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LARGE DEVIATION LOWER BOUNDS FOR ADDITIVE
FUNCTIONALS OF MARKOV PROCESSES!

By NaresH C. JAIN

University of Minnesota

Let X, X,,... be a Markov process with state space E, a Polish space.
Let L (0w, A) =n~1}Y To0laX {(®)) denote the normalized occupation time
measure. If u is a probability measure on E, G is a weak neighborhood of
u, and if V C E, then we obtain asymptotic lower bounds for probabilities
PYL (0,-) € @G, X(w)€V, 0<j<n-—1]in terms of I(u), the rate
function of Donsker and Varadhan. Our assumptions are weaker than
those imposed by Donsker and Varadhan, and the proof works without any
essential change in the continuous time case as well. In fact, the same
proofs apply to certain bounded additive functionals: Let » > 0 and let
f: Q - B be bounded % °-measurable, where Q is the sample space with
the product topology (Skorohod topology in the continuous time case) and
B is a separable Banach space; let 6,: Q — Q be the shift operator, i.e.,
0,0(j) = w(k +j). Then we get lower bounds for probabilities involving
n~ Y flw) + f(610) + -~ +£(6, _,w)) in place of L, (w, ). In this latter
situation, the rate function has to be the entropy function H(Q) of
Donsker and Varadhan.

1. Introduction. Let E be a complete separable metric space and let &
denote its Borel subsets. Our aim here is to establish large deviation lower
bounds for additive functionals of a Markov process (in both discrete and
continuous time) with state space E. We will consider two types of additive
functionals: occupation times of the process (i.e., measure-valued) and bounded
additive functionals taking values in a separable Banach space. One could give
a formulation to include both cases at the expense of introducing too many
technicalities; instead of doing that, we will consider the two cases separately.
In fact, the basic proof is the same for the two cases.

In the discrete time case we will denote by ) the space of doubly infinite
sequences w = (..., w(—1), w(0), w(1),...), with w(j) € E, — <j < o, and
will give it the product topology. In the continuous time case Q will either
denote the space of E-valued continuous functions with the topology of
uniform convergence on compacts or it will denote the space of E-valued
functions which are right-continuous with left limits and will be given the
Skorohod topology. In any case, () is itself a complete separable metric space.
For —w <s <t <w», &%° will denote the o-algebra generated by w(u), s <
u <t; &~ denotes the o-algebra generated by w(u), u < ¢, and Z° denotes
the o-algebra generated by w(u), s < u. Finally, % == % denotes the
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1072 N. C. JAIN

o-algebra generated by w(u), —» < u < ». As usual, 6,: Q — Q denotes the
shift operator (6,w)X(s) = w(¢ + s).

In the continuous time context, (¢, x, dy) will denote the transition proba-
bility function of a Markov process and P*[A] will denote the corresponding
probability of A € .° when the process starts from x at time 0. In discrete
time, (1, x, dy) will denote the one-step transition probability and (¢, x, dy)
will be the ¢-step transition when ¢ is a positive integer. For o € O, A € &, we
will write

1 n—1
(1.1) Ly(0,4) =~ T xa(o(s)), n=1,
s=0
and
1 .
(1.2) L, 4) = < [xa(w(s))ds, ¢>0.
0
If x € E, A< &, we will also use the notations
(13)  d(n,x,A) = ¥ 27m(j,x,4), n=x1l,
j=n

and will simply write ,(x, A) when n = 1. In the continuous time context we
will write

(1.4) Uo(t,x, A) = [ e *m(s,x, A) ds
t

and if ¢ = 0, we will simply write ,(x, A) for ¥,(0, x, A).

Instead of requiring the existence of a reference measure for the Markov
process as Donsker and Varadhan do in most of their work [5, 7], we will make
an irreducibility assumption whose consequences were studied in [10].

In the following we make the convention that a subscript { = 1 will corre-
spond to the discrete time case and i = 2 to the continuous case. If the
subscript is dropped, the statement will hold for either case.

We now introduce the irreducibility hypothesis in the two cases i = 1,2. If
the process satisfies this hypothesis, we will say that = is a-irreducible.

HypotHEsis H(1). There exists a probability measure a on (E, &) such
that a(A) > 0 implies y(x, A) > 0 for all x.

To explain why this weak condition does not suffice, we should first intro-
duce the “rate function’ of Donsker and Varadhan for a Markov process: let
C,(E) denote the space of real-valued continuous functions on E and let
% = {u € C,(E): inf u > 0}. For any probability measure u on E, define

u(x)
(1.5) I(u) = jg&;,fbgm(x)

du(x),
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where mu(x) = [w(1, x, dy)u(y). For continuous time, also define

i IM(w) e it o
(1.6) I(u) = hlll% ! the limit exists,
b otherwise,

b

where I{")(y) is given by (1.5) with u replaced by T\u = [m(h, -, dy)u(y). It
will be shown in the next section that I,(u) = lim sup,, | ((I{"(u)/R).

If = is a Feller transition function, i.e., if T,u is bounded continuous
whenever u is, for all A > 0, then Donsker and Varadhan have used the rate
function given by

- Lu
(1.7) IL(p) = — inf [—(x)du(x),
uewnD u

where L denotes the infinitesimal generator of the process and D denotes the
domain of L. The Feller property and the assumed right-continuity of paths
immediately imply (cf. [3], Theorem 1.6, page 36) that D is dense in C,(E). It
then follows from Lemma 3.1 of [4] that the limit in (1.6) actually exists and
equals I,. Therefore, if 7 is Feller, then I, is the usual Donsker-Varadhan
rate function.

Even though under less stringent conditions we will get exact analogues of
lower bound results proved in [5], for now we state a typical lower bound
result. Let u be a probability measure on (E, &) and let G be a weak
neighborhood of w. Then for certain x (under certain conditions) in the
discrete time case,

1
(1.8) liminf;log PHL,e G} = —I,(n).

Example 3.6 shows that this fails for essentially all x even for a Markov chain
satisfying the Doeblin condition ([8], page 192). Such a process always satisfies
Hypothesis H,(1). Also, the singular part of w(n,x,-) with respect to the
(unique) invariant measure goes to zero exponentially fast. In view of this
example, we must strengthen H,(1) for a result like (1.8) to hold.

It is clear that if H,/(1) is satisfied for some a and «, is defined by
a,(A) = a(A N B)/a(B), where B is a set of positive a-measure, then H;(1) is
satisfied with «, as well. Therefore, most measures « that satisfy H,(1) will
not satisfy H;(2) (given below) with « in place of B. For this reason, if the
process is known to be a-irreducible to begin with, we define another probabil-
ity measure by

(19) B(A) = [W(x, Aaldx), A<,

where = i, or i,, introduced earlier. In addition to H;(1), we now impose:
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HypotHEsIs Hy(2). If I,(u) < », then p < B.

This hypothesis will be shown to be a consequence of the following condition
(see Proposition 2.8):

ConpITION A. The process is a-irreducible. Let 8 be given by (1.9). Then
B(A) = 0 implies that for every x € E there exists a ¢ such that ¢,(¢, x, A) = 0.

REMARK 1.1. In the original version of the paper, we stated H,(2) and
Condition A in terms of the measure « itself and observed that the measure B
would be more useful. We have now stated them in terms of B.

In the discrete case, de Acosta [1, 2] has introduced the following Conditions
B, and B,. We will show below that either condition immediately implies
Condition A. Even though we will then work with Condition A or rather with
H,(2), we would like to add that Condition B, is very pleasing because it is a
simple condition in terms of the measure « itself.

