermediate case. Set (see the definition of A )

A, =n(e®" —I) + n(eBo/m — ¢Bo/71) 4+ A,,
B, =n(ef/"—eB/m1),
=A,-B,u,

= eVA%e™ — Lc2,
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Let B,,, B,, denote the time-dependent operators obtained by plugging
u € L% y € C([0,); R*) into B“?, B“Y. Let p,(t), p,(t) solve the initial value
problems

ap _

atn =B;lktpn’ t> 0’ pn(o) :p()’
ap

atn = B::tpn’ t>0, pn(O) =Po>

as linear ordinary differential equations valued in LA(X).

Then B,, is not a differential operator, but it is close to one. In fact it is a
¥DO in S? and the whole point of bringing in ¥DO theory is that the above
lemmas imply the following crucial fact.

LEmMA C.4. Re B,, = Re B* < k () on H*(X). Hence by the standard
trick (see above), it follows that

sup |p'n(t)|HS < ks(T’yl)
0<t<T

for all even nonnegative s.

Comparing the definitions of B*? and B*?” above we see we must estimate
the effect of the error between ¢ and c, and the projection operator P,.

LemMma C.5. The following estimates hold (recall e, N? = §, < 1):
le ey —e*en| < (2, N2Y + |y,||P,c — c|)exp(3lc|ly,| + 3¢, N;Y)
< (Y+ |y1||c|C'1) 6n exp(3|c||y1| + 3Y)’

where

1
Y=Y(y) = igg;(lgllgnlykl),

|At*p — A*¢| = O(n 8,)|d|cs,
|BXY"$ — BLY'¢| = O(n 8,)|blck(Y).

These estimates are straightforward and omitted.

LEMMA C.6. Let W denote Wiener measure on C([0, »); R*). Then

W( sup Y(y(t)) < 00) =1.

0<t<T

Again this lemma is an easy exercise since y;,Y,,... are ii.d. We omit the
proof.
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Let T,*, denote the semigroup generated by B, on C(X). Estimating as in
Lemma C.5 yields |B*1| < k(¢,Y). This implies:

1. The norm of T,";, on C(X), 0 <s <¢ < T, is bounded by some (T, Y).
2. p,(t) is uniformly bounded away from zero,

log inf p,(t) > —k(T,Y).
0<t<T

Now let g, = p, — p,. Then g, satisfies
aq,

at

Integrating this last equation yields

g.(t) = f;T,t:(B:rs — B%)p, ds

= O(n Bn)osupTlﬁn(t)|C4k(T9Y) = O(n 8n)k(T7yl9y27 . )
<t<

Recalling that n® 8, < 1 (Section 2), |B*¢| = O(n)|¢| with B, as in Section 2,
we conclude

=BXq, + (BX — B%)P,,q,(0) = 0.

sup sup IB:pn(t)l Sk(T,y]_,yz,...),
u 0=<t<T

sup sup |[B2*p,(8) < k(T,y1,¥9,---)-
u 0<¢<T
Now let ,(¢) be the probability measure whose density is p,(¢) as in Section 2.
Then the above estimate on p,(¢) yields

sup sup |m,(¢)B,lyar < B(T,51,¥25---),
u 0<t<T

sup sup |m,(¢) B2l < B(T,¥1,92,---),
u 0<t<T

almost surely W. Now note that B, satisfies the Leibnitz rule,
B,(¢¥) = (B,d)¢ +e®/"¢B,y + O(n 8,)dy].
Moreover, as in Section 2, u,, , and m, are related via

o (1)($) = T D)0 i () (€70,
Combining the last three equations yields (2.13).

REFERENCES

CranDALL, M. G. and Lions, P.-L. (1983). Viscosity solutions of Hamilton-Jacobi equations.
Trans. Amer. Math. Soc. 277 1-42.

Ernier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence.

& Wiley, New York. ’

FLEmING, W. H. (1969). The Cauchy problem for a nonlinear first-order partial differential
equation. J. Differential Equations 5 515-530.

FLEmING, W. H. and Parboux, E. (1982). Existence of optimal controls for partially observed
diffusions. SIAM oJ. Control Optim. 20 261-283.



PARTIALLY OBSERVED CONTROL 1125

Husag, O. (1989a). Partially observed control of Markov processes. I. Stochastics 28 123-144.

Hisas, O. (1989b). Partially observed control of Markov processes. II. Stochastics 28 247-262.

HORMANDER, L. (1984). The Analysis of Linear Partial Differential Operators 3. Springer, New
York.

Lions, P.-L. (1981). Control of diffusion processes in RY. Comm. Pure Appl. Math. 34 121-147.

Lions, P.-L. (1988). Viscosity solutions of fully nonlinear second-order equations and optimal
stochastic control in infinite dimensions. Acta Math. 161 243-278.

Stroock, D. W. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Springer,
New York.

TayLor, M. E. (1981). Pseudodifferential Operators. Princeton Univ. Press, Princeton, N.J.

DEPARTMENT OF MATHEMATICS
TEMPLE UNIVERSITY
PHILADELPHIA, PENNSYLVANIA 19122