DeriniTION 1.2. In the discrete time case, a nonempty set C C E is said to
be stochastically closed if 7(1,x,C) = 1 for all x € C.

ConpDITION B; (de Acosta [2]). If C is stochastically closed, then given
x & C there exists £ > 1 such that 7(k, x,C) = 1.

ConDITION B, (de Acosta [2]). If the process is a-irreducible, a(A) = 0
implies that given x € E there exists k2 such that =(k, x, A) = 0.

To see that either of these conditions implies Condition A, first observe
that if C is stochastically closed and 7 is a-irreducible, then a(C°) = 0.
Therefore, Condition B, implies B;. Now assume Condition B, and that  is
a-irreducible. If B(A) = 0, then ,(x, A) = 0 a.e. (a). Therefore the set C =
{x: ¢(x, A) = 0}, being nonempty, is clearly stochastically closed, and we then
have B(C°) = 0 because 7 is also B-irreducible by Proposition 2.7. By Condi-
tion B,, given x there exists k2 such that m(%k,x,C¢) = 0. This implies
y(k, x, A) = 0 and Condition A is satisfied.

The results in Section 3 along with this remark subsume the results of
de Acosta in [1] and their improvements in [2]. Some results of Ellis [9] on
lower bounds also follow from ours (see Remark 3.10).

We next consider additive functionals. Let B be ‘a separable Banach space
with norm | || and let % denote the o-field of Borel subsets of B. Let
f: Q - B be (strongly) % .°-measurable and bounded, i.e., if A € &%, then
f Y (A) € #° and sup,, || f(w)|| < =. Let

Si(n,w) =f(0) +f(0w) + -+ +f(6,_,0), n>1,
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in the discrete case and
¢
Se(t,w) = 0,w) ds
(¢, 0) [0 f(6,0)

in the continuous case. We will obtain large deviation lower bounds for
n~18 s(n, - ) in Section 3 in the discrete case and for ¢~'S,(¢, - ) in Section 4 in
the continuous case. The method of proof is the same as for occupation time
functionals. The rate function in the above generality has to be in terms of
H(Q), the entropy of the stationary process @ with respect to the given
Markov process, introduced by Donsker and Varadhan [7]; the definition will
be given in Section 2.

We will state some basic results of Donsker and Varadhan [7] in Section 2
that will be used later. This section will also contain some preliminary facts.

The main feature of our basic proof (Section 3), which is a variation of the
method developed in [7], is that it applies to many situations without any
essential change.

The main results of this paper are Theorems 3.3, 3.4, 3.5 (analogue of
Theorem 3.1 [5]), 3.7 and 3.7 in the discrete time case and their analogues
Theorem 4.4, 4.5 and 4.8 in the continuous time case. Theorem 4.7 is an
application to the distribution of sup,_, _, ||o(s)|, as ¢ — .

ReEmaRK 1.3. If instead of using the topology of weak convergence of
probability measures, one uses the r-topology, our proofs hardly need any
change because the ergodic theorem holds for bounded measurable functions.

REMARK 1.4. Under the hypothesis H (1) alone, we can give the lower
bound in terms of the rate function [(u) = inf{H(Q): @ stationary, ergodic,
with marginal u}. In general, I(u) < I(w), but it is shown in [5] that under a
hypothesis stronger than H(2) one actually has I(w) = I(uw).

In view of these remarks and the results of Section 3, it appears that in the
discrete time case the main advantage of the Donsker—Varadhan method (that
has been used here) is that the use of the ergodic theorem allows more
flexibility and one can get lower bounds for more general sets without addi-
tional work. The major advantage of this approach is that essentially the same
proofs work in both discrete and continuous time.

2. Preliminaries. We will introduce notations and prove results in this
section which will sometimes apply in both discrete and continuous time; in
such situations ¢ will be real (integer) in the continuous (discrete) time
context. We will write P“©® for P* when x = »(0) and will denote by @, the
regular conditional of @ given %, “. (We are following Donsker and Varadhan
[7] here.) Let h(A;u) denote the entropy of the probability measure u with
respect to A. If @ is a stationary measure on (Q, %), we define

(2.1) H(t,Q) = EQR(P*®|50;Q,]50)},
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where A|, denotes the restriction of A to the o-algebra # and E€ denotes
expectation with respect to @. It is proved in [7] (Theorem 3.1) that either
H(t,Q) = » for all ¢t > 0 or there exists a finite constant H(Q) such that
H(t,Q) = tH(Q) for all ¢t > 0. We observe that if H(Q) < », then @-a.s.,
Q, < P“® on each #,° ¢t > 0.

We state the following results of Donsker and Varadhan [7] and Varadhan
[12]. The proofs have been given by them in the continuous time case, but they
apply equally well (actually become simpler) in the discrete time context.

THEOREM 2.1. H(Q) is linear in @; i.e., if Ay +A,=1, A; >0, then
H\Q, + 1,Q,) = AH(Q) + A, H(Q,), where Q,, Q, are stationary.

THEOREM 2.2, Suppose Q is stationary and ergodic and let

aqQ,
e(w, ) =logm 50

where Q,, P are restricted to 7,°. If H(Q) < », then for Q-almost all w,
Q,a.s.,

1
lim —¢,(w, ) = H(Q).
t—ow I

THEOREM 2.3 (Contraction principle). Let p be a probability measure on
(E, &). Then I(n) = inf{H(Q): Q stationary with marginal u}, where I = I, or
I,, depending on the discrete or the continuous time context. In particular, if @
is stationary with marginal u, then H(Q) < » implies I(u) < .

Proor. This is essentially Theorem 6.1 in [7]. The theorem shows that the
contraction principle holds for I in place of I under the Feller property (in
continuous time; in discrete time the Feller property is not used). We will now
show that a minor modification of the proof in [7] gives the result for I
without the assumption of the Feller property. We will need the following
lemma.

Lemma 2.4. If limsup,  o(I{"(n)/h) < =, then lim,  (I{"(u)/h) exists
and equals the lim sup.

PrOOF. Let u be given and let us write 8(h) = I{"(u). It is easily seen that
6 is subadditive, i.e., 0(h; + hy) < 6(h,) + 6(h,). Let

B, = liminf(6(h)/h) < limsup(8(h)/h) = By < =.
hl0 h10

We can find 0 < a; < b, |0 such that

0(a-)' 0(b;)
lim ’Z -8, lim —= = B,.
jmw @ B joo bj Be
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For each j, there exists k > 0 such that 27*7'6; < a; < 27%b; and by subad-
ditivity, 6(b,)/b; < 6(27*b,)/27*b;. Therefore, we can replace b by 27%b; and
without loss of generahty may assume that a;/b; > n > 3 By subadd1t1v1ty,
we have

; 0(a;) . b,—a; 6(b; - a;)

)

and letting j — «, we get B, < nB; + (1 — 1)B,, which proves the lemma. O

REMARK. Subadditivity alone is not enough for the conclusion of the
lemma to hold.

Now observe that (6.5) in [7] shows that limsup,, , ((I{"(u)/h) <1 < o,
where [ stands for inf{H(Q): @ stationary with marginal u}. Therefore by
Lemma 2.4, I,(u) [defined by (1.6)] is less than or equal to . For inequality in
the opposite direction, let limsup, | o(I{"(n)/h) = | < . Using the argu-
ments in [7] leading to equation (6.9), for each A > 0 we can construct a
stationary process @* such that h 5o(P,; ™) < tl. This shows that for each
t > 0, the family of probability measures {®: h > 0} restricted to .#° is a
tight family. We can find a subsequence which converges weakly to a station-
ary measure @ on %% as h |0. Since h 5 Py; ; Q™) is lower semicontinuous
in @™, we get h 5o(P,; @) < tl. Therefore,

hyto(P#;Q) -

lim sup ;

t—> o

By (8.14) of [7] it then follows that H(Q) < . None of the arguments here uses
the Feller property, so we have the contraction principle without the Feller
property, provided we use I,(u) in place of I,(u) in the continuous time case.
No change is needed in the discrete time case.

The next lemma has been implicitly used in [7]. We give a proof here for the
benefit of the reader.

LEMMA 2.5. Let @ be a stationary process with H(Q) < «. Let G be a weak
neighborhood of Q. Then given & > 0, there exists a stationary probability
measure @, = Zf,=1)upr, where A, > 0, Q, is ergodic, 1 <p <k,and LA, =
1, such that Q. € G and |H(Q) — H(Q,)| < &.

ProorF. Let & > 0 be given. For some 8 < ¢, we may take

¥ G = {v:

where the f; are bounded continuous functions on €. From the proof of

ffidi}_'[fidQ\<8,].SiSk},
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Theorem 3.5 in [4], there exists a function f,: QO — R [in fact, fy(w) =
h(P°®| 40; R,)] such that if H(Q) < » for a stationary process @, then

fo € LY(Q) and

(2.2) Jfo(w) dQ(w) = H(Q).

By the integral representation theorem (see [11]), we also have
(2.3) [£:dQ = [ [fi(@) d7,(w) dQ(&), O sis<k,

where each m, is ergodic. For i = 0, this, in particular, implies that if
H(Q) < », then H(w,) < =, @-a.s. w'. For convenience we write

(o) = [fidm,, 0<i<k.
We pick an ergodic process 7 such that H(w) < « and
(2.4) f|fi|d11-sa, 0<i<k.

We can find b sufficiently large and Q; c Q such that (2.5)-(2.7) are satisfied
for w € Q;:

(2.5) |€(w)] < b,
k

(2.6) [ €(@)|dQ(w) < 58/3
i=0"9Q3

and

(2.7) Q(QE) <6/3a.

Divide [ —b, b] into disjoint subintervals ,, J,, ..., J,, each of length < /3.
Let

Aj={weQé(w)ed), 0<i<k l<j=<r.

ij
Then for each i, Uj_;A;; =Q;. We pick one set from each collection
{A;;: 1 <j <r} and form the intersection of the & + 1 sets so picked. Let {A}
denote the partition of Q; formed by such sets. If w, is an arbitrary point of
A, then for 0 <i <k,

L (aGon - 3 )@ - § = [0 < T &) + 5 Jah) + 5.

From each A with @(A) > 0, v've pick w, so that H(m, ) < . We define
Q. =X QM)m,, + (1 -Q(Q,))7.
A
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An easy computation gives for 0 < i < k&,
[£,dQ. -5 < [£,dQ < [fdQ. +3
and recalling that [f, d@Q. = H(Q,), [f, d®@ = H(Q) proves the lemma. O

The next lemma is an analogue of this one. It will apply when we deal with
Banach space valued bounded measurable functions of a Markov process.

LEMMA 2.6. Let @ be a stationary process with H(Q) < ». Let f: Q — B be
a bounded measurable map, where B is a separable Banach space with norm
Il-ll. Then given e > 0, there exists a stationary process @,, which is a
convex combination of ergodic ones, such that |H(Q)— H(Q)| <& and

l/fdQ — [fdQ.Il <.

Proor. The proof is quite similar to that of the previous lemma. First, let
fo: & — R be the function (as in Lemma 2.5) which satisfies (2.2). We also have

[£d@ = [ [f(©) d7(v) dQ(«)

[£0dQ = [ [fo(w) dm,(w) dQ(a),

where =, are ergodic. We write &(w') = [fdw, and £4(w) = [f,dm,. Then
there exist simple functions

J J
(o) =% xilAi(w,)) Eo(0) = X ailAi(w/)>
i1 i=1

where x; = [f(w)d7,(0)and a; = [fo(w) d7,(w), for some w; € A;,1 <i <,
and

I[édQ—fng‘q, '[éon—[gon'<s.
But we can write

J£dQ = > Q(A,) [fdP,; = [fdQ,,
i=1

J0dQ = > Q(A) [fodm,, = [fodQ.,
i=1

where @, = ©/_,Q(A;) d,,, which proves the lemma. O
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If « is a probability measure on (E, &), we define, as before,

(2.8) B(A) = [u(x, A)a(dx),
where ¢ = ¢(,) in the discrete (continuous) case.

ProposiTION 2.7. Suppose « satisfies Hypothesis H(1). Then B satisfies
(2.9 B(A) >0 y(x,A) >0 forallx.

Proor. We will prove this in the continuous time context. The proof also

works in discrete time. We need only prove the implication = in (2.9). Let
A e & andlet D = {x: y(x, A) =0}. If D #+ ¢ and x € D, then

w(t+s,%,4) > [ w(t,x,dy)n(s,y, A),
DC

SO

0 =elthy(x,A) > fwe_sw(t +s,x,A)ds > f (¢, x,dy)by(y, A)
0 D¢

and we must have w(¢, x, D°) = 0 for allx € D, all ¢ > 0. Therefore ¢,(x, D) =
0 for all x € D. This implies a(D°) = 0 if D # ¢ and we have

B(A) = [ wa(y, A)a(dy) + [ ¥y(y, A)a(dy) =0,
D D¢
which proves the proposition. O
The next proposition shows that Conditions A implies H(2).

ProposiTiON 2.8. Suppose Condition A holds. Then Hypothesis H(2) is
satisfied.

Proor. (i = 1) Discrete case. First assume Condition A. If I(u) < o,
then by the contraction principle (Theorem 2.3) there exists a stationary
process @ with marginal u such that H(Q) < «. Then @-a.s. w, we have for
nx>1,

Q, < P°® on #°.
Suppose B(A) = 0. By Condition A we have for each w,
(2.10) POy w'(n) €A} =0, n > somem.
Therefore @-a.s. w,

limQ {w': w'(n) € A} = 0.
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By dominated convergence,

0= fli}anw{w': w'(n) € A} dQ(w)

> limsup [Q,{w(n) € 4) dQ(w) = w(4),
S0 u < .
(i = 2) Continuous case. Assume Condition A. We take @ as before with

marginal p and H(Q) < ». Then @, < P“® on %°, for all ¢t > 0, Q-a.s. w.
Assume B(A) = 0. Let

V() = {x: ¢y(¢, %, A) = 0}.
By Condition A, we have V(¢) » E as ¢t » ». Thus, if

Z(t) = {w: [t+1e—s11-(s, 0(0),A) ds = O},
t
then Z(¢) » Q) as t » © and
j’“e—s ds[ w(s,(0),A)dQ(w) = 0.
¢ Z(t)
It follows that
ftHe's dsf Q. [w:w(s) €AldQ(w) = 0.
t Z(t)
Therefore
[Hle_sds{/.L(A) —f Q,[w: w(s) €A] dQ(w)} =0,
t Z(t)°
which implies
e "tu(A) < ft+1e“s dsQ(Z(t)°) < ee™,
t

for all ¢ sufficiently large (depending on ¢). Therefore u(A) < e¢ for all ¢ > 0,
so u(A)=0. O

We will also need the next three lemmas..

LEMMA 2.9. Let A € & be such that y(x, A) > 0 for all x. Let p be a
probability measure on (E,&). Then every set B with u(B) > 0 contains a
compact subset B, with u(B;) > 0 such that inf, . 5 7(¢, x, A) > 0 for somet.

Proor. We will prove it in the continuous case only. We have ,(x, A) =
e sm(s, x, A)ds > 0 for all x, so

fwe“s dsf m(s,x, A)du(x) > 0.
0 B
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Hence, for some ¢ we have [zm(t,x, A)du(x) > 0, which implies the conclu-
sion of the lemma. O

LEMMA 2.10. Let B € & be such that y(x, B) > 0 for each x and (x, B)
is a continuous function of x. Let K be a compact subset of E. Then there exist
to > 0, 8 > 0, such that for each x € K, w(t, x, B) = 8 for some t < ..

ProOF. Again we will write the proof only in the continuous case. Since
¥y(x, B) > 0 for all x and is continuous in x, we have inf, . x ¥5(x, B) =1 > 0.
Let 8 = n/4 and let ¢, be such that [7e™ d¢t <7 /2. Then for each x € K, we

have [{ce 'w(¢, x, B) dt > n/2. Therefore, if x € K,

to _
];) e”fm(t, x, B){]'[t:‘rr(t,x,B)sn/4] + l[t:‘rr(t,x,B)>n/4]} dt 2 n/2,

where 1, denotes the indicator of A, and we get

to _
fooe ‘ar(t, x, B)llt:w(t,x,3)>n/4]dt >n/4.

Thus the Lebesgue measure of the set [0 < ¢ < ¢,: w(¢, x, B) > n /4] is at least
1 /4, which proves the lemma. O

LEmMMA 2.11. Suppose @, —» Q weakly, where Q, and @ are stationary
processes on (Q, &) with marginals ., and p. Then w, — u weakly.

Proor. (i) Discrete case. Let f be a bounded, continuous function on E.
Then

[fdn, = [(2(0)) d@.(w) ~ [F(w(0)) dQ(v) = [fdnu,

since g(w) defined as f(w(0)) is a bounded continuous function of w.

(ii) Continuous case. Let Q, = {w € Q: w(0 — ) = w(0)}. If @ is any station-
ary process, then Q(QO) = 1. It is then easy to apply essentially the above
argument and reach the same conclusion. O

3. Discrete time.

PrOPOSITION 3.1. Suppose @ is stationary, ergodic, on (£, %) with
marginal u. Let V € & be such that u(V) = 1 and let G be a weak neighbor-
hood of w. Then given £ > 0 and given any A € & such that u(A) > 0, we
have for p-a.e. x in 'V,

1
PN S P w: . L. _
(3'1) hn}llnfnlog {(D L"(w" ) € G’ n(w’V) 1,
w(j) € Aforsomej,n<j<h}>-(1+¢e)H(Q),

where i ~ (1 + e)n.
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Proor. Let D, denote the event in (3.1). Without loss of generality we may
assume H(Q) < «. We have

w(0)

n de y\ﬁo

P*(D,) = | dQ,
D

= [ exp(—¢a(0,©)) dQ, (o),
D,

where ¢, (0, ) = log(dQ,,/dP“?)| s-o(e"). Note that H(Q) < = implies @, <
P“©, @-as. w, but P© < @, need not be true, so we have only inequality at
the first step. Then for § > 0,

P“(D,} > [ exp(—¢;) dQ,,
D, n{pi(w, ) <A(H(Q)+8)}

> exp(—A(H(Q) +3))QD, N [¢a(w, ) <A(H(Q) +5)]}.
We now observe that by the ergodic theorem
Q{L, € G, eventually} = 1

and since Q-a.s.,
n—1 n—1
— X xal(w())) = X xa(w(y))]| = eu(A) >0,
j=0 j=0

we have
Q{w(Jj) € A for some j,n <j < fi, eventually} = 1.

If @ is stationary with marginal w, with w(V) = 1, then clearly
QL (0, V) =1} =L
Finally, by Theorem 2.2, @-a.s. w,
Q{¢s(w, ) <A(H(Q) + §), eventually} = 1.
It therefore follows that @-a.s. w, as n — «,
QD N [ea(w, ) <A(H(Q) +8)]} > 1

Therefore @-a.s. w, for any 8 > 0 we have
1
liminleog PO(D Y > —(1+¢)(H(Q) +3).
Since u is the marginal of @, and 8 > 0 is arbitrary, (3.1) follows. O

Our aim now is to drop the ergodicity assumption in Proposition 3.1, but to
do that we must make an additional assumption:

(3.2) w(B) >0=m(x,B) >0, u-a.e. x.
We also note that by Lemmas 2.5 and 2.11 it is sufficient to consider @ of the
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form

1)\p=1, Ap,>0,1<p<k,

S
I DM =

k
(3.3) Q=2 1,Q,
p=1

where each @, is ergodic.

The following obvious corollary of Proposition 3.1 will be used.

COROLLARY 3.2. Given & > 0, there exist a set V, € V with p(V})) > 1~ 6
and an integer n, = n (¢, 8) such that for n > n,
inf P*{D,} > exp(—n(1 +¢)(H(Q) +9)).

x€V,;

THEOREM 3.3. Suppose @ is stationary on (Q, %) with marginal w. Let
V € & be such that w(V) = 1 and let G be a weak neighborhood of w. If (3.2)
holds, then for u-a.e. x in V we have

1
(34)  liminf—log P{w: Ly(w,) € G, L(w,V) =1} = ~H(Q).

PRrROOF. As observed earlier, we take @ = Z§=1APQP. Then p = ZLIAP;,LP,
where ., is the marginal of @,. Since u(V) = 1, wehave u (V) = 1,1 <p <k.
Without any loss of generality, we take

[fidu~ [f;dv

where n > 0 and f; are bounded continuous on E with ||fll. < 1,1 <j<r.
We then define

<n,1$j_<_r},

(3.5) G= {v:

<n/2,1_<.jsr}, l<p<k.

(3.6) G,= {v: [fdu, = [f;dv
Let 0 <& <m/4 and 6 > 0 be fixed. For each positive integer n we pick
positive integers n,,...,n,;n4,...,n’ such that

E+(n,+ - +n,) +(ny+ - +n') =n,

’ ~
n,+n,~A,n,
I~
n, ~en,,

for 1 <p < k. We now take A, = V and then by Corollary 3.2 we find V,, cV
and some m, such that u,(V,) > 1 — 6 and for m = m,,

(3.7) in‘f/' P L, € Gy, Ly(V) =1} = exp(—(1 + &) m(H(Q) +3)),
x€V,
where . ~ (1 + e)m. Since u(V,) > 0, we have =(1,x,V,) > 0 for u-ae. x,
hence for u,_;-a.e. x. We choose A,_; C V such that
#‘k—-l(Ak-—l) > %? inf Tr(l’x>Vk) = Bk—l > 0.

x€A,_,
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By Corollary 3.2, we then find V,_, c V and m,_, such that u,_,(V,_;) >
1—-dandfor m =m,_,,

inf P*{L,€G,_;,L;(V)=10(j)€A,_; forsome j, m <j <}

x€V,_y
> exp(~(1 + e)m(H(Q,_,) +3))-
Proceeding in this manner, we pick V;, A;, V,, A,, ..., V,, A,, all contained in
V, satisfying
(3.8) ,up(Ap) > %, xiéljpw(l’x"{"“) =B,>0, l<p<k-—-1,

and we pick m, such that for m > m,
inf P*(L,, € G,, L;(V) =1, w(j) € A, for some j, m <j <}
(3.9) *<%
> exp(—m(1+¢)(H(Q,) + 8)),

for 1 <p <k and for p = k£ we have (3.7). We now define stopping times
T, Ty, ...,T),_; as

T\(w) = min{j > n;: 0(j) €Ay},

To(w) =min{j > n, + T; + Ll: w(j) € Ay},

T,-(0) =min{j>n,_;+T,_ ,+1L:w(j) €4, }.

The stopping time is infinite if the corresponding set is empty. Let T, = 0 and
define

L, ={L, () € Gy 0(j) €V,T,_(0) <j < Ty(w);
T(w) <T, (0) +1+n,+ n’,,},
l<p<k-1,
Fk = {ﬁnk(w, ') S Gk; w(]) (S V,Tk_l(w) <j < Tk_l(w) + 1+ nk},
where
Enl(w’ ') = Lnl(w7 ')’ Enp(w7 ) = an(BTp_l+1w7 ')’ 2 <p= k.

Since

k
Ln(w7A) - Z Apf’np(waA)

sup sup
w Aed& p=1
koo 3 n,
<supsup|L,(0,A) — Y 2L, (0, A)|+ X [A, - —
w A . p___l n L P=1 n
ny+ - +np X n
< — + ) Ap——f— < 2¢
n 1 n
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for n sufficiently large and since 2¢ < 1 /2, we have

[fidu = [f;dL,(a,")

k
}:,lAp[fj du, = [f;dL,(o, ~)}
o

k .
<Y, /gdﬂp—j;gdﬁnp(w,')!m/z.
p=1

It follows that there exists an m, (independent of w) such that if n > m,,
then writing A, = N},_;I},, 1 <r <k, we have
A,c{L(w,')€G,L,(0,V)=1}.
For any x, by the strong Markov property,
P*{A,} = P*{A,_,} inf w(1,2,V,)

z€A,

X ing Py{Lnk(w, ) E€G,, w(j) €V, 1<j<n,+n,}
YEVL

> P¥{A_1}Br_rexp(— (1 + &)n,(H(Q) +5)).
Proceeding in this manner, we get uniformly for x € V,.
PH{L(w,") €qG, L,(0,V) =1}

26 Buiem| <1+ (H@) +0) ¥ .
for all n sufficiently large. Therefore, if x € V; (u,(V)) > 1 — §),
limninf%log P{L(o,') €qG, L,(0,V) =1}
> —(H(Q) +3)

and since § > 0 is arbitrary, we have (3.4) holding for a.e. u;-x € V. Since
Mis- .., M can be arranged in any order for the proof, (3.4) actually holds for
w-a.e. x in V and the theorem is proved. O

The next theorem is an immediate corollary of Theorem 3.3 via the contrac-
tion principle (Theorem 2.3).

THEOREM 3.4. Suppose u is a probability measure on (E, &) and u(V) = 1.
Assume (3.2). If G is a weak neighborhood of ., then for u-a.e. x in 'V,

1 .
(3.10)  liminf ~log P*(L,(, ) € G, L(w,V) = 1} > ~L(k).

‘We can now derive the next theorem (compare with Theorem 3.1 of [5])
from Theorem 3.4 without much effort. As usual, 7= is said to be strongly
Feller if g(x) = [f(y)m(1, x, dy) is continuous whenever f is bounded and
measurable.
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THEOREM 3.5. Suppose u is a probability measure on (E, &) and w(V) = 1.
Assume (3.2). Let G be a weak neighborhood of u. If x €V is such that
w(1, x, - ) is not singular to w, then (3.1) holds for such x. If m is strongly
Feller and K is a compact set contained in V such that x € K implies w(1, x, + )
is not singular to u, then (3.10) holds uniformly over K.

Proor. We can find a neighborhood G of u, G ¢ G such that for all n
sufficiently large,

{Ln+1(w’ ) €aq, Ln+1(w’V) = 1}
> {w(0) €V, L,(6,0,) € G, L,(6,0,V) =1}.

Since 7(1, x, - ) is not singular to u, by Theorem 3.4, given n > 0 we can find
aset A cCVand m > 0 such that #(1,x, A) > 0 and for n > m,

inf P?(L,(«, ) € G, L,(0,V) =1} > exp(—(I;(n) + n)n).
yE

By the Markov property,
PHL,,(0,") €G, L, (0,V) =1}
>7(1,x, A) ingPy{Ln(w, ) €@, L(o,V) =1}
ye

for all n sufficiently large. Therefore the result follows. For the s$econd
assertion, the choice of the set A above depends on x € K, but since (1, x, A)
is a continuous function of x, there exists a neighborhood U, of x such that
inf, .y 7(1,y, A) > 0. It follows that (3.10) holds uniformly over U, N K.
Since a finite number of such U, cover K, (3.10) holds uniformly over K. This
finishes the proof. O

Next we consider lower bounds for irreducible processes. To explain why
irreducibility [Hypothesis H;(1)] alone is not enough, we give an example below
which shows that the lower bound part of the large deviation principle fails
even for a Doeblin process (see Doob [8], page 192, for definition). Such a
process always satisfies H;(1), is highly recurrent and the transition probabil-
ity is almost absolutely continuous with respect to the invariant measure, for
large n.

ExampLE 3.6. Let E = {x;, x,, X3, Xg5 V1, yo): Let a(x;, {x;, ) =
1<i<38 mlx,,, }) =3 1<i<3; m(x, {x4}) = m(xy, {x,) = g,
m(y1, ) = m(yy, {y ) = &; w(y,, {x) = 1T(y2, {x,}) = 1. This defines an aperi-
odic Doeblin process. Starting from the set {x, x,, x3, x,} the process never
leaves it, so the set is stochastically closed. Let w be a probability measure
such that u({y,) = u({y,)) = 3. Then for a positive function x defined on E,

we.have

} < log2.

1 2u(y,) 2u(y,)
J1o8( -, )(x)d“(x)"z'{ 8l +u(ry) | B u(ar) + ulry)
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Therefore I,(n) < log2. On the other hand, if we let u(y,) = u(y,) =1 and
allow u(x,) to be large, then we see that I,(u) = log2. Let G = {v: |[fdu —
[fdv| < 1}, where f(x;)=0,1<i<4; f(y)=1,i=12 Thenv e G im-
plies that v({y,,y,}) > 0. It follows that P*{L(w, )< G} =0 for all n,
1 < i < 4, since {x,, x,, X3, x,} is stochastically closed; but the large deviation
principle would say that :

liminf n~!log P*{L,(w, ) € G} = —log2,
which is a contradiction.

It is clear from this example that we need more than H,(1) if the large
deviation principle is to hold. The main result for irreducible processes in
discrete time is the next theorem. One can also prove the analogué of Theorem
4.4 (continuous time) in the discrete time case. We leave it to the reader.

It will be useful to observe that if H,(1) holds, then every set A of posi-
tive « measure contains a subset B of positive a measure such that
inf, , < p p(r,x,y) > 0, for some positive integer r, where p(r,x,y) denotes

the density of the absolutely continuous part of m(r, x, - ) with respect to a.
This is Lemma 2 in [10]. Let S denote the class of such sets B.

THEOREM 3.7. Suppose Hypotheses H /(1) and H((2) hold. Let G be a weak
neighborhood of w. Then for every x € E,

1
(3.11) liminf;log P L, (o,') €G} = —I)(n).

If, further, y(x, A) [defined by (1.3)] is a continuous function of x for each
compact A, then (3.11) holds uniformly for x in a compact set. If B € S and for
some r we have inf,  c w(r, x, B) > 0, then (3.11) holds uniformly for x € C.

NotTe. Recall that H,(2) can be replaced by Condition A.

Proor. Without any loss of generality, we may assume I;(u) < . Then by
Theorem 2.3, it will suffice to show that the lower bound is —H(Q) for any
stationary @ with marginal u and H(Q) < «. By Lemmas 2.5 and 2.11 it will
suffice to consider @ as in (3.3). Then u = LA, u,. We take G and G, weak
neighborhoods of p and u,, defined by (3.5) and (3.6), respectively, as in the
proof of Theorem 3.3.

We will use the following consequence of Corollary 3.2: Let @ be stationary,
ergodic, with marginal u. Then given 8 > 0, ¢ > 0, there exist VCcE, uV) >
1 — 6 and an integer n, = ny(¢, 8), such that for n > n,,

(3.12) inf P*(L, € G} > exp(~n(1 + ) (H(Q) +5)).

Let 0 < & < n/4 and & > 0 be fixed. (Recall that n occurs in the definitions
of G,G,.) We will now pick sets A,V,1<p<k Let A, = E and by (3.12)
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let V, be such that u,(V,) > 1 — § and for n > some m,,
(3.13) ing PH{L, < G,} =>exp(—n(1+¢e)(H(Q,) +3)).
x€V,

Since w(V,) >0 and p < B, we have B(V,) > 0. By Lemma 2.9, applied to
W, _1, there exist r,_, and a compact set A,_; such that u,_(A,_;) > 0and
inf, 4, m(r,_y,%,V,) > 0. Next to Corollary 3.2 we can choose V,_; with

pr-«V,_p) > 1 — 8 such that for n > some m,_;,
inf P{L,e G, ;0(j) €A,_, forsome j,n <j <}
(3.14) *Vi
> exp(—n(l+¢)(H(Q,_,) +8)),

where 7 ~ n(1 + ¢). Proceeding in this manner, we get sets Vi, A,
Vy, Ay, ..., V,, A, and positive integers ry,...,r,_q, mq,..., m,_; such that

inf = (r,,x,V,,,)=B,>0, l<p<k-—-1,

.acEA!J
and for n > m,,

inf P*{L, € G,; w(j) € A, for some j,n <j < fi}

x€V,

> exp(—n(1 +¢)(H(Q,) + ),

where i ~(1 + ¢&)n and 1 < p <k — 1. The rest is now very similar to the
proof of Theorem 3.3. For n large, we pick n,, n,,...,n, and n/,...,n/, such
that

(3.15)

(ny+ - +n,) +(ny+ - +n}) +(ry+ - +r,_,) =n,
n,+n,~ )tpn,
n;,~enp,
for 1 < p < k. The stopping times T,...,T,_; are defined as
T(w) =min{j 2 n;: 0(j) €A},
To(w) =min{j > ny, + T, + ri: w(j) € Ay},

T, (@)=min{j>n, + T, o+ r,_0(j)€Ah,_}.
Let T, = 0 and, as before, let
L,={L.(0,)) €G,;Ty(w) <T, (@) + 1, +n,+n,}, 1l<p<k-1
and I, = {ﬁnk(w, ) € G}, where
L(o,)=Ly(0,), L,(0,)=L,(07, ., ), 2=<ps<k.

We then write A, = N,_,I,, 1<r<k. It is easy to see that for all n
sufficiently large (independently of w), A, c {L, € G}. Following the rest of
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the argument in the proof of Theorem 3.3, we conclude that uniformly for
X € Vl,

PH{L,(w,") €G} 2B, "+ Brexp(—(1 +2)(H(Q) +d)n)

for all n sufficiently large. As before, we then have for u-a.e. x,
1
(3.16) lim inf;log PYL (w,) € G} = —I,(u).

This holds for any weak neighborhood G of u. Given G, we can find G c G
such that given r, for all n sufficiently large (depending on r),

{Lui(w,") €G} D {Ln(erw’ ) € d}

We then find a set B, u(B) >0, such that by (3.16), given & > 0,
for n > some m,

(3.17) yilemf';Py{Ln(w, ) € G} = exp(—(I,(r) + 8)n).

Now B(B) > 0, so given x, there exists r such that 7(r, x, B) > 0. Therefore
PHL,, (o,") € G} > w(r,x, B) ingPy{Ln(w, ‘) e G},
ye

hence (3.16) holds for all x. Now suppose that ,(x, A) is continuous in x for
each compact A. Since (3.11) holds for all x, it holds uniformly for x in some
compact set B with B(B) > 0. Then ¢,(x, B) > 0 for all x and is continuous
in x, so by Lemma 2.10, given a compact set K, there exists an integer r, such
that for each x € K, w(r,x, B) > 0 for some r <r,. As long as all such r
(corresponding to all x € K) are uniformly bounded by r,, the argument given
above (going from u-a.e. x to every x) applies and we have (3.11) holding
uniformly for x € K. Finally, we can clearly take B € S such that (3.11) holds
uniformly for x € B. Since inf, _ , m(r, x, B) > 0 for some r, this same argu-
ment again applies for the last assertion, and the theorem is proved. O

The next corollary of Theorem 3.7 is proved in [1] as Theorem 6.3 by
different methods.

CoOROLLARY 3.8. Suppose Hypothesis H{(1) is satisfied. Also assume Condi-
tion B,. Let G be a weak neighborhood of . Then for every x,

1
liminf;log P L (w,") € G} = —I,(u).

ProoF. We already observed in Section 1 that Condition B, implies Condi-
tion A, so the corollary is proved. O

&REMARK 3.9. If for every x we have

1
lim inf ~log P*{L,(, ") € G} > ~I(n),
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then for every probability measure v on (E, &) we have
1
liminf;long"{Ln(w, ) e Glu(dx) > —I(w).

This is obvious because, writing ¢,(x) = P*{L (o, - ) € G}, we have for § > 0,
for any x,

linmmin{l,exp(n(Il(p,) +8))p,(x)} = 1.
Therefore,
flin;inf(exp(n(ll(,u,) +8))b,(x))v(dx) =1
and by Fatou’s lemma
lin;inffexp(n(ll(,u,) +8))d,(x)v(dx) = 1,
S0
[ou(x)v(dx) > § exp(—n(L(n) + )
for all n sufficiently large, and the conclusion follows.

ReMagrk 3.10. Ellis [9] makes the assumption that there exist an M > 0
and positive integers m and n such that for all x,y € E and for all A € &,
w(m,x, A) < Mm(n,y, A). This condition easily implies the existence of a
probability measure a for which H,(1) and Condition A holds. To see this, if
n < m, then

m(m,x,A) = f'rr(n,y,A)w(m —n,x,dy) =M 'm(m,x’, A)

for any x', by assumption. So in this case m = n may be assumed without any
loss of generality; then take a = w(m, x,, - ) for any x, € E, which clearly
satisfies H,(1) and Condition A. If m < n, take a = w(n, x,, - ) for some x,,.
Clearly a satisfies Condition A. If a(A) > 0, but ,(x, A) = 0 for some x,
then 7(n,x, A) =0, so w(m,y, A) = 0 for all y, but then

’"'(n,xm A) = fw(m,y, A)”T(n -—m, xO:dy) = Oy
a contradiction, so a(A) > 0 implies ¢,(x, A) > 0 for all x and H,(1) holds.
Our next observation is that the method applies e(iually well to bounded

additive functionals. Let r > 0 be an integer. Suppose B is a separable Banach
space and f: () - B is a bounded- &, %.measurable mapping. Let

%Sf(n,w) = %{f(w) + f(0,0) + -+ +f(6,_,0)}, n>1.

The following analogue of Proposition 3.1 is proved in exactly the same
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manner. We need only observe that if @ is stationary, ergodic, then
n~'8x(n,w) - [fdQ, Q-as., and sup,| f(w)] < © by assumption, where || - ||
denotes the Banach norm.

ProposiTioN 3.1. Suppose Q is stationary, ergodic. Let G (C B) be a
neighborhood of [fdQ. Suppose u is the marginal of @ and A € & is such that
u(A) > 0. Then given ¢ > 0, we have for u-a.e. x,

1
lim inf —log P¥{n"1S;(n,w) € G, w(j) € A for somej, n <j < f}

> _(1 +8)H(Q)3
where fi ~ (1 + &)n.

Using this proposition, we then get the analogue of Theorem 3.7.

THEOREM 3.7'. Suppose Hypotheses H,(1) and H{(2) hold. Let @ be a
stationary process, and let G be a neighborhood of [fdQ in B. Then for every x,

1
(3.18) lin}linleog Px{n'ISf(n,w) S G} > —H(Q).

If, moreover y(x, B) is a continuous function of x for every compact B, then
the conclusion holds uniformly for x in a compact set. If B € S and for some r,
inf, .o w(r, x, B) > 0, then the conclusion holds uniformly for x in C.

Proor. The proof of this theorem requires no essential change from that
of Theorem 3.7. It should be observed, however, that Lemma 2.6 will substi-
tute for Lemma 2.5 at the appropriate step. We omit the details.

REMARK 3.11. The right-hand side in (3.18) can be replaced by —inf{ H(Q):
/fdQ € G}. If f(w) = g(w(0)) for some bounded measurable g: E — B and u
is the marginal of @, then [fdQ = [gdu and the right-hand side can be
replaced by —inf{I,(u): [gdu € G}. See also [1]. It is shown in [5] that if
E=B,gx)=x,71,x,A) =AMA —x)forall Ae &, x € E, then

inf{Il(,u,): fxd,u, = a} = sup [(0,a) — log M(9)],

cE*
where M(6) = [exp({0, x)) dA(x).
The above observation corresponds to r = 0. In general,
f(0) = g(w(0),w(1),...,0(r = 1))
for some g: E X -+ X E — B, a bounded measurable map. Then the r-dimen-
sional marginal of @ will play the appropriate role.

4. Continuous time. The development here parallels that of the discrete
time situation, once the appropriate definitions have been made. Some more
notation has to be introduced before the main result can be stated.
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Let U be an open subset of E and let C be a closed subset of U. We assume
that u is a probability measure whose support is contained in C. As in [5], we
write

(4.1) my(t,x,A) = P{w:w(s) e U,0 <s <t,o(t) € A},
where A is a Borel subset of U. Let

(4.2) vy(t,x, A) = fme_sﬂn-u(s,x, A)ds
t

and write ¢ (x, A) for (0, x, A).
The next proposition is an analogue of Proposition 3.1.

ProrosiTiON 4.1. Let U, C and u be as above. Let @ be a stationary
ergodic measure on (Q, &) with marginal n. Suppose G is a weak neighbor-
hood of u and let A c U be such that u(A) > 0. Then given & > 0, we have for
u-a.e. x,

1
liminf?log PY{L(w,") €G,w(s) €C,0<s<{
t—> o

w(u) EAforsomeu,ts u<tl>—-(1+e)H(Q),

wheref ~ (1 + &)t as t — .

Proor. The main thing to observe is that if @ has marginal u, then
Q{w: w(s) €C,0 <s <t,s < rationals} = 1

. for all ¢t > 0. Since C is closed and the paths w are right-continuous, we then
have

Q{uw:w(s) eC,0<s <t} =1, t>0.
The rest of the proof parallels that of Proposition 3.1 and is omitted. O
The next corollary of this proposition is the analogue of Corollary 3.2.
COROLLARY 4.2. Given 6 > 0, € > 0, there exists a compact set K ¢ C with
w(K) > 1 — & and there exists t, = t,(¢,8) > 0 such that for t > ¢,
inf P*{L(w,") € G,w(s) €C,0<s<T;
xeK
(4.3) w(u) € Aforsomeu,t <u <t}
> exp{ —{(H(Q) +9)},
where £ ~ (1 + )t ast - o,

We now need to make hypotheses which will replace Hypotheses H,(1) and
H,(2).



1094 N. C. JAIN

HypotHESIs H;. There exists a probability measure a such that if A C
U, then a(A) > 0 implies that y;(x, A) > 0 forall x € U.

HypotHEsis H,. There exists a probability measure a such that I,(p) < o =
<.

LEMMA 4.3. Assume Hypothesis Hy. Let A C U be such that a(A) > 0.
Then given any probability measure v and B ¢ C with v(B) > 0, there exists a
compact set B; C B with v(B,) > 0 such that for some t,> 0 we have
inf, ., Ty(ty, x, A) > 0.

Proor. We have
fme‘“ duf my(t,x, A) dv(x) > 0.
0 B

Therefore, for some ¢, > 0 we have [gm (¢y, x, A) dv(x) > 0, which implies
the conclusion immediately. O

We now state and prove the main result.

THEOREM 4.4. Assume Hypotheses H, and H, (with the same a). Let G be
a weak neighborhood of w. Then for all x € U we have

1
(4.4) liminf?log PH{L(w,") €G,w(s) €U, 0<s<t}>—-I(un).
t—o

If, moreover, for each compact A C U, ;(x, A) is continuous in x, then the
conclusion holds uniformly for x in any compact subset of U.

Proor. The proof of this theorem is very similar to that of Theorem 3.7
and we will give the details where necessary. First, we may assume that
I,(p) < ; otherwise there is nothing to prove. Next, by the contraction
principle (Theorem 2.3), it suffices to consider stationary measures @ on
(Q, ) with marginal p and H(Q) < . We need only prove (4.4) with H(Q)
replacing I,(u) on the right side. By Lemma 2.5 we only need to consider @ of
the form ):f;zl)t »&,, where each @, is stationary and ergodic and YA, =1,
A, >0,1<p <k. As before, let u, denote the marginal of @,, so u,(C) =1
for each p. We pick G and G, defined by (3.5) and (3.6) as in the proof of
Theorem 3.3. Note that 7 below is the same as in the definitions of G and G,.

Let 0 <& <n/4 and 6 > 0 be fixed. We then pick sets A, and V, as
follows: Let A, = C. Then by Corollary 4.2 pick V, c C, a compact set, such
that u,(V,) > 1 — 8 and for ¢ > some m,,

inf P*{L(w, ) € G}, w(s) €4,,0<s <{}
(4.5) x€V, )

> exp(—f(H(Q,) + §)),
where £ ~ (1 + ¢)t. Since u(V,) > 0 and u < a (by H,), we have a(V,) > 0.
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By Lemma 4.3, there exists a compact A,_; € C such that u,_(A,_) >0
and inf, c 4,  7y(s;,_y, %, V}) > 0 for some s,_; > 0. By Corollary 4.2 again
we pick V,_; ¢ C with u,_V,_;) > 1 — & such that for ¢ > some m,_,,
inf PY{L(w,)€G,_;,w(s) €C,0<s <t
x€V;,_1
(4.6) w(u) €A,_, for some u, t < u < {}

> exp(—{(H(Q,_1) +9)),

where £ ~ (1 + &)t. Since a(V,_,) > 0, we can pick compact A, _, ¢ C such
that u,_5(A,_ ;) > 0andinf, ., , 7y(s,_s, %, V,_y) > O for some s, _,. Pro-

ceeding in this manner, we get sets V;, A;, V,, A,,...,V,, A, and positive
numbers s, S, ..., S,_1, My,..., M,_q, such that s, =0,
xienfprru(sp,x,vpﬂ) =B,>0, l<p<k-1,

pp(V,)>1-8, u,(A,)>0, 1<pc<k,
and for t > m,,
inf P*{L(w,") € G, o(s) €C,0<s< £

x€V,

w(u) €A, forsome u,t <u <i} > exp(—f(H(Qp) + 6)),

where { ~ (1 + €)t, 1 < p <k — 1. The rest of the proof is essentially the same
as in Theorem 3.3. For ¢ large, we pick ¢,,...,¢, ¢{,..., ¢} such that (sy =0,
S15.-.,8,_1 have already been chosen)

(8, + - +t,) + (4 + o Ftp) +(sy+ 0 +5,_1) =1,
t, +t, ~Ayt,
t) ~ et,,
1 < p < k. The stopping times T, ..., T,_, are defined as
T(w) = inf{¢ > ¢;: 0(t) €A},
Ty(w) = inf{t > t, + T; + s;: 0(t) € A},

Tk—l(“)) = lnf{t > tk—l + Tk—2 + Sk_2: O)(t) (S Ak—l}‘

Let
TO(")) = Oa

and let
T, = {ﬁtp(w, ) € G, 0(s) €C,T,_(0) +5,_; <s <T,();

T(0) <T, (o) +sp_1+tp+t;,>, l<p<k-1,

Fk = {f/tk((x), ') S Gk; O)(S) S C, Tk—l + Sk—l <s < Tk—l + sk—l + tk + t}’z},
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where L,(o, ) = L,(w, - )and L, (0, ) =L, (6 ., o, ),2<p <k Also,
].et 21 = Q,
s,={0:w(s) €U, T,  <s<T,_;+s,1}, 2<p<k

and
p
A= N(,NE), 1<ps<h
r=1
We have
k A
sup sup |L,(w, A) — Y Ath(a),A)I
0w Aed p=1 P
1k k ¢
< supsup|L(w,A) — — ¥ t,L, (0, A)| + XA, - (—5)
0 A tpor 7 p=1 ¢

R 7 T2 B R o P k
< ; +

™

t
Ap — (—}1) < 2e,
p=1 ¢

for all ¢ suﬁiciently large. Since & < 1/4, it follows that there exists m,
(independent of w) such that if ¢t > m,, we have

A,c{L(w,") €G o(s) €U,0<s <t}
For x € V,, we have by the strong Markov property,
P*(A,) = P*(A,_,) inf Tu(Sp-152, Vi)
z€A,

X inf PY{L,(w,*) € Gy, o(s) €C,0<s<t, + th}.
yEV,

Iterating this, we get for ¢ > some ¢y, x € V,
PHA} 2 B, - Brexp(—(1+¢)(H(Q) +9)).

Since u,(V,) > 1 — & and we can arrange @, ..., &, in any order, this shows
that for u-a.e. x in C we have (4.4). If x € C is arbitrary, then by Hypothesis
H,; we must have, for any A with a(A) > 0, 7yt x, A) > 0 for some ¢ > 0.
Since (4.4) must hold uniformly over some A c C with w(A) > 0, it follows
that (4.4) must hold for every x € U. We can take A to be compact in this
argument. To prove the second assertion, note that the proof of Lemma 2.10
applies as well to ¥, and 7. Therefore, if A is compact with a(A) > 0, then
Yy(x, A) > 0 for all x by Hypothesis Hj. Let K be a compact subset of E. By
Lemma 2.10 there exists £, > 0 and & > 0 such that (¢, x, A) > § for all
x € K and for some ¢ (depending on x), ¢ < ¢,. This is clearly enough for (4.4)
to hold uniformly over K. This proves the theorem. O

Theorem 4.5 is an immediate consequence if we take U = E in Theorem
4.4. Note that H, then becomes H(1), so by Proposition 2.7 the process is
also B-irreducible and then H,(2) can replace H,.
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THEOREM 4.5. Assume that Hypotheses Hy(1) and H,(2) hold. Let G be a
weak neighborhood of w. Then for all x,

1
liminf;log P{L(w,') € G} = —I,(n).
t—>

If, moreover, for each compact A, 1//2(x A) is a continuous function of x, then
the conclusion holds uniformly for x in any compact set.

REMARK 4.6. One can follow the arguments given in [6], Section 2, to show
that H, is satisfied for a class of processes with stationary independent
increments and that ¢ (x, A) is continuous in x.

We now give an application of Theorem 4.4. Suppose (¢, x, - ) satisfies the
Feller property, i.e., if f: E —» R is bounded continuous, then the function
[f)m (¢, x,dy) = g(¢, x) is a continuous function of x for all . Let C be a
compact subset of .Z(E), the set of probability measures on E with the
topology of weak convergence. Then a result of Donsker and Varadhan [see
(7.1) of [5]] tells us that

1

(4.7) lim sup — suplog P*{L,(w,*) € C} < — 1nf Iz(v)
t—o 4 x€E

Now suppose E = R? the d-dimensional Euclidean space. Let V, = {v: v €

H(E), v(x: ||x] < a]) = 1}. Clearly V, is compact in the topology of weak

convergence and (4.7) means

1
~ (4.8) limsup — suplog P*{[lo(s)||<a,0 <s <t} < — inf I,(v).
t—o x€E vey,

Let 0 <b<a and let U= {x: |x|| <a}). Let K={x: ||x| <b}, a compact
subset of U. If the conditions of Theorem 4.4 are satisfied, then we have

(4.9) hmlnf— 1nf log P*{|lw(s)||<a,0 <s <t} > — 1nf Iz(v)
t—o L x|

If inf, .y, I(v) < ®, then given ¢, \ 0, we can find v, € V, , where a, \ b,

such that I,(v,) <inf, ., Iy(u) + ¢,. A subsequence of {v, }, again denoted

by {v,}, converges weakly £0 some v € Vb Hence, by the lower semicontinuity

of I, (used at the second inequality below) we have

inf To(u) + &),

inf I(n) < I(v) < liminfl,(v,) < lim inf(
rE Vb n n lad a,

Using this, (4.8) and (4.9) we conclude the following theorem.

THEOREM 4.7. Let E = R? and let 7 be a Feller semigroup. Suppose the
conditions of Theorem 4.4 are satisfied for U of the form {x: ||x|| < a}. Then
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given & > 0, given b > 0, there exists a > b such that a - bas 6 = 0 and

1
7 < liminf — inf log P"< sup |w(s)| < a}

o llxll<b O<s<t

1
< lim sup — suplog P"{ sup |w(s)| < a} <m+34,

t—o x O0<s<t

where n = —inf, .y, I,(v) is assumed to be finite.

Finally, we state the analogue of Theorem 3.7’ without proof. Let » > 0 and
f: Q > B, B a separable Banach space, be bounded %, °-measurable. Let

Si(t, w) = fotf(osw) ds.

THEOREM 4.8. Suppose Hypotheses Hy(1) and H,(2) hold. Let @ be a
stationary process and let G be a neighborhood of [fd@ in B. Then for every x,

1
liminf —log P*{t"1S(t, w) € G} = —-H(Q).
t—>x

If, moreover, y,(x, B) is a continuous function of x for every compact B, then
the conclusion holds uniformly for x in any compact set.

The remarks after Theorem 3.7 apply in continuous time as well.
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